f-stack/dpdk/drivers/net/tap/rte_eth_tap.c

2644 lines
68 KiB
C

/* SPDX-License-Identifier: BSD-3-Clause
* Copyright(c) 2016-2017 Intel Corporation
*/
#include <rte_atomic.h>
#include <rte_branch_prediction.h>
#include <rte_byteorder.h>
#include <rte_common.h>
#include <rte_mbuf.h>
#include <ethdev_driver.h>
#include <ethdev_vdev.h>
#include <rte_malloc.h>
#include <rte_bus_vdev.h>
#include <rte_kvargs.h>
#include <rte_net.h>
#include <rte_debug.h>
#include <rte_ip.h>
#include <rte_string_fns.h>
#include <rte_ethdev.h>
#include <rte_errno.h>
#include <rte_cycles.h>
#include <sys/types.h>
#include <sys/stat.h>
#include <sys/socket.h>
#include <sys/ioctl.h>
#include <sys/utsname.h>
#include <sys/mman.h>
#include <errno.h>
#include <signal.h>
#include <stdbool.h>
#include <stdint.h>
#include <sys/uio.h>
#include <unistd.h>
#include <arpa/inet.h>
#include <net/if.h>
#include <linux/if_tun.h>
#include <linux/if_ether.h>
#include <fcntl.h>
#include <ctype.h>
#include <tap_rss.h>
#include <rte_eth_tap.h>
#include <tap_flow.h>
#include <tap_netlink.h>
#include <tap_tcmsgs.h>
/* Linux based path to the TUN device */
#define TUN_TAP_DEV_PATH "/dev/net/tun"
#define DEFAULT_TAP_NAME "dtap"
#define DEFAULT_TUN_NAME "dtun"
#define ETH_TAP_IFACE_ARG "iface"
#define ETH_TAP_REMOTE_ARG "remote"
#define ETH_TAP_MAC_ARG "mac"
#define ETH_TAP_MAC_FIXED "fixed"
#define ETH_TAP_USR_MAC_FMT "xx:xx:xx:xx:xx:xx"
#define ETH_TAP_CMP_MAC_FMT "0123456789ABCDEFabcdef"
#define ETH_TAP_MAC_ARG_FMT ETH_TAP_MAC_FIXED "|" ETH_TAP_USR_MAC_FMT
#define TAP_GSO_MBUFS_PER_CORE 128
#define TAP_GSO_MBUF_SEG_SIZE 128
#define TAP_GSO_MBUF_CACHE_SIZE 4
#define TAP_GSO_MBUFS_NUM \
(TAP_GSO_MBUFS_PER_CORE * TAP_GSO_MBUF_CACHE_SIZE)
/* IPC key for queue fds sync */
#define TAP_MP_KEY "tap_mp_sync_queues"
#define TAP_MP_REQ_START_RXTX "tap_mp_req_start_rxtx"
#define TAP_IOV_DEFAULT_MAX 1024
#define TAP_RX_OFFLOAD (RTE_ETH_RX_OFFLOAD_SCATTER | \
RTE_ETH_RX_OFFLOAD_IPV4_CKSUM | \
RTE_ETH_RX_OFFLOAD_UDP_CKSUM | \
RTE_ETH_RX_OFFLOAD_TCP_CKSUM)
#define TAP_TX_OFFLOAD (RTE_ETH_TX_OFFLOAD_MULTI_SEGS | \
RTE_ETH_TX_OFFLOAD_IPV4_CKSUM | \
RTE_ETH_TX_OFFLOAD_UDP_CKSUM | \
RTE_ETH_TX_OFFLOAD_TCP_CKSUM | \
RTE_ETH_TX_OFFLOAD_TCP_TSO)
static int tap_devices_count;
static const char *tuntap_types[ETH_TUNTAP_TYPE_MAX] = {
"UNKNOWN", "TUN", "TAP"
};
static const char *valid_arguments[] = {
ETH_TAP_IFACE_ARG,
ETH_TAP_REMOTE_ARG,
ETH_TAP_MAC_ARG,
NULL
};
static volatile uint32_t tap_trigger; /* Rx trigger */
static struct rte_eth_link pmd_link = {
.link_speed = RTE_ETH_SPEED_NUM_10G,
.link_duplex = RTE_ETH_LINK_FULL_DUPLEX,
.link_status = RTE_ETH_LINK_DOWN,
.link_autoneg = RTE_ETH_LINK_FIXED,
};
static void
tap_trigger_cb(int sig __rte_unused)
{
/* Valid trigger values are nonzero */
tap_trigger = (tap_trigger + 1) | 0x80000000;
}
/* Specifies on what netdevices the ioctl should be applied */
enum ioctl_mode {
LOCAL_AND_REMOTE,
LOCAL_ONLY,
REMOTE_ONLY,
};
/* Message header to synchronize queues via IPC */
struct ipc_queues {
char port_name[RTE_DEV_NAME_MAX_LEN];
int rxq_count;
int txq_count;
/*
* The file descriptors are in the dedicated part
* of the Unix message to be translated by the kernel.
*/
};
static int tap_intr_handle_set(struct rte_eth_dev *dev, int set);
/**
* Tun/Tap allocation routine
*
* @param[in] pmd
* Pointer to private structure.
*
* @param[in] is_keepalive
* Keepalive flag
*
* @return
* -1 on failure, fd on success
*/
static int
tun_alloc(struct pmd_internals *pmd, int is_keepalive)
{
struct ifreq ifr;
#ifdef IFF_MULTI_QUEUE
unsigned int features;
#endif
int fd, signo, flags;
memset(&ifr, 0, sizeof(struct ifreq));
/*
* Do not set IFF_NO_PI as packet information header will be needed
* to check if a received packet has been truncated.
*/
ifr.ifr_flags = (pmd->type == ETH_TUNTAP_TYPE_TAP) ?
IFF_TAP : IFF_TUN | IFF_POINTOPOINT;
strlcpy(ifr.ifr_name, pmd->name, IFNAMSIZ);
fd = open(TUN_TAP_DEV_PATH, O_RDWR);
if (fd < 0) {
TAP_LOG(ERR, "Unable to open %s interface", TUN_TAP_DEV_PATH);
goto error;
}
#ifdef IFF_MULTI_QUEUE
/* Grab the TUN features to verify we can work multi-queue */
if (ioctl(fd, TUNGETFEATURES, &features) < 0) {
TAP_LOG(ERR, "unable to get TUN/TAP features");
goto error;
}
TAP_LOG(DEBUG, "%s Features %08x", TUN_TAP_DEV_PATH, features);
if (features & IFF_MULTI_QUEUE) {
TAP_LOG(DEBUG, " Multi-queue support for %d queues",
RTE_PMD_TAP_MAX_QUEUES);
ifr.ifr_flags |= IFF_MULTI_QUEUE;
} else
#endif
{
ifr.ifr_flags |= IFF_ONE_QUEUE;
TAP_LOG(DEBUG, " Single queue only support");
}
/* Set the TUN/TAP configuration and set the name if needed */
if (ioctl(fd, TUNSETIFF, (void *)&ifr) < 0) {
TAP_LOG(WARNING, "Unable to set TUNSETIFF for %s: %s",
ifr.ifr_name, strerror(errno));
goto error;
}
/*
* Name passed to kernel might be wildcard like dtun%d
* and need to find the resulting device.
*/
TAP_LOG(DEBUG, "Device name is '%s'", ifr.ifr_name);
strlcpy(pmd->name, ifr.ifr_name, RTE_ETH_NAME_MAX_LEN);
if (is_keepalive) {
/*
* Detach the TUN/TAP keep-alive queue
* to avoid traffic through it
*/
ifr.ifr_flags = IFF_DETACH_QUEUE;
if (ioctl(fd, TUNSETQUEUE, (void *)&ifr) < 0) {
TAP_LOG(WARNING,
"Unable to detach keep-alive queue for %s: %s",
ifr.ifr_name, strerror(errno));
goto error;
}
}
flags = fcntl(fd, F_GETFL);
if (flags == -1) {
TAP_LOG(WARNING,
"Unable to get %s current flags\n",
ifr.ifr_name);
goto error;
}
/* Always set the file descriptor to non-blocking */
flags |= O_NONBLOCK;
if (fcntl(fd, F_SETFL, flags) < 0) {
TAP_LOG(WARNING,
"Unable to set %s to nonblocking: %s",
ifr.ifr_name, strerror(errno));
goto error;
}
/* Find a free realtime signal */
for (signo = SIGRTMIN + 1; signo < SIGRTMAX; signo++) {
struct sigaction sa;
if (sigaction(signo, NULL, &sa) == -1) {
TAP_LOG(WARNING,
"Unable to get current rt-signal %d handler",
signo);
goto error;
}
/* Already have the handler we want on this signal */
if (sa.sa_handler == tap_trigger_cb)
break;
/* Is handler in use by application */
if (sa.sa_handler != SIG_DFL) {
TAP_LOG(DEBUG,
"Skipping used rt-signal %d", signo);
continue;
}
sa = (struct sigaction) {
.sa_flags = SA_RESTART,
.sa_handler = tap_trigger_cb,
};
if (sigaction(signo, &sa, NULL) == -1) {
TAP_LOG(WARNING,
"Unable to set rt-signal %d handler\n", signo);
goto error;
}
/* Found a good signal to use */
TAP_LOG(DEBUG,
"Using rt-signal %d", signo);
break;
}
if (signo == SIGRTMAX) {
TAP_LOG(WARNING, "All rt-signals are in use\n");
/* Disable trigger globally in case of error */
tap_trigger = 0;
TAP_LOG(NOTICE, "No Rx trigger signal available\n");
} else {
/* Enable signal on file descriptor */
if (fcntl(fd, F_SETSIG, signo) < 0) {
TAP_LOG(WARNING, "Unable to set signo %d for fd %d: %s",
signo, fd, strerror(errno));
goto error;
}
if (fcntl(fd, F_SETFL, flags | O_ASYNC) < 0) {
TAP_LOG(WARNING, "Unable to set fcntl flags: %s",
strerror(errno));
goto error;
}
if (fcntl(fd, F_SETOWN, getpid()) < 0) {
TAP_LOG(WARNING, "Unable to set fcntl owner: %s",
strerror(errno));
goto error;
}
}
return fd;
error:
if (fd >= 0)
close(fd);
return -1;
}
static void
tap_verify_csum(struct rte_mbuf *mbuf)
{
uint32_t l2 = mbuf->packet_type & RTE_PTYPE_L2_MASK;
uint32_t l3 = mbuf->packet_type & RTE_PTYPE_L3_MASK;
uint32_t l4 = mbuf->packet_type & RTE_PTYPE_L4_MASK;
unsigned int l2_len = sizeof(struct rte_ether_hdr);
unsigned int l3_len;
uint16_t cksum = 0;
void *l3_hdr;
void *l4_hdr;
struct rte_udp_hdr *udp_hdr;
if (l2 == RTE_PTYPE_L2_ETHER_VLAN)
l2_len += 4;
else if (l2 == RTE_PTYPE_L2_ETHER_QINQ)
l2_len += 8;
/* Don't verify checksum for packets with discontinuous L2 header */
if (unlikely(l2_len + sizeof(struct rte_ipv4_hdr) >
rte_pktmbuf_data_len(mbuf)))
return;
l3_hdr = rte_pktmbuf_mtod_offset(mbuf, void *, l2_len);
if (l3 == RTE_PTYPE_L3_IPV4 || l3 == RTE_PTYPE_L3_IPV4_EXT) {
struct rte_ipv4_hdr *iph = l3_hdr;
l3_len = rte_ipv4_hdr_len(iph);
if (unlikely(l2_len + l3_len > rte_pktmbuf_data_len(mbuf)))
return;
/* check that the total length reported by header is not
* greater than the total received size
*/
if (l2_len + rte_be_to_cpu_16(iph->total_length) >
rte_pktmbuf_data_len(mbuf))
return;
cksum = ~rte_raw_cksum(iph, l3_len);
mbuf->ol_flags |= cksum ?
RTE_MBUF_F_RX_IP_CKSUM_BAD :
RTE_MBUF_F_RX_IP_CKSUM_GOOD;
} else if (l3 == RTE_PTYPE_L3_IPV6) {
struct rte_ipv6_hdr *iph = l3_hdr;
l3_len = sizeof(struct rte_ipv6_hdr);
/* check that the total length reported by header is not
* greater than the total received size
*/
if (l2_len + l3_len + rte_be_to_cpu_16(iph->payload_len) >
rte_pktmbuf_data_len(mbuf))
return;
} else {
/* - RTE_PTYPE_L3_IPV4_EXT_UNKNOWN cannot happen because
* mbuf->packet_type is filled by rte_net_get_ptype() which
* never returns this value.
* - IPv6 extensions are not supported.
*/
return;
}
if (l4 == RTE_PTYPE_L4_UDP || l4 == RTE_PTYPE_L4_TCP) {
int cksum_ok;
l4_hdr = rte_pktmbuf_mtod_offset(mbuf, void *, l2_len + l3_len);
/* Don't verify checksum for multi-segment packets. */
if (mbuf->nb_segs > 1)
return;
if (l3 == RTE_PTYPE_L3_IPV4 || l3 == RTE_PTYPE_L3_IPV4_EXT) {
if (l4 == RTE_PTYPE_L4_UDP) {
udp_hdr = (struct rte_udp_hdr *)l4_hdr;
if (udp_hdr->dgram_cksum == 0) {
/*
* For IPv4, a zero UDP checksum
* indicates that the sender did not
* generate one [RFC 768].
*/
mbuf->ol_flags |= RTE_MBUF_F_RX_L4_CKSUM_NONE;
return;
}
}
cksum_ok = !rte_ipv4_udptcp_cksum_verify(l3_hdr,
l4_hdr);
} else { /* l3 == RTE_PTYPE_L3_IPV6, checked above */
cksum_ok = !rte_ipv6_udptcp_cksum_verify(l3_hdr,
l4_hdr);
}
mbuf->ol_flags |= cksum_ok ?
RTE_MBUF_F_RX_L4_CKSUM_GOOD : RTE_MBUF_F_RX_L4_CKSUM_BAD;
}
}
static void
tap_rxq_pool_free(struct rte_mbuf *pool)
{
struct rte_mbuf *mbuf = pool;
uint16_t nb_segs = 1;
if (mbuf == NULL)
return;
while (mbuf->next) {
mbuf = mbuf->next;
nb_segs++;
}
pool->nb_segs = nb_segs;
rte_pktmbuf_free(pool);
}
/* Callback to handle the rx burst of packets to the correct interface and
* file descriptor(s) in a multi-queue setup.
*/
static uint16_t
pmd_rx_burst(void *queue, struct rte_mbuf **bufs, uint16_t nb_pkts)
{
struct rx_queue *rxq = queue;
struct pmd_process_private *process_private;
uint16_t num_rx;
unsigned long num_rx_bytes = 0;
uint32_t trigger = tap_trigger;
if (trigger == rxq->trigger_seen)
return 0;
process_private = rte_eth_devices[rxq->in_port].process_private;
for (num_rx = 0; num_rx < nb_pkts; ) {
struct rte_mbuf *mbuf = rxq->pool;
struct rte_mbuf *seg = NULL;
struct rte_mbuf *new_tail = NULL;
uint16_t data_off = rte_pktmbuf_headroom(mbuf);
int len;
len = readv(process_private->rxq_fds[rxq->queue_id],
*rxq->iovecs,
1 + (rxq->rxmode->offloads & RTE_ETH_RX_OFFLOAD_SCATTER ?
rxq->nb_rx_desc : 1));
if (len < (int)sizeof(struct tun_pi))
break;
/* Packet couldn't fit in the provided mbuf */
if (unlikely(rxq->pi.flags & TUN_PKT_STRIP)) {
rxq->stats.ierrors++;
continue;
}
len -= sizeof(struct tun_pi);
mbuf->pkt_len = len;
mbuf->port = rxq->in_port;
while (1) {
struct rte_mbuf *buf = rte_pktmbuf_alloc(rxq->mp);
if (unlikely(!buf)) {
rxq->stats.rx_nombuf++;
/* No new buf has been allocated: do nothing */
if (!new_tail || !seg)
goto end;
seg->next = NULL;
tap_rxq_pool_free(mbuf);
goto end;
}
seg = seg ? seg->next : mbuf;
if (rxq->pool == mbuf)
rxq->pool = buf;
if (new_tail)
new_tail->next = buf;
new_tail = buf;
new_tail->next = seg->next;
/* iovecs[0] is reserved for packet info (pi) */
(*rxq->iovecs)[mbuf->nb_segs].iov_len =
buf->buf_len - data_off;
(*rxq->iovecs)[mbuf->nb_segs].iov_base =
(char *)buf->buf_addr + data_off;
seg->data_len = RTE_MIN(seg->buf_len - data_off, len);
seg->data_off = data_off;
len -= seg->data_len;
if (len <= 0)
break;
mbuf->nb_segs++;
/* First segment has headroom, not the others */
data_off = 0;
}
seg->next = NULL;
mbuf->packet_type = rte_net_get_ptype(mbuf, NULL,
RTE_PTYPE_ALL_MASK);
if (rxq->rxmode->offloads & RTE_ETH_RX_OFFLOAD_CHECKSUM)
tap_verify_csum(mbuf);
/* account for the receive frame */
bufs[num_rx++] = mbuf;
num_rx_bytes += mbuf->pkt_len;
}
end:
rxq->stats.ipackets += num_rx;
rxq->stats.ibytes += num_rx_bytes;
if (trigger && num_rx < nb_pkts)
rxq->trigger_seen = trigger;
return num_rx;
}
/* Finalize l4 checksum calculation */
static void
tap_tx_l4_cksum(uint16_t *l4_cksum, uint16_t l4_phdr_cksum,
uint32_t l4_raw_cksum)
{
if (l4_cksum) {
uint32_t cksum;
cksum = __rte_raw_cksum_reduce(l4_raw_cksum);
cksum += l4_phdr_cksum;
cksum = ((cksum & 0xffff0000) >> 16) + (cksum & 0xffff);
cksum = (~cksum) & 0xffff;
if (cksum == 0)
cksum = 0xffff;
*l4_cksum = cksum;
}
}
/* Accumulate L4 raw checksums */
static void
tap_tx_l4_add_rcksum(char *l4_data, unsigned int l4_len, uint16_t *l4_cksum,
uint32_t *l4_raw_cksum)
{
if (l4_cksum == NULL)
return;
*l4_raw_cksum = __rte_raw_cksum(l4_data, l4_len, *l4_raw_cksum);
}
/* L3 and L4 pseudo headers checksum offloads */
static void
tap_tx_l3_cksum(char *packet, uint64_t ol_flags, unsigned int l2_len,
unsigned int l3_len, unsigned int l4_len, uint16_t **l4_cksum,
uint16_t *l4_phdr_cksum, uint32_t *l4_raw_cksum)
{
void *l3_hdr = packet + l2_len;
if (ol_flags & (RTE_MBUF_F_TX_IP_CKSUM | RTE_MBUF_F_TX_IPV4)) {
struct rte_ipv4_hdr *iph = l3_hdr;
uint16_t cksum;
iph->hdr_checksum = 0;
cksum = rte_raw_cksum(iph, l3_len);
iph->hdr_checksum = (cksum == 0xffff) ? cksum : ~cksum;
}
if (ol_flags & RTE_MBUF_F_TX_L4_MASK) {
void *l4_hdr;
l4_hdr = packet + l2_len + l3_len;
if ((ol_flags & RTE_MBUF_F_TX_L4_MASK) == RTE_MBUF_F_TX_UDP_CKSUM)
*l4_cksum = &((struct rte_udp_hdr *)l4_hdr)->dgram_cksum;
else if ((ol_flags & RTE_MBUF_F_TX_L4_MASK) == RTE_MBUF_F_TX_TCP_CKSUM)
*l4_cksum = &((struct rte_tcp_hdr *)l4_hdr)->cksum;
else
return;
**l4_cksum = 0;
if (ol_flags & RTE_MBUF_F_TX_IPV4)
*l4_phdr_cksum = rte_ipv4_phdr_cksum(l3_hdr, 0);
else
*l4_phdr_cksum = rte_ipv6_phdr_cksum(l3_hdr, 0);
*l4_raw_cksum = __rte_raw_cksum(l4_hdr, l4_len, 0);
}
}
static inline int
tap_write_mbufs(struct tx_queue *txq, uint16_t num_mbufs,
struct rte_mbuf **pmbufs,
uint16_t *num_packets, unsigned long *num_tx_bytes)
{
int i;
uint16_t l234_hlen;
struct pmd_process_private *process_private;
process_private = rte_eth_devices[txq->out_port].process_private;
for (i = 0; i < num_mbufs; i++) {
struct rte_mbuf *mbuf = pmbufs[i];
struct iovec iovecs[mbuf->nb_segs + 2];
struct tun_pi pi = { .flags = 0, .proto = 0x00 };
struct rte_mbuf *seg = mbuf;
char m_copy[mbuf->data_len];
int proto;
int n;
int j;
int k; /* current index in iovecs for copying segments */
uint16_t seg_len; /* length of first segment */
uint16_t nb_segs;
uint16_t *l4_cksum; /* l4 checksum (pseudo header + payload) */
uint32_t l4_raw_cksum = 0; /* TCP/UDP payload raw checksum */
uint16_t l4_phdr_cksum = 0; /* TCP/UDP pseudo header checksum */
uint16_t is_cksum = 0; /* in case cksum should be offloaded */
l4_cksum = NULL;
if (txq->type == ETH_TUNTAP_TYPE_TUN) {
/*
* TUN and TAP are created with IFF_NO_PI disabled.
* For TUN PMD this mandatory as fields are used by
* Kernel tun.c to determine whether its IP or non IP
* packets.
*
* The logic fetches the first byte of data from mbuf
* then compares whether its v4 or v6. If first byte
* is 4 or 6, then protocol field is updated.
*/
char *buff_data = rte_pktmbuf_mtod(seg, void *);
proto = (*buff_data & 0xf0);
pi.proto = (proto == 0x40) ?
rte_cpu_to_be_16(RTE_ETHER_TYPE_IPV4) :
((proto == 0x60) ?
rte_cpu_to_be_16(RTE_ETHER_TYPE_IPV6) :
0x00);
}
k = 0;
iovecs[k].iov_base = &pi;
iovecs[k].iov_len = sizeof(pi);
k++;
nb_segs = mbuf->nb_segs;
if (txq->csum &&
((mbuf->ol_flags & (RTE_MBUF_F_TX_IP_CKSUM | RTE_MBUF_F_TX_IPV4) ||
(mbuf->ol_flags & RTE_MBUF_F_TX_L4_MASK) == RTE_MBUF_F_TX_UDP_CKSUM ||
(mbuf->ol_flags & RTE_MBUF_F_TX_L4_MASK) == RTE_MBUF_F_TX_TCP_CKSUM))) {
is_cksum = 1;
/* Support only packets with at least layer 4
* header included in the first segment
*/
seg_len = rte_pktmbuf_data_len(mbuf);
l234_hlen = mbuf->l2_len + mbuf->l3_len + mbuf->l4_len;
if (seg_len < l234_hlen)
return -1;
/* To change checksums, work on a * copy of l2, l3
* headers + l4 pseudo header
*/
rte_memcpy(m_copy, rte_pktmbuf_mtod(mbuf, void *),
l234_hlen);
tap_tx_l3_cksum(m_copy, mbuf->ol_flags,
mbuf->l2_len, mbuf->l3_len, mbuf->l4_len,
&l4_cksum, &l4_phdr_cksum,
&l4_raw_cksum);
iovecs[k].iov_base = m_copy;
iovecs[k].iov_len = l234_hlen;
k++;
/* Update next iovecs[] beyond l2, l3, l4 headers */
if (seg_len > l234_hlen) {
iovecs[k].iov_len = seg_len - l234_hlen;
iovecs[k].iov_base =
rte_pktmbuf_mtod(seg, char *) +
l234_hlen;
tap_tx_l4_add_rcksum(iovecs[k].iov_base,
iovecs[k].iov_len, l4_cksum,
&l4_raw_cksum);
k++;
nb_segs++;
}
seg = seg->next;
}
for (j = k; j <= nb_segs; j++) {
iovecs[j].iov_len = rte_pktmbuf_data_len(seg);
iovecs[j].iov_base = rte_pktmbuf_mtod(seg, void *);
if (is_cksum)
tap_tx_l4_add_rcksum(iovecs[j].iov_base,
iovecs[j].iov_len, l4_cksum,
&l4_raw_cksum);
seg = seg->next;
}
if (is_cksum)
tap_tx_l4_cksum(l4_cksum, l4_phdr_cksum, l4_raw_cksum);
/* copy the tx frame data */
n = writev(process_private->txq_fds[txq->queue_id], iovecs, j);
if (n <= 0)
return -1;
(*num_packets)++;
(*num_tx_bytes) += rte_pktmbuf_pkt_len(mbuf);
}
return 0;
}
/* Callback to handle sending packets from the tap interface
*/
static uint16_t
pmd_tx_burst(void *queue, struct rte_mbuf **bufs, uint16_t nb_pkts)
{
struct tx_queue *txq = queue;
uint16_t num_tx = 0;
uint16_t num_packets = 0;
unsigned long num_tx_bytes = 0;
uint32_t max_size;
int i;
if (unlikely(nb_pkts == 0))
return 0;
struct rte_mbuf *gso_mbufs[MAX_GSO_MBUFS];
max_size = *txq->mtu + (RTE_ETHER_HDR_LEN + RTE_ETHER_CRC_LEN + 4);
for (i = 0; i < nb_pkts; i++) {
struct rte_mbuf *mbuf_in = bufs[num_tx];
struct rte_mbuf **mbuf;
uint16_t num_mbufs = 0;
uint16_t tso_segsz = 0;
int ret;
int num_tso_mbufs;
uint16_t hdrs_len;
uint64_t tso;
tso = mbuf_in->ol_flags & RTE_MBUF_F_TX_TCP_SEG;
if (tso) {
struct rte_gso_ctx *gso_ctx = &txq->gso_ctx;
/* TCP segmentation implies TCP checksum offload */
mbuf_in->ol_flags |= RTE_MBUF_F_TX_TCP_CKSUM;
/* gso size is calculated without RTE_ETHER_CRC_LEN */
hdrs_len = mbuf_in->l2_len + mbuf_in->l3_len +
mbuf_in->l4_len;
tso_segsz = mbuf_in->tso_segsz + hdrs_len;
if (unlikely(tso_segsz == hdrs_len) ||
tso_segsz > *txq->mtu) {
txq->stats.errs++;
break;
}
gso_ctx->gso_size = tso_segsz;
/* 'mbuf_in' packet to segment */
num_tso_mbufs = rte_gso_segment(mbuf_in,
gso_ctx, /* gso control block */
(struct rte_mbuf **)&gso_mbufs, /* out mbufs */
RTE_DIM(gso_mbufs)); /* max tso mbufs */
/* ret contains the number of new created mbufs */
if (num_tso_mbufs < 0)
break;
if (num_tso_mbufs >= 1) {
mbuf = gso_mbufs;
num_mbufs = num_tso_mbufs;
} else {
/* 0 means it can be transmitted directly
* without gso.
*/
mbuf = &mbuf_in;
num_mbufs = 1;
}
} else {
/* stats.errs will be incremented */
if (rte_pktmbuf_pkt_len(mbuf_in) > max_size)
break;
/* ret 0 indicates no new mbufs were created */
num_tso_mbufs = 0;
mbuf = &mbuf_in;
num_mbufs = 1;
}
ret = tap_write_mbufs(txq, num_mbufs, mbuf,
&num_packets, &num_tx_bytes);
if (ret == -1) {
txq->stats.errs++;
/* free tso mbufs */
if (num_tso_mbufs > 0)
rte_pktmbuf_free_bulk(mbuf, num_tso_mbufs);
break;
}
num_tx++;
/* free original mbuf */
rte_pktmbuf_free(mbuf_in);
/* free tso mbufs */
if (num_tso_mbufs > 0)
rte_pktmbuf_free_bulk(mbuf, num_tso_mbufs);
}
txq->stats.opackets += num_packets;
txq->stats.errs += nb_pkts - num_tx;
txq->stats.obytes += num_tx_bytes;
return num_tx;
}
static const char *
tap_ioctl_req2str(unsigned long request)
{
switch (request) {
case SIOCSIFFLAGS:
return "SIOCSIFFLAGS";
case SIOCGIFFLAGS:
return "SIOCGIFFLAGS";
case SIOCGIFHWADDR:
return "SIOCGIFHWADDR";
case SIOCSIFHWADDR:
return "SIOCSIFHWADDR";
case SIOCSIFMTU:
return "SIOCSIFMTU";
}
return "UNKNOWN";
}
static int
tap_ioctl(struct pmd_internals *pmd, unsigned long request,
struct ifreq *ifr, int set, enum ioctl_mode mode)
{
short req_flags = ifr->ifr_flags;
int remote = pmd->remote_if_index &&
(mode == REMOTE_ONLY || mode == LOCAL_AND_REMOTE);
if (!pmd->remote_if_index && mode == REMOTE_ONLY)
return 0;
/*
* If there is a remote netdevice, apply ioctl on it, then apply it on
* the tap netdevice.
*/
apply:
if (remote)
strlcpy(ifr->ifr_name, pmd->remote_iface, IFNAMSIZ);
else if (mode == LOCAL_ONLY || mode == LOCAL_AND_REMOTE)
strlcpy(ifr->ifr_name, pmd->name, IFNAMSIZ);
switch (request) {
case SIOCSIFFLAGS:
/* fetch current flags to leave other flags untouched */
if (ioctl(pmd->ioctl_sock, SIOCGIFFLAGS, ifr) < 0)
goto error;
if (set)
ifr->ifr_flags |= req_flags;
else
ifr->ifr_flags &= ~req_flags;
break;
case SIOCGIFFLAGS:
case SIOCGIFHWADDR:
case SIOCSIFHWADDR:
case SIOCSIFMTU:
break;
default:
TAP_LOG(WARNING, "%s: ioctl() called with wrong arg",
pmd->name);
return -EINVAL;
}
if (ioctl(pmd->ioctl_sock, request, ifr) < 0)
goto error;
if (remote-- && mode == LOCAL_AND_REMOTE)
goto apply;
return 0;
error:
TAP_LOG(DEBUG, "%s(%s) failed: %s(%d)", ifr->ifr_name,
tap_ioctl_req2str(request), strerror(errno), errno);
return -errno;
}
static int
tap_link_set_down(struct rte_eth_dev *dev)
{
struct pmd_internals *pmd = dev->data->dev_private;
struct ifreq ifr = { .ifr_flags = IFF_UP };
dev->data->dev_link.link_status = RTE_ETH_LINK_DOWN;
return tap_ioctl(pmd, SIOCSIFFLAGS, &ifr, 0, LOCAL_ONLY);
}
static int
tap_link_set_up(struct rte_eth_dev *dev)
{
struct pmd_internals *pmd = dev->data->dev_private;
struct ifreq ifr = { .ifr_flags = IFF_UP };
dev->data->dev_link.link_status = RTE_ETH_LINK_UP;
return tap_ioctl(pmd, SIOCSIFFLAGS, &ifr, 1, LOCAL_AND_REMOTE);
}
static int
tap_mp_req_on_rxtx(struct rte_eth_dev *dev)
{
struct rte_mp_msg msg;
struct ipc_queues *request_param = (struct ipc_queues *)msg.param;
int err;
int fd_iterator = 0;
struct pmd_process_private *process_private = dev->process_private;
int i;
memset(&msg, 0, sizeof(msg));
strlcpy(msg.name, TAP_MP_REQ_START_RXTX, sizeof(msg.name));
strlcpy(request_param->port_name, dev->data->name, sizeof(request_param->port_name));
msg.len_param = sizeof(*request_param);
for (i = 0; i < dev->data->nb_tx_queues; i++) {
msg.fds[fd_iterator++] = process_private->txq_fds[i];
msg.num_fds++;
request_param->txq_count++;
}
for (i = 0; i < dev->data->nb_rx_queues; i++) {
msg.fds[fd_iterator++] = process_private->rxq_fds[i];
msg.num_fds++;
request_param->rxq_count++;
}
err = rte_mp_sendmsg(&msg);
if (err < 0) {
TAP_LOG(ERR, "Failed to send start req to secondary %d",
rte_errno);
return -1;
}
return 0;
}
static int
tap_dev_start(struct rte_eth_dev *dev)
{
int err, i;
if (rte_eal_process_type() == RTE_PROC_PRIMARY)
tap_mp_req_on_rxtx(dev);
err = tap_intr_handle_set(dev, 1);
if (err)
return err;
err = tap_link_set_up(dev);
if (err)
return err;
for (i = 0; i < dev->data->nb_tx_queues; i++)
dev->data->tx_queue_state[i] = RTE_ETH_QUEUE_STATE_STARTED;
for (i = 0; i < dev->data->nb_rx_queues; i++)
dev->data->rx_queue_state[i] = RTE_ETH_QUEUE_STATE_STARTED;
return err;
}
static int
tap_mp_req_start_rxtx(const struct rte_mp_msg *request, __rte_unused const void *peer)
{
struct rte_eth_dev *dev;
const struct ipc_queues *request_param =
(const struct ipc_queues *)request->param;
int fd_iterator;
int queue;
struct pmd_process_private *process_private;
dev = rte_eth_dev_get_by_name(request_param->port_name);
if (!dev) {
TAP_LOG(ERR, "Failed to get dev for %s",
request_param->port_name);
return -1;
}
process_private = dev->process_private;
fd_iterator = 0;
TAP_LOG(DEBUG, "tap_attach rx_q:%d tx_q:%d\n", request_param->rxq_count,
request_param->txq_count);
for (queue = 0; queue < request_param->txq_count; queue++)
process_private->txq_fds[queue] = request->fds[fd_iterator++];
for (queue = 0; queue < request_param->rxq_count; queue++)
process_private->rxq_fds[queue] = request->fds[fd_iterator++];
return 0;
}
/* This function gets called when the current port gets stopped.
*/
static int
tap_dev_stop(struct rte_eth_dev *dev)
{
int i;
for (i = 0; i < dev->data->nb_tx_queues; i++)
dev->data->tx_queue_state[i] = RTE_ETH_QUEUE_STATE_STOPPED;
for (i = 0; i < dev->data->nb_rx_queues; i++)
dev->data->rx_queue_state[i] = RTE_ETH_QUEUE_STATE_STOPPED;
tap_intr_handle_set(dev, 0);
tap_link_set_down(dev);
return 0;
}
static int
tap_dev_configure(struct rte_eth_dev *dev)
{
struct pmd_internals *pmd = dev->data->dev_private;
if (dev->data->nb_rx_queues > RTE_PMD_TAP_MAX_QUEUES) {
TAP_LOG(ERR,
"%s: number of rx queues %d exceeds max num of queues %d",
dev->device->name,
dev->data->nb_rx_queues,
RTE_PMD_TAP_MAX_QUEUES);
return -1;
}
if (dev->data->nb_tx_queues > RTE_PMD_TAP_MAX_QUEUES) {
TAP_LOG(ERR,
"%s: number of tx queues %d exceeds max num of queues %d",
dev->device->name,
dev->data->nb_tx_queues,
RTE_PMD_TAP_MAX_QUEUES);
return -1;
}
TAP_LOG(INFO, "%s: %s: TX configured queues number: %u",
dev->device->name, pmd->name, dev->data->nb_tx_queues);
TAP_LOG(INFO, "%s: %s: RX configured queues number: %u",
dev->device->name, pmd->name, dev->data->nb_rx_queues);
return 0;
}
static uint32_t
tap_dev_speed_capa(void)
{
uint32_t speed = pmd_link.link_speed;
uint32_t capa = 0;
if (speed >= RTE_ETH_SPEED_NUM_10M)
capa |= RTE_ETH_LINK_SPEED_10M;
if (speed >= RTE_ETH_SPEED_NUM_100M)
capa |= RTE_ETH_LINK_SPEED_100M;
if (speed >= RTE_ETH_SPEED_NUM_1G)
capa |= RTE_ETH_LINK_SPEED_1G;
if (speed >= RTE_ETH_SPEED_NUM_5G)
capa |= RTE_ETH_LINK_SPEED_2_5G;
if (speed >= RTE_ETH_SPEED_NUM_5G)
capa |= RTE_ETH_LINK_SPEED_5G;
if (speed >= RTE_ETH_SPEED_NUM_10G)
capa |= RTE_ETH_LINK_SPEED_10G;
if (speed >= RTE_ETH_SPEED_NUM_20G)
capa |= RTE_ETH_LINK_SPEED_20G;
if (speed >= RTE_ETH_SPEED_NUM_25G)
capa |= RTE_ETH_LINK_SPEED_25G;
if (speed >= RTE_ETH_SPEED_NUM_40G)
capa |= RTE_ETH_LINK_SPEED_40G;
if (speed >= RTE_ETH_SPEED_NUM_50G)
capa |= RTE_ETH_LINK_SPEED_50G;
if (speed >= RTE_ETH_SPEED_NUM_56G)
capa |= RTE_ETH_LINK_SPEED_56G;
if (speed >= RTE_ETH_SPEED_NUM_100G)
capa |= RTE_ETH_LINK_SPEED_100G;
return capa;
}
static int
tap_dev_info(struct rte_eth_dev *dev, struct rte_eth_dev_info *dev_info)
{
struct pmd_internals *internals = dev->data->dev_private;
dev_info->if_index = internals->if_index;
dev_info->max_mac_addrs = 1;
dev_info->max_rx_pktlen = (uint32_t)RTE_ETHER_MAX_VLAN_FRAME_LEN;
dev_info->max_rx_queues = RTE_PMD_TAP_MAX_QUEUES;
dev_info->max_tx_queues = RTE_PMD_TAP_MAX_QUEUES;
dev_info->min_rx_bufsize = 0;
dev_info->speed_capa = tap_dev_speed_capa();
dev_info->rx_queue_offload_capa = TAP_RX_OFFLOAD;
dev_info->rx_offload_capa = dev_info->rx_queue_offload_capa;
dev_info->tx_queue_offload_capa = TAP_TX_OFFLOAD;
dev_info->tx_offload_capa = dev_info->tx_queue_offload_capa;
dev_info->hash_key_size = TAP_RSS_HASH_KEY_SIZE;
/*
* limitation: TAP supports all of IP, UDP and TCP hash
* functions together and not in partial combinations
*/
dev_info->flow_type_rss_offloads = ~TAP_RSS_HF_MASK;
dev_info->dev_capa &= ~RTE_ETH_DEV_CAPA_FLOW_RULE_KEEP;
return 0;
}
static int
tap_stats_get(struct rte_eth_dev *dev, struct rte_eth_stats *tap_stats)
{
unsigned int i, imax;
unsigned long rx_total = 0, tx_total = 0, tx_err_total = 0;
unsigned long rx_bytes_total = 0, tx_bytes_total = 0;
unsigned long rx_nombuf = 0, ierrors = 0;
const struct pmd_internals *pmd = dev->data->dev_private;
/* rx queue statistics */
imax = (dev->data->nb_rx_queues < RTE_ETHDEV_QUEUE_STAT_CNTRS) ?
dev->data->nb_rx_queues : RTE_ETHDEV_QUEUE_STAT_CNTRS;
for (i = 0; i < imax; i++) {
tap_stats->q_ipackets[i] = pmd->rxq[i].stats.ipackets;
tap_stats->q_ibytes[i] = pmd->rxq[i].stats.ibytes;
rx_total += tap_stats->q_ipackets[i];
rx_bytes_total += tap_stats->q_ibytes[i];
rx_nombuf += pmd->rxq[i].stats.rx_nombuf;
ierrors += pmd->rxq[i].stats.ierrors;
}
/* tx queue statistics */
imax = (dev->data->nb_tx_queues < RTE_ETHDEV_QUEUE_STAT_CNTRS) ?
dev->data->nb_tx_queues : RTE_ETHDEV_QUEUE_STAT_CNTRS;
for (i = 0; i < imax; i++) {
tap_stats->q_opackets[i] = pmd->txq[i].stats.opackets;
tap_stats->q_obytes[i] = pmd->txq[i].stats.obytes;
tx_total += tap_stats->q_opackets[i];
tx_err_total += pmd->txq[i].stats.errs;
tx_bytes_total += tap_stats->q_obytes[i];
}
tap_stats->ipackets = rx_total;
tap_stats->ibytes = rx_bytes_total;
tap_stats->ierrors = ierrors;
tap_stats->rx_nombuf = rx_nombuf;
tap_stats->opackets = tx_total;
tap_stats->oerrors = tx_err_total;
tap_stats->obytes = tx_bytes_total;
return 0;
}
static int
tap_stats_reset(struct rte_eth_dev *dev)
{
int i;
struct pmd_internals *pmd = dev->data->dev_private;
for (i = 0; i < RTE_PMD_TAP_MAX_QUEUES; i++) {
pmd->rxq[i].stats.ipackets = 0;
pmd->rxq[i].stats.ibytes = 0;
pmd->rxq[i].stats.ierrors = 0;
pmd->rxq[i].stats.rx_nombuf = 0;
pmd->txq[i].stats.opackets = 0;
pmd->txq[i].stats.errs = 0;
pmd->txq[i].stats.obytes = 0;
}
return 0;
}
static int
tap_dev_close(struct rte_eth_dev *dev)
{
int i;
struct pmd_internals *internals = dev->data->dev_private;
struct pmd_process_private *process_private = dev->process_private;
struct rx_queue *rxq;
if (rte_eal_process_type() != RTE_PROC_PRIMARY) {
rte_free(dev->process_private);
if (tap_devices_count == 1)
rte_mp_action_unregister(TAP_MP_REQ_START_RXTX);
tap_devices_count--;
return 0;
}
tap_link_set_down(dev);
if (internals->nlsk_fd != -1) {
tap_flow_flush(dev, NULL);
tap_flow_implicit_flush(internals, NULL);
tap_nl_final(internals->nlsk_fd);
internals->nlsk_fd = -1;
}
for (i = 0; i < RTE_PMD_TAP_MAX_QUEUES; i++) {
if (process_private->rxq_fds[i] != -1) {
rxq = &internals->rxq[i];
close(process_private->rxq_fds[i]);
process_private->rxq_fds[i] = -1;
tap_rxq_pool_free(rxq->pool);
rte_free(rxq->iovecs);
rxq->pool = NULL;
rxq->iovecs = NULL;
}
if (process_private->txq_fds[i] != -1) {
close(process_private->txq_fds[i]);
process_private->txq_fds[i] = -1;
}
}
if (internals->remote_if_index) {
/* Restore initial remote state */
int ret = ioctl(internals->ioctl_sock, SIOCSIFFLAGS,
&internals->remote_initial_flags);
if (ret)
TAP_LOG(ERR, "restore remote state failed: %d", ret);
}
rte_mempool_free(internals->gso_ctx_mp);
internals->gso_ctx_mp = NULL;
if (internals->ka_fd != -1) {
close(internals->ka_fd);
internals->ka_fd = -1;
}
/* mac_addrs must not be freed alone because part of dev_private */
dev->data->mac_addrs = NULL;
internals = dev->data->dev_private;
TAP_LOG(DEBUG, "Closing %s Ethernet device on numa %u",
tuntap_types[internals->type], rte_socket_id());
rte_intr_instance_free(internals->intr_handle);
if (internals->ioctl_sock != -1) {
close(internals->ioctl_sock);
internals->ioctl_sock = -1;
}
rte_free(dev->process_private);
if (tap_devices_count == 1)
rte_mp_action_unregister(TAP_MP_KEY);
tap_devices_count--;
/*
* Since TUN device has no more opened file descriptors
* it will be removed from kernel
*/
return 0;
}
static void
tap_rx_queue_release(struct rte_eth_dev *dev, uint16_t qid)
{
struct rx_queue *rxq = dev->data->rx_queues[qid];
struct pmd_process_private *process_private;
if (!rxq)
return;
process_private = rte_eth_devices[rxq->in_port].process_private;
if (process_private->rxq_fds[rxq->queue_id] != -1) {
close(process_private->rxq_fds[rxq->queue_id]);
process_private->rxq_fds[rxq->queue_id] = -1;
tap_rxq_pool_free(rxq->pool);
rte_free(rxq->iovecs);
rxq->pool = NULL;
rxq->iovecs = NULL;
}
}
static void
tap_tx_queue_release(struct rte_eth_dev *dev, uint16_t qid)
{
struct tx_queue *txq = dev->data->tx_queues[qid];
struct pmd_process_private *process_private;
if (!txq)
return;
process_private = rte_eth_devices[txq->out_port].process_private;
if (process_private->txq_fds[txq->queue_id] != -1) {
close(process_private->txq_fds[txq->queue_id]);
process_private->txq_fds[txq->queue_id] = -1;
}
}
static int
tap_link_update(struct rte_eth_dev *dev, int wait_to_complete __rte_unused)
{
struct rte_eth_link *dev_link = &dev->data->dev_link;
struct pmd_internals *pmd = dev->data->dev_private;
struct ifreq ifr = { .ifr_flags = 0 };
if (pmd->remote_if_index) {
tap_ioctl(pmd, SIOCGIFFLAGS, &ifr, 0, REMOTE_ONLY);
if (!(ifr.ifr_flags & IFF_UP) ||
!(ifr.ifr_flags & IFF_RUNNING)) {
dev_link->link_status = RTE_ETH_LINK_DOWN;
return 0;
}
}
tap_ioctl(pmd, SIOCGIFFLAGS, &ifr, 0, LOCAL_ONLY);
dev_link->link_status =
((ifr.ifr_flags & IFF_UP) && (ifr.ifr_flags & IFF_RUNNING) ?
RTE_ETH_LINK_UP :
RTE_ETH_LINK_DOWN);
return 0;
}
static int
tap_promisc_enable(struct rte_eth_dev *dev)
{
struct pmd_internals *pmd = dev->data->dev_private;
struct ifreq ifr = { .ifr_flags = IFF_PROMISC };
int ret;
ret = tap_ioctl(pmd, SIOCSIFFLAGS, &ifr, 1, LOCAL_AND_REMOTE);
if (ret != 0)
return ret;
if (pmd->remote_if_index && !pmd->flow_isolate) {
dev->data->promiscuous = 1;
ret = tap_flow_implicit_create(pmd, TAP_REMOTE_PROMISC);
if (ret != 0) {
/* Rollback promisc flag */
tap_ioctl(pmd, SIOCSIFFLAGS, &ifr, 0, LOCAL_AND_REMOTE);
/*
* rte_eth_dev_promiscuous_enable() rollback
* dev->data->promiscuous in the case of failure.
*/
return ret;
}
}
return 0;
}
static int
tap_promisc_disable(struct rte_eth_dev *dev)
{
struct pmd_internals *pmd = dev->data->dev_private;
struct ifreq ifr = { .ifr_flags = IFF_PROMISC };
int ret;
ret = tap_ioctl(pmd, SIOCSIFFLAGS, &ifr, 0, LOCAL_AND_REMOTE);
if (ret != 0)
return ret;
if (pmd->remote_if_index && !pmd->flow_isolate) {
dev->data->promiscuous = 0;
ret = tap_flow_implicit_destroy(pmd, TAP_REMOTE_PROMISC);
if (ret != 0) {
/* Rollback promisc flag */
tap_ioctl(pmd, SIOCSIFFLAGS, &ifr, 1, LOCAL_AND_REMOTE);
/*
* rte_eth_dev_promiscuous_disable() rollback
* dev->data->promiscuous in the case of failure.
*/
return ret;
}
}
return 0;
}
static int
tap_allmulti_enable(struct rte_eth_dev *dev)
{
struct pmd_internals *pmd = dev->data->dev_private;
struct ifreq ifr = { .ifr_flags = IFF_ALLMULTI };
int ret;
ret = tap_ioctl(pmd, SIOCSIFFLAGS, &ifr, 1, LOCAL_AND_REMOTE);
if (ret != 0)
return ret;
if (pmd->remote_if_index && !pmd->flow_isolate) {
dev->data->all_multicast = 1;
ret = tap_flow_implicit_create(pmd, TAP_REMOTE_ALLMULTI);
if (ret != 0) {
/* Rollback allmulti flag */
tap_ioctl(pmd, SIOCSIFFLAGS, &ifr, 0, LOCAL_AND_REMOTE);
/*
* rte_eth_dev_allmulticast_enable() rollback
* dev->data->all_multicast in the case of failure.
*/
return ret;
}
}
return 0;
}
static int
tap_allmulti_disable(struct rte_eth_dev *dev)
{
struct pmd_internals *pmd = dev->data->dev_private;
struct ifreq ifr = { .ifr_flags = IFF_ALLMULTI };
int ret;
ret = tap_ioctl(pmd, SIOCSIFFLAGS, &ifr, 0, LOCAL_AND_REMOTE);
if (ret != 0)
return ret;
if (pmd->remote_if_index && !pmd->flow_isolate) {
dev->data->all_multicast = 0;
ret = tap_flow_implicit_destroy(pmd, TAP_REMOTE_ALLMULTI);
if (ret != 0) {
/* Rollback allmulti flag */
tap_ioctl(pmd, SIOCSIFFLAGS, &ifr, 1, LOCAL_AND_REMOTE);
/*
* rte_eth_dev_allmulticast_disable() rollback
* dev->data->all_multicast in the case of failure.
*/
return ret;
}
}
return 0;
}
static int
tap_mac_set(struct rte_eth_dev *dev, struct rte_ether_addr *mac_addr)
{
struct pmd_internals *pmd = dev->data->dev_private;
enum ioctl_mode mode = LOCAL_ONLY;
struct ifreq ifr;
int ret;
if (pmd->type == ETH_TUNTAP_TYPE_TUN) {
TAP_LOG(ERR, "%s: can't MAC address for TUN",
dev->device->name);
return -ENOTSUP;
}
if (rte_is_zero_ether_addr(mac_addr)) {
TAP_LOG(ERR, "%s: can't set an empty MAC address",
dev->device->name);
return -EINVAL;
}
/* Check the actual current MAC address on the tap netdevice */
ret = tap_ioctl(pmd, SIOCGIFHWADDR, &ifr, 0, LOCAL_ONLY);
if (ret < 0)
return ret;
if (rte_is_same_ether_addr(
(struct rte_ether_addr *)&ifr.ifr_hwaddr.sa_data,
mac_addr))
return 0;
/* Check the current MAC address on the remote */
ret = tap_ioctl(pmd, SIOCGIFHWADDR, &ifr, 0, REMOTE_ONLY);
if (ret < 0)
return ret;
if (!rte_is_same_ether_addr(
(struct rte_ether_addr *)&ifr.ifr_hwaddr.sa_data,
mac_addr))
mode = LOCAL_AND_REMOTE;
ifr.ifr_hwaddr.sa_family = AF_LOCAL;
rte_memcpy(ifr.ifr_hwaddr.sa_data, mac_addr, RTE_ETHER_ADDR_LEN);
ret = tap_ioctl(pmd, SIOCSIFHWADDR, &ifr, 1, mode);
if (ret < 0)
return ret;
rte_memcpy(&pmd->eth_addr, mac_addr, RTE_ETHER_ADDR_LEN);
if (pmd->remote_if_index && !pmd->flow_isolate) {
/* Replace MAC redirection rule after a MAC change */
ret = tap_flow_implicit_destroy(pmd, TAP_REMOTE_LOCAL_MAC);
if (ret < 0) {
TAP_LOG(ERR,
"%s: Couldn't delete MAC redirection rule",
dev->device->name);
return ret;
}
ret = tap_flow_implicit_create(pmd, TAP_REMOTE_LOCAL_MAC);
if (ret < 0) {
TAP_LOG(ERR,
"%s: Couldn't add MAC redirection rule",
dev->device->name);
return ret;
}
}
return 0;
}
static int
tap_gso_ctx_setup(struct rte_gso_ctx *gso_ctx, struct rte_eth_dev *dev)
{
uint32_t gso_types;
char pool_name[64];
struct pmd_internals *pmd = dev->data->dev_private;
int ret;
/* initialize GSO context */
gso_types = RTE_ETH_TX_OFFLOAD_TCP_TSO;
if (!pmd->gso_ctx_mp) {
/*
* Create private mbuf pool with TAP_GSO_MBUF_SEG_SIZE
* bytes size per mbuf use this pool for both direct and
* indirect mbufs
*/
ret = snprintf(pool_name, sizeof(pool_name), "mp_%s",
dev->device->name);
if (ret < 0 || ret >= (int)sizeof(pool_name)) {
TAP_LOG(ERR,
"%s: failed to create mbuf pool name for device %s,"
"device name too long or output error, ret: %d\n",
pmd->name, dev->device->name, ret);
return -ENAMETOOLONG;
}
pmd->gso_ctx_mp = rte_pktmbuf_pool_create(pool_name,
TAP_GSO_MBUFS_NUM, TAP_GSO_MBUF_CACHE_SIZE, 0,
RTE_PKTMBUF_HEADROOM + TAP_GSO_MBUF_SEG_SIZE,
SOCKET_ID_ANY);
if (!pmd->gso_ctx_mp) {
TAP_LOG(ERR,
"%s: failed to create mbuf pool for device %s\n",
pmd->name, dev->device->name);
return -1;
}
}
gso_ctx->direct_pool = pmd->gso_ctx_mp;
gso_ctx->indirect_pool = pmd->gso_ctx_mp;
gso_ctx->gso_types = gso_types;
gso_ctx->gso_size = 0; /* gso_size is set in tx_burst() per packet */
gso_ctx->flag = 0;
return 0;
}
static int
tap_setup_queue(struct rte_eth_dev *dev,
struct pmd_internals *internals,
uint16_t qid,
int is_rx)
{
int ret;
int *fd;
int *other_fd;
const char *dir;
struct pmd_internals *pmd = dev->data->dev_private;
struct pmd_process_private *process_private = dev->process_private;
struct rx_queue *rx = &internals->rxq[qid];
struct tx_queue *tx = &internals->txq[qid];
struct rte_gso_ctx *gso_ctx;
if (is_rx) {
fd = &process_private->rxq_fds[qid];
other_fd = &process_private->txq_fds[qid];
dir = "rx";
gso_ctx = NULL;
} else {
fd = &process_private->txq_fds[qid];
other_fd = &process_private->rxq_fds[qid];
dir = "tx";
gso_ctx = &tx->gso_ctx;
}
if (*fd != -1) {
/* fd for this queue already exists */
TAP_LOG(DEBUG, "%s: fd %d for %s queue qid %d exists",
pmd->name, *fd, dir, qid);
gso_ctx = NULL;
} else if (*other_fd != -1) {
/* Only other_fd exists. dup it */
*fd = dup(*other_fd);
if (*fd < 0) {
*fd = -1;
TAP_LOG(ERR, "%s: dup() failed.", pmd->name);
return -1;
}
TAP_LOG(DEBUG, "%s: dup fd %d for %s queue qid %d (%d)",
pmd->name, *other_fd, dir, qid, *fd);
} else {
/* Both RX and TX fds do not exist (equal -1). Create fd */
*fd = tun_alloc(pmd, 0);
if (*fd < 0) {
*fd = -1; /* restore original value */
TAP_LOG(ERR, "%s: tun_alloc() failed.", pmd->name);
return -1;
}
TAP_LOG(DEBUG, "%s: add %s queue for qid %d fd %d",
pmd->name, dir, qid, *fd);
}
tx->mtu = &dev->data->mtu;
rx->rxmode = &dev->data->dev_conf.rxmode;
if (gso_ctx) {
ret = tap_gso_ctx_setup(gso_ctx, dev);
if (ret)
return -1;
}
tx->type = pmd->type;
return *fd;
}
static int
tap_rx_queue_setup(struct rte_eth_dev *dev,
uint16_t rx_queue_id,
uint16_t nb_rx_desc,
unsigned int socket_id,
const struct rte_eth_rxconf *rx_conf __rte_unused,
struct rte_mempool *mp)
{
struct pmd_internals *internals = dev->data->dev_private;
struct pmd_process_private *process_private = dev->process_private;
struct rx_queue *rxq = &internals->rxq[rx_queue_id];
struct rte_mbuf **tmp = &rxq->pool;
long iov_max = sysconf(_SC_IOV_MAX);
if (iov_max <= 0) {
TAP_LOG(WARNING,
"_SC_IOV_MAX is not defined. Using %d as default",
TAP_IOV_DEFAULT_MAX);
iov_max = TAP_IOV_DEFAULT_MAX;
}
uint16_t nb_desc = RTE_MIN(nb_rx_desc, iov_max - 1);
struct iovec (*iovecs)[nb_desc + 1];
int data_off = RTE_PKTMBUF_HEADROOM;
int ret = 0;
int fd;
int i;
if (rx_queue_id >= dev->data->nb_rx_queues || !mp) {
TAP_LOG(WARNING,
"nb_rx_queues %d too small or mempool NULL",
dev->data->nb_rx_queues);
return -1;
}
rxq->mp = mp;
rxq->trigger_seen = 1; /* force initial burst */
rxq->in_port = dev->data->port_id;
rxq->queue_id = rx_queue_id;
rxq->nb_rx_desc = nb_desc;
iovecs = rte_zmalloc_socket(dev->device->name, sizeof(*iovecs), 0,
socket_id);
if (!iovecs) {
TAP_LOG(WARNING,
"%s: Couldn't allocate %d RX descriptors",
dev->device->name, nb_desc);
return -ENOMEM;
}
rxq->iovecs = iovecs;
dev->data->rx_queues[rx_queue_id] = rxq;
fd = tap_setup_queue(dev, internals, rx_queue_id, 1);
if (fd == -1) {
ret = fd;
goto error;
}
(*rxq->iovecs)[0].iov_len = sizeof(struct tun_pi);
(*rxq->iovecs)[0].iov_base = &rxq->pi;
for (i = 1; i <= nb_desc; i++) {
*tmp = rte_pktmbuf_alloc(rxq->mp);
if (!*tmp) {
TAP_LOG(WARNING,
"%s: couldn't allocate memory for queue %d",
dev->device->name, rx_queue_id);
ret = -ENOMEM;
goto error;
}
(*rxq->iovecs)[i].iov_len = (*tmp)->buf_len - data_off;
(*rxq->iovecs)[i].iov_base =
(char *)(*tmp)->buf_addr + data_off;
data_off = 0;
tmp = &(*tmp)->next;
}
TAP_LOG(DEBUG, " RX TUNTAP device name %s, qid %d on fd %d",
internals->name, rx_queue_id,
process_private->rxq_fds[rx_queue_id]);
return 0;
error:
tap_rxq_pool_free(rxq->pool);
rxq->pool = NULL;
rte_free(rxq->iovecs);
rxq->iovecs = NULL;
return ret;
}
static int
tap_tx_queue_setup(struct rte_eth_dev *dev,
uint16_t tx_queue_id,
uint16_t nb_tx_desc __rte_unused,
unsigned int socket_id __rte_unused,
const struct rte_eth_txconf *tx_conf)
{
struct pmd_internals *internals = dev->data->dev_private;
struct pmd_process_private *process_private = dev->process_private;
struct tx_queue *txq;
int ret;
uint64_t offloads;
if (tx_queue_id >= dev->data->nb_tx_queues)
return -1;
dev->data->tx_queues[tx_queue_id] = &internals->txq[tx_queue_id];
txq = dev->data->tx_queues[tx_queue_id];
txq->out_port = dev->data->port_id;
txq->queue_id = tx_queue_id;
offloads = tx_conf->offloads | dev->data->dev_conf.txmode.offloads;
txq->csum = !!(offloads &
(RTE_ETH_TX_OFFLOAD_IPV4_CKSUM |
RTE_ETH_TX_OFFLOAD_UDP_CKSUM |
RTE_ETH_TX_OFFLOAD_TCP_CKSUM));
ret = tap_setup_queue(dev, internals, tx_queue_id, 0);
if (ret == -1)
return -1;
TAP_LOG(DEBUG,
" TX TUNTAP device name %s, qid %d on fd %d csum %s",
internals->name, tx_queue_id,
process_private->txq_fds[tx_queue_id],
txq->csum ? "on" : "off");
return 0;
}
static int
tap_mtu_set(struct rte_eth_dev *dev, uint16_t mtu)
{
struct pmd_internals *pmd = dev->data->dev_private;
struct ifreq ifr = { .ifr_mtu = mtu };
return tap_ioctl(pmd, SIOCSIFMTU, &ifr, 1, LOCAL_AND_REMOTE);
}
static int
tap_set_mc_addr_list(struct rte_eth_dev *dev __rte_unused,
struct rte_ether_addr *mc_addr_set __rte_unused,
uint32_t nb_mc_addr __rte_unused)
{
/*
* Nothing to do actually: the tap has no filtering whatsoever, every
* packet is received.
*/
return 0;
}
static int
tap_nl_msg_handler(struct nlmsghdr *nh, void *arg)
{
struct rte_eth_dev *dev = arg;
struct pmd_internals *pmd = dev->data->dev_private;
struct ifinfomsg *info = NLMSG_DATA(nh);
if (nh->nlmsg_type != RTM_NEWLINK ||
(info->ifi_index != pmd->if_index &&
info->ifi_index != pmd->remote_if_index))
return 0;
return tap_link_update(dev, 0);
}
static void
tap_dev_intr_handler(void *cb_arg)
{
struct rte_eth_dev *dev = cb_arg;
struct pmd_internals *pmd = dev->data->dev_private;
if (rte_intr_fd_get(pmd->intr_handle) >= 0)
tap_nl_recv(rte_intr_fd_get(pmd->intr_handle),
tap_nl_msg_handler, dev);
}
static int
tap_lsc_intr_handle_set(struct rte_eth_dev *dev, int set)
{
struct pmd_internals *pmd = dev->data->dev_private;
int ret;
/* In any case, disable interrupt if the conf is no longer there. */
if (!dev->data->dev_conf.intr_conf.lsc) {
if (rte_intr_fd_get(pmd->intr_handle) != -1)
goto clean;
return 0;
}
if (set) {
rte_intr_fd_set(pmd->intr_handle, tap_nl_init(RTMGRP_LINK));
if (unlikely(rte_intr_fd_get(pmd->intr_handle) == -1))
return -EBADF;
return rte_intr_callback_register(
pmd->intr_handle, tap_dev_intr_handler, dev);
}
clean:
do {
ret = rte_intr_callback_unregister(pmd->intr_handle,
tap_dev_intr_handler, dev);
if (ret >= 0) {
break;
} else if (ret == -EAGAIN) {
rte_delay_ms(100);
} else {
TAP_LOG(ERR, "intr callback unregister failed: %d",
ret);
break;
}
} while (true);
if (rte_intr_fd_get(pmd->intr_handle) >= 0) {
tap_nl_final(rte_intr_fd_get(pmd->intr_handle));
rte_intr_fd_set(pmd->intr_handle, -1);
}
return 0;
}
static int
tap_intr_handle_set(struct rte_eth_dev *dev, int set)
{
int err;
err = tap_lsc_intr_handle_set(dev, set);
if (err < 0) {
if (!set)
tap_rx_intr_vec_set(dev, 0);
return err;
}
err = tap_rx_intr_vec_set(dev, set);
if (err && set)
tap_lsc_intr_handle_set(dev, 0);
return err;
}
static const uint32_t*
tap_dev_supported_ptypes_get(struct rte_eth_dev *dev __rte_unused)
{
static const uint32_t ptypes[] = {
RTE_PTYPE_INNER_L2_ETHER,
RTE_PTYPE_INNER_L2_ETHER_VLAN,
RTE_PTYPE_INNER_L2_ETHER_QINQ,
RTE_PTYPE_INNER_L3_IPV4,
RTE_PTYPE_INNER_L3_IPV4_EXT,
RTE_PTYPE_INNER_L3_IPV6,
RTE_PTYPE_INNER_L3_IPV6_EXT,
RTE_PTYPE_INNER_L4_FRAG,
RTE_PTYPE_INNER_L4_UDP,
RTE_PTYPE_INNER_L4_TCP,
RTE_PTYPE_INNER_L4_SCTP,
RTE_PTYPE_L2_ETHER,
RTE_PTYPE_L2_ETHER_VLAN,
RTE_PTYPE_L2_ETHER_QINQ,
RTE_PTYPE_L3_IPV4,
RTE_PTYPE_L3_IPV4_EXT,
RTE_PTYPE_L3_IPV6_EXT,
RTE_PTYPE_L3_IPV6,
RTE_PTYPE_L4_FRAG,
RTE_PTYPE_L4_UDP,
RTE_PTYPE_L4_TCP,
RTE_PTYPE_L4_SCTP,
};
return ptypes;
}
static int
tap_flow_ctrl_get(struct rte_eth_dev *dev __rte_unused,
struct rte_eth_fc_conf *fc_conf)
{
fc_conf->mode = RTE_ETH_FC_NONE;
return 0;
}
static int
tap_flow_ctrl_set(struct rte_eth_dev *dev __rte_unused,
struct rte_eth_fc_conf *fc_conf)
{
if (fc_conf->mode != RTE_ETH_FC_NONE)
return -ENOTSUP;
return 0;
}
/**
* DPDK callback to update the RSS hash configuration.
*
* @param dev
* Pointer to Ethernet device structure.
* @param[in] rss_conf
* RSS configuration data.
*
* @return
* 0 on success, a negative errno value otherwise and rte_errno is set.
*/
static int
tap_rss_hash_update(struct rte_eth_dev *dev,
struct rte_eth_rss_conf *rss_conf)
{
if (rss_conf->rss_hf & TAP_RSS_HF_MASK) {
rte_errno = EINVAL;
return -rte_errno;
}
if (rss_conf->rss_key && rss_conf->rss_key_len) {
/*
* Currently TAP RSS key is hard coded
* and cannot be updated
*/
TAP_LOG(ERR,
"port %u RSS key cannot be updated",
dev->data->port_id);
rte_errno = EINVAL;
return -rte_errno;
}
return 0;
}
static int
tap_rx_queue_start(struct rte_eth_dev *dev, uint16_t rx_queue_id)
{
dev->data->rx_queue_state[rx_queue_id] = RTE_ETH_QUEUE_STATE_STARTED;
return 0;
}
static int
tap_tx_queue_start(struct rte_eth_dev *dev, uint16_t tx_queue_id)
{
dev->data->tx_queue_state[tx_queue_id] = RTE_ETH_QUEUE_STATE_STARTED;
return 0;
}
static int
tap_rx_queue_stop(struct rte_eth_dev *dev, uint16_t rx_queue_id)
{
dev->data->rx_queue_state[rx_queue_id] = RTE_ETH_QUEUE_STATE_STOPPED;
return 0;
}
static int
tap_tx_queue_stop(struct rte_eth_dev *dev, uint16_t tx_queue_id)
{
dev->data->tx_queue_state[tx_queue_id] = RTE_ETH_QUEUE_STATE_STOPPED;
return 0;
}
static const struct eth_dev_ops ops = {
.dev_start = tap_dev_start,
.dev_stop = tap_dev_stop,
.dev_close = tap_dev_close,
.dev_configure = tap_dev_configure,
.dev_infos_get = tap_dev_info,
.rx_queue_setup = tap_rx_queue_setup,
.tx_queue_setup = tap_tx_queue_setup,
.rx_queue_start = tap_rx_queue_start,
.tx_queue_start = tap_tx_queue_start,
.rx_queue_stop = tap_rx_queue_stop,
.tx_queue_stop = tap_tx_queue_stop,
.rx_queue_release = tap_rx_queue_release,
.tx_queue_release = tap_tx_queue_release,
.flow_ctrl_get = tap_flow_ctrl_get,
.flow_ctrl_set = tap_flow_ctrl_set,
.link_update = tap_link_update,
.dev_set_link_up = tap_link_set_up,
.dev_set_link_down = tap_link_set_down,
.promiscuous_enable = tap_promisc_enable,
.promiscuous_disable = tap_promisc_disable,
.allmulticast_enable = tap_allmulti_enable,
.allmulticast_disable = tap_allmulti_disable,
.mac_addr_set = tap_mac_set,
.mtu_set = tap_mtu_set,
.set_mc_addr_list = tap_set_mc_addr_list,
.stats_get = tap_stats_get,
.stats_reset = tap_stats_reset,
.dev_supported_ptypes_get = tap_dev_supported_ptypes_get,
.rss_hash_update = tap_rss_hash_update,
.flow_ops_get = tap_dev_flow_ops_get,
};
static int
eth_dev_tap_create(struct rte_vdev_device *vdev, const char *tap_name,
char *remote_iface, struct rte_ether_addr *mac_addr,
enum rte_tuntap_type type)
{
int numa_node = rte_socket_id();
struct rte_eth_dev *dev;
struct pmd_internals *pmd;
struct pmd_process_private *process_private;
const char *tuntap_name = tuntap_types[type];
struct rte_eth_dev_data *data;
struct ifreq ifr;
int i;
TAP_LOG(DEBUG, "%s device on numa %u", tuntap_name, rte_socket_id());
dev = rte_eth_vdev_allocate(vdev, sizeof(*pmd));
if (!dev) {
TAP_LOG(ERR, "%s Unable to allocate device struct",
tuntap_name);
goto error_exit_nodev;
}
process_private = (struct pmd_process_private *)
rte_zmalloc_socket(tap_name, sizeof(struct pmd_process_private),
RTE_CACHE_LINE_SIZE, dev->device->numa_node);
if (process_private == NULL) {
TAP_LOG(ERR, "Failed to alloc memory for process private");
return -1;
}
pmd = dev->data->dev_private;
dev->process_private = process_private;
pmd->dev = dev;
strlcpy(pmd->name, tap_name, sizeof(pmd->name));
pmd->type = type;
pmd->ka_fd = -1;
pmd->nlsk_fd = -1;
pmd->gso_ctx_mp = NULL;
pmd->ioctl_sock = socket(AF_INET, SOCK_DGRAM, 0);
if (pmd->ioctl_sock == -1) {
TAP_LOG(ERR,
"%s Unable to get a socket for management: %s",
tuntap_name, strerror(errno));
goto error_exit;
}
/* Allocate interrupt instance */
pmd->intr_handle = rte_intr_instance_alloc(RTE_INTR_INSTANCE_F_SHARED);
if (pmd->intr_handle == NULL) {
TAP_LOG(ERR, "Failed to allocate intr handle");
goto error_exit;
}
/* Setup some default values */
data = dev->data;
data->dev_private = pmd;
data->dev_flags = RTE_ETH_DEV_INTR_LSC |
RTE_ETH_DEV_AUTOFILL_QUEUE_XSTATS;
data->numa_node = numa_node;
data->dev_link = pmd_link;
data->mac_addrs = &pmd->eth_addr;
/* Set the number of RX and TX queues */
data->nb_rx_queues = 0;
data->nb_tx_queues = 0;
dev->dev_ops = &ops;
dev->rx_pkt_burst = pmd_rx_burst;
dev->tx_pkt_burst = pmd_tx_burst;
rte_intr_type_set(pmd->intr_handle, RTE_INTR_HANDLE_EXT);
rte_intr_fd_set(pmd->intr_handle, -1);
dev->intr_handle = pmd->intr_handle;
/* Presetup the fds to -1 as being not valid */
for (i = 0; i < RTE_PMD_TAP_MAX_QUEUES; i++) {
process_private->rxq_fds[i] = -1;
process_private->txq_fds[i] = -1;
}
if (pmd->type == ETH_TUNTAP_TYPE_TAP) {
if (rte_is_zero_ether_addr(mac_addr))
rte_eth_random_addr((uint8_t *)&pmd->eth_addr);
else
rte_memcpy(&pmd->eth_addr, mac_addr, sizeof(*mac_addr));
}
/*
* Allocate a TUN device keep-alive file descriptor that will only be
* closed when the TUN device itself is closed or removed.
* This keep-alive file descriptor will guarantee that the TUN device
* exists even when all of its queues are closed
*/
pmd->ka_fd = tun_alloc(pmd, 1);
if (pmd->ka_fd == -1) {
TAP_LOG(ERR, "Unable to create %s interface", tuntap_name);
goto error_exit;
}
TAP_LOG(DEBUG, "allocated %s", pmd->name);
ifr.ifr_mtu = dev->data->mtu;
if (tap_ioctl(pmd, SIOCSIFMTU, &ifr, 1, LOCAL_AND_REMOTE) < 0)
goto error_exit;
if (pmd->type == ETH_TUNTAP_TYPE_TAP) {
memset(&ifr, 0, sizeof(struct ifreq));
ifr.ifr_hwaddr.sa_family = AF_LOCAL;
rte_memcpy(ifr.ifr_hwaddr.sa_data, &pmd->eth_addr,
RTE_ETHER_ADDR_LEN);
if (tap_ioctl(pmd, SIOCSIFHWADDR, &ifr, 0, LOCAL_ONLY) < 0)
goto error_exit;
}
/*
* Set up everything related to rte_flow:
* - netlink socket
* - tap / remote if_index
* - mandatory QDISCs
* - rte_flow actual/implicit lists
* - implicit rules
*/
pmd->nlsk_fd = tap_nl_init(0);
if (pmd->nlsk_fd == -1) {
TAP_LOG(WARNING, "%s: failed to create netlink socket.",
pmd->name);
goto disable_rte_flow;
}
pmd->if_index = if_nametoindex(pmd->name);
if (!pmd->if_index) {
TAP_LOG(ERR, "%s: failed to get if_index.", pmd->name);
goto disable_rte_flow;
}
if (qdisc_create_multiq(pmd->nlsk_fd, pmd->if_index) < 0) {
TAP_LOG(ERR, "%s: failed to create multiq qdisc.",
pmd->name);
goto disable_rte_flow;
}
if (qdisc_create_ingress(pmd->nlsk_fd, pmd->if_index) < 0) {
TAP_LOG(ERR, "%s: failed to create ingress qdisc.",
pmd->name);
goto disable_rte_flow;
}
LIST_INIT(&pmd->flows);
if (strlen(remote_iface)) {
pmd->remote_if_index = if_nametoindex(remote_iface);
if (!pmd->remote_if_index) {
TAP_LOG(ERR, "%s: failed to get %s if_index.",
pmd->name, remote_iface);
goto error_remote;
}
strlcpy(pmd->remote_iface, remote_iface, RTE_ETH_NAME_MAX_LEN);
/* Save state of remote device */
tap_ioctl(pmd, SIOCGIFFLAGS, &pmd->remote_initial_flags, 0, REMOTE_ONLY);
/* Replicate remote MAC address */
if (tap_ioctl(pmd, SIOCGIFHWADDR, &ifr, 0, REMOTE_ONLY) < 0) {
TAP_LOG(ERR, "%s: failed to get %s MAC address.",
pmd->name, pmd->remote_iface);
goto error_remote;
}
rte_memcpy(&pmd->eth_addr, ifr.ifr_hwaddr.sa_data,
RTE_ETHER_ADDR_LEN);
/* The desired MAC is already in ifreq after SIOCGIFHWADDR. */
if (tap_ioctl(pmd, SIOCSIFHWADDR, &ifr, 0, LOCAL_ONLY) < 0) {
TAP_LOG(ERR, "%s: failed to get %s MAC address.",
pmd->name, remote_iface);
goto error_remote;
}
/*
* Flush usually returns negative value because it tries to
* delete every QDISC (and on a running device, one QDISC at
* least is needed). Ignore negative return value.
*/
qdisc_flush(pmd->nlsk_fd, pmd->remote_if_index);
if (qdisc_create_ingress(pmd->nlsk_fd,
pmd->remote_if_index) < 0) {
TAP_LOG(ERR, "%s: failed to create ingress qdisc.",
pmd->remote_iface);
goto error_remote;
}
LIST_INIT(&pmd->implicit_flows);
if (tap_flow_implicit_create(pmd, TAP_REMOTE_TX) < 0 ||
tap_flow_implicit_create(pmd, TAP_REMOTE_LOCAL_MAC) < 0 ||
tap_flow_implicit_create(pmd, TAP_REMOTE_BROADCAST) < 0 ||
tap_flow_implicit_create(pmd, TAP_REMOTE_BROADCASTV6) < 0) {
TAP_LOG(ERR,
"%s: failed to create implicit rules.",
pmd->name);
goto error_remote;
}
}
rte_eth_dev_probing_finish(dev);
return 0;
disable_rte_flow:
TAP_LOG(ERR, " Disabling rte flow support: %s(%d)",
strerror(errno), errno);
if (strlen(remote_iface)) {
TAP_LOG(ERR, "Remote feature requires flow support.");
goto error_exit;
}
rte_eth_dev_probing_finish(dev);
return 0;
error_remote:
TAP_LOG(ERR, " Can't set up remote feature: %s(%d)",
strerror(errno), errno);
tap_flow_implicit_flush(pmd, NULL);
error_exit:
if (pmd->nlsk_fd != -1)
close(pmd->nlsk_fd);
if (pmd->ka_fd != -1)
close(pmd->ka_fd);
if (pmd->ioctl_sock != -1)
close(pmd->ioctl_sock);
/* mac_addrs must not be freed alone because part of dev_private */
dev->data->mac_addrs = NULL;
rte_intr_instance_free(pmd->intr_handle);
rte_eth_dev_release_port(dev);
error_exit_nodev:
TAP_LOG(ERR, "%s Unable to initialize %s",
tuntap_name, rte_vdev_device_name(vdev));
return -EINVAL;
}
/* make sure name is a possible Linux network device name */
static bool
is_valid_iface(const char *name)
{
if (*name == '\0')
return false;
if (strnlen(name, IFNAMSIZ) == IFNAMSIZ)
return false;
while (*name) {
if (*name == '/' || *name == ':' || isspace(*name))
return false;
name++;
}
return true;
}
static int
set_interface_name(const char *key __rte_unused,
const char *value,
void *extra_args)
{
char *name = (char *)extra_args;
if (value) {
if (!is_valid_iface(value)) {
TAP_LOG(ERR, "TAP invalid remote interface name (%s)",
value);
return -1;
}
strlcpy(name, value, RTE_ETH_NAME_MAX_LEN);
} else {
/* use tap%d which causes kernel to choose next available */
strlcpy(name, DEFAULT_TAP_NAME "%d", RTE_ETH_NAME_MAX_LEN);
}
return 0;
}
static int
set_remote_iface(const char *key __rte_unused,
const char *value,
void *extra_args)
{
char *name = (char *)extra_args;
if (value) {
if (!is_valid_iface(value)) {
TAP_LOG(ERR, "TAP invalid remote interface name (%s)",
value);
return -1;
}
strlcpy(name, value, RTE_ETH_NAME_MAX_LEN);
}
return 0;
}
static int parse_user_mac(struct rte_ether_addr *user_mac,
const char *value)
{
unsigned int index = 0;
char mac_temp[strlen(ETH_TAP_USR_MAC_FMT) + 1], *mac_byte = NULL;
if (user_mac == NULL || value == NULL)
return 0;
strlcpy(mac_temp, value, sizeof(mac_temp));
mac_byte = strtok(mac_temp, ":");
while ((mac_byte != NULL) &&
(strlen(mac_byte) <= 2) &&
(strlen(mac_byte) == strspn(mac_byte,
ETH_TAP_CMP_MAC_FMT))) {
user_mac->addr_bytes[index++] = strtoul(mac_byte, NULL, 16);
mac_byte = strtok(NULL, ":");
}
return index;
}
static int
set_mac_type(const char *key __rte_unused,
const char *value,
void *extra_args)
{
struct rte_ether_addr *user_mac = extra_args;
if (!value)
return 0;
if (!strncasecmp(ETH_TAP_MAC_FIXED, value, strlen(ETH_TAP_MAC_FIXED))) {
static int iface_idx;
/* fixed mac = 02:64:74:61:70:<iface_idx> */
memcpy((char *)user_mac->addr_bytes, "\002dtap",
RTE_ETHER_ADDR_LEN);
user_mac->addr_bytes[RTE_ETHER_ADDR_LEN - 1] =
iface_idx++ + '0';
goto success;
}
if (parse_user_mac(user_mac, value) != 6)
goto error;
success:
TAP_LOG(DEBUG, "TAP user MAC param (%s)", value);
return 0;
error:
TAP_LOG(ERR, "TAP user MAC (%s) is not in format (%s|%s)",
value, ETH_TAP_MAC_FIXED, ETH_TAP_USR_MAC_FMT);
return -1;
}
/*
* Open a TUN interface device. TUN PMD
* 1) sets tap_type as false
* 2) intakes iface as argument.
* 3) as interface is virtual set speed to 10G
*/
static int
rte_pmd_tun_probe(struct rte_vdev_device *dev)
{
const char *name, *params;
int ret;
struct rte_kvargs *kvlist = NULL;
char tun_name[RTE_ETH_NAME_MAX_LEN];
char remote_iface[RTE_ETH_NAME_MAX_LEN];
struct rte_eth_dev *eth_dev;
name = rte_vdev_device_name(dev);
params = rte_vdev_device_args(dev);
memset(remote_iface, 0, RTE_ETH_NAME_MAX_LEN);
if (rte_eal_process_type() == RTE_PROC_SECONDARY &&
strlen(params) == 0) {
eth_dev = rte_eth_dev_attach_secondary(name);
if (!eth_dev) {
TAP_LOG(ERR, "Failed to probe %s", name);
return -1;
}
eth_dev->dev_ops = &ops;
eth_dev->device = &dev->device;
rte_eth_dev_probing_finish(eth_dev);
return 0;
}
/* use tun%d which causes kernel to choose next available */
strlcpy(tun_name, DEFAULT_TUN_NAME "%d", RTE_ETH_NAME_MAX_LEN);
if (params && (params[0] != '\0')) {
TAP_LOG(DEBUG, "parameters (%s)", params);
kvlist = rte_kvargs_parse(params, valid_arguments);
if (kvlist) {
if (rte_kvargs_count(kvlