f-stack/dpdk/drivers/net/txgbe/base/txgbe_dcb.c

362 lines
10 KiB
C

/* SPDX-License-Identifier: BSD-3-Clause
* Copyright(c) 2015-2020 Beijing WangXun Technology Co., Ltd.
* Copyright(c) 2010-2017 Intel Corporation
*/
#include "txgbe_type.h"
#include "txgbe_hw.h"
#include "txgbe_dcb.h"
#include "txgbe_dcb_hw.h"
/**
* txgbe_pfc_enable - Enable flow control
* @hw: pointer to hardware structure
* @tc_num: traffic class number
* Enable flow control according to the current settings.
*/
int
txgbe_dcb_pfc_enable(struct txgbe_hw *hw, uint8_t tc_num)
{
int ret_val = 0;
uint32_t mflcn_reg, fccfg_reg;
uint32_t pause_time;
uint32_t fcrtl, fcrth;
uint8_t i;
uint8_t nb_rx_en;
/* Validate the water mark configuration */
if (!hw->fc.pause_time) {
ret_val = TXGBE_ERR_INVALID_LINK_SETTINGS;
goto out;
}
/* Low water mark of zero causes XOFF floods */
if (hw->fc.current_mode & txgbe_fc_tx_pause) {
/* High/Low water can not be 0 */
if (!hw->fc.high_water[tc_num] ||
!hw->fc.low_water[tc_num]) {
PMD_INIT_LOG(ERR, "Invalid water mark configuration");
ret_val = TXGBE_ERR_INVALID_LINK_SETTINGS;
goto out;
}
if (hw->fc.low_water[tc_num] >= hw->fc.high_water[tc_num]) {
PMD_INIT_LOG(ERR, "Invalid water mark configuration");
ret_val = TXGBE_ERR_INVALID_LINK_SETTINGS;
goto out;
}
}
/* Negotiate the fc mode to use */
txgbe_fc_autoneg(hw);
/* Disable any previous flow control settings */
mflcn_reg = rd32(hw, TXGBE_RXFCCFG);
mflcn_reg &= ~(TXGBE_RXFCCFG_FC | TXGBE_RXFCCFG_PFC);
fccfg_reg = rd32(hw, TXGBE_TXFCCFG);
fccfg_reg &= ~(TXGBE_TXFCCFG_FC | TXGBE_TXFCCFG_PFC);
switch (hw->fc.current_mode) {
case txgbe_fc_none:
/*
* If the count of enabled RX Priority Flow control > 1,
* and the TX pause can not be disabled
*/
nb_rx_en = 0;
for (i = 0; i < TXGBE_DCB_TC_MAX; i++) {
uint32_t reg = rd32(hw, TXGBE_FCWTRHI(i));
if (reg & TXGBE_FCWTRHI_XOFF)
nb_rx_en++;
}
if (nb_rx_en > 1)
fccfg_reg |= TXGBE_TXFCCFG_PFC;
break;
case txgbe_fc_rx_pause:
/*
* Rx Flow control is enabled and Tx Flow control is
* disabled by software override. Since there really
* isn't a way to advertise that we are capable of RX
* Pause ONLY, we will advertise that we support both
* symmetric and asymmetric Rx PAUSE. Later, we will
* disable the adapter's ability to send PAUSE frames.
*/
mflcn_reg |= TXGBE_RXFCCFG_PFC;
/*
* If the count of enabled RX Priority Flow control > 1,
* and the TX pause can not be disabled
*/
nb_rx_en = 0;
for (i = 0; i < TXGBE_DCB_TC_MAX; i++) {
uint32_t reg = rd32(hw, TXGBE_FCWTRHI(i));
if (reg & TXGBE_FCWTRHI_XOFF)
nb_rx_en++;
}
if (nb_rx_en > 1)
fccfg_reg |= TXGBE_TXFCCFG_PFC;
break;
case txgbe_fc_tx_pause:
/*
* Tx Flow control is enabled, and Rx Flow control is
* disabled by software override.
*/
fccfg_reg |= TXGBE_TXFCCFG_PFC;
break;
case txgbe_fc_full:
/* Flow control (both Rx and Tx) is enabled by SW override. */
mflcn_reg |= TXGBE_RXFCCFG_PFC;
fccfg_reg |= TXGBE_TXFCCFG_PFC;
break;
default:
PMD_DRV_LOG(DEBUG, "Flow control param set incorrectly");
ret_val = TXGBE_ERR_CONFIG;
goto out;
}
/* Set 802.3x based flow control settings. */
wr32(hw, TXGBE_RXFCCFG, mflcn_reg);
wr32(hw, TXGBE_TXFCCFG, fccfg_reg);
/* Set up and enable Rx high/low water mark thresholds, enable XON. */
if ((hw->fc.current_mode & txgbe_fc_tx_pause) &&
hw->fc.high_water[tc_num]) {
fcrtl = TXGBE_FCWTRLO_TH(hw->fc.low_water[tc_num]) |
TXGBE_FCWTRLO_XON;
fcrth = TXGBE_FCWTRHI_TH(hw->fc.high_water[tc_num]) |
TXGBE_FCWTRHI_XOFF;
} else {
/*
* In order to prevent Tx hangs when the internal Tx
* switch is enabled we must set the high water mark
* to the maximum FCRTH value. This allows the Tx
* switch to function even under heavy Rx workloads.
*/
fcrtl = 0;
fcrth = rd32(hw, TXGBE_PBRXSIZE(tc_num)) - 32;
}
wr32(hw, TXGBE_FCWTRLO(tc_num), fcrtl);
wr32(hw, TXGBE_FCWTRHI(tc_num), fcrth);
/* Configure pause time (2 TCs per register) */
pause_time = TXGBE_RXFCFSH_TIME(hw->fc.pause_time);
for (i = 0; i < (TXGBE_DCB_TC_MAX / 2); i++)
wr32(hw, TXGBE_FCXOFFTM(i), pause_time * 0x00010001);
/* Configure flow control refresh threshold value */
wr32(hw, TXGBE_RXFCRFSH, pause_time / 2);
out:
return ret_val;
}
/**
* txgbe_dcb_calculate_tc_credits_cee - Calculates traffic class credits
* @hw: pointer to hardware structure
* @dcb_config: Struct containing DCB settings
* @max_frame_size: Maximum frame size
* @direction: Configuring either Tx or Rx
*
* This function calculates the credits allocated to each traffic class.
* It should be called only after the rules are checked by
* txgbe_dcb_check_config_cee().
*/
s32 txgbe_dcb_calculate_tc_credits_cee(struct txgbe_hw *hw,
struct txgbe_dcb_config *dcb_config,
u32 max_frame_size, u8 direction)
{
struct txgbe_dcb_tc_path *p;
u32 min_multiplier = 0;
u16 min_percent = 100;
s32 ret_val = 0;
/* Initialization values default for Tx settings */
u32 min_credit = 0;
u32 credit_refill = 0;
u32 credit_max = 0;
u16 link_percentage = 0;
u8 bw_percent = 0;
u8 i;
UNREFERENCED_PARAMETER(hw);
if (dcb_config == NULL) {
ret_val = TXGBE_ERR_CONFIG;
goto out;
}
min_credit = ((max_frame_size / 2) + TXGBE_DCB_CREDIT_QUANTUM - 1) /
TXGBE_DCB_CREDIT_QUANTUM;
/* Find smallest link percentage */
for (i = 0; i < TXGBE_DCB_TC_MAX; i++) {
p = &dcb_config->tc_config[i].path[direction];
bw_percent = dcb_config->bw_percentage[p->bwg_id][direction];
link_percentage = p->bwg_percent;
link_percentage = (link_percentage * bw_percent) / 100;
if (link_percentage && link_percentage < min_percent)
min_percent = link_percentage;
}
/*
* The ratio between traffic classes will control the bandwidth
* percentages seen on the wire. To calculate this ratio we use
* a multiplier. It is required that the refill credits must be
* larger than the max frame size so here we find the smallest
* multiplier that will allow all bandwidth percentages to be
* greater than the max frame size.
*/
min_multiplier = (min_credit / min_percent) + 1;
/* Find out the link percentage for each TC first */
for (i = 0; i < TXGBE_DCB_TC_MAX; i++) {
p = &dcb_config->tc_config[i].path[direction];
bw_percent = dcb_config->bw_percentage[p->bwg_id][direction];
link_percentage = p->bwg_percent;
/* Must be careful of integer division for very small nums */
link_percentage = (link_percentage * bw_percent) / 100;
if (p->bwg_percent > 0 && link_percentage == 0)
link_percentage = 1;
/* Save link_percentage for reference */
p->link_percent = (u8)link_percentage;
/* Calculate credit refill ratio using multiplier */
credit_refill = min(link_percentage * min_multiplier,
(u32)TXGBE_DCB_MAX_CREDIT_REFILL);
/* Refill at least minimum credit */
if (credit_refill < min_credit)
credit_refill = min_credit;
p->data_credits_refill = (u16)credit_refill;
/* Calculate maximum credit for the TC */
credit_max = (link_percentage * TXGBE_DCB_MAX_CREDIT) / 100;
/*
* Adjustment based on rule checking, if the percentage
* of a TC is too small, the maximum credit may not be
* enough to send out a jumbo frame in data plane arbitration.
*/
if (credit_max < min_credit)
credit_max = min_credit;
if (direction == TXGBE_DCB_TX_CONFIG) {
dcb_config->tc_config[i].desc_credits_max =
(u16)credit_max;
}
p->data_credits_max = (u16)credit_max;
}
out:
return ret_val;
}
/**
* txgbe_dcb_unpack_pfc_cee - Unpack dcb_config PFC info
* @cfg: dcb configuration to unpack into hardware consumable fields
* @map: user priority to traffic class map
* @pfc_up: u8 to store user priority PFC bitmask
*
* This unpacks the dcb configuration PFC info which is stored per
* traffic class into a 8bit user priority bitmask that can be
* consumed by hardware routines. The priority to tc map must be
* updated before calling this routine to use current up-to maps.
*/
void txgbe_dcb_unpack_pfc_cee(struct txgbe_dcb_config *cfg, u8 *map, u8 *pfc_up)
{
struct txgbe_dcb_tc_config *tc_config = &cfg->tc_config[0];
int up;
/*
* If the TC for this user priority has PFC enabled then set the
* matching bit in 'pfc_up' to reflect that PFC is enabled.
*/
for (*pfc_up = 0, up = 0; up < TXGBE_DCB_UP_MAX; up++) {
if (tc_config[map[up]].pfc != txgbe_dcb_pfc_disabled)
*pfc_up |= 1 << up;
}
}
void txgbe_dcb_unpack_refill_cee(struct txgbe_dcb_config *cfg, int direction,
u16 *refill)
{
struct txgbe_dcb_tc_config *tc_config = &cfg->tc_config[0];
int tc;
for (tc = 0; tc < TXGBE_DCB_TC_MAX; tc++)
refill[tc] = tc_config[tc].path[direction].data_credits_refill;
}
void txgbe_dcb_unpack_max_cee(struct txgbe_dcb_config *cfg, u16 *max)
{
struct txgbe_dcb_tc_config *tc_config = &cfg->tc_config[0];
int tc;
for (tc = 0; tc < TXGBE_DCB_TC_MAX; tc++)
max[tc] = tc_config[tc].desc_credits_max;
}
void txgbe_dcb_unpack_bwgid_cee(struct txgbe_dcb_config *cfg, int direction,
u8 *bwgid)
{
struct txgbe_dcb_tc_config *tc_config = &cfg->tc_config[0];
int tc;
for (tc = 0; tc < TXGBE_DCB_TC_MAX; tc++)
bwgid[tc] = tc_config[tc].path[direction].bwg_id;
}
void txgbe_dcb_unpack_tsa_cee(struct txgbe_dcb_config *cfg, int direction,
u8 *tsa)
{
struct txgbe_dcb_tc_config *tc_config = &cfg->tc_config[0];
int tc;
for (tc = 0; tc < TXGBE_DCB_TC_MAX; tc++)
tsa[tc] = tc_config[tc].path[direction].tsa;
}
u8 txgbe_dcb_get_tc_from_up(struct txgbe_dcb_config *cfg, int direction, u8 up)
{
struct txgbe_dcb_tc_config *tc_config = &cfg->tc_config[0];
u8 prio_mask = 1 << up;
u8 tc = cfg->num_tcs.pg_tcs;
/* If tc is 0 then DCB is likely not enabled or supported */
if (!tc)
goto out;
/*
* Test from maximum TC to 1 and report the first match we find. If
* we find no match we can assume that the TC is 0 since the TC must
* be set for all user priorities
*/
for (tc--; tc; tc--) {
if (prio_mask & tc_config[tc].path[direction].up_to_tc_bitmap)
break;
}
out:
return tc;
}
void txgbe_dcb_unpack_map_cee(struct txgbe_dcb_config *cfg, int direction,
u8 *map)
{
u8 up;
for (up = 0; up < TXGBE_DCB_UP_MAX; up++)
map[up] = txgbe_dcb_get_tc_from_up(cfg, direction, up);
}
/* Helper routines to abstract HW specifics from DCB netlink ops */
s32 txgbe_dcb_config_pfc(struct txgbe_hw *hw, u8 pfc_en, u8 *map)
{
int ret = TXGBE_ERR_PARAM;
ret = txgbe_dcb_config_pfc_raptor(hw, pfc_en, map);
return ret;
}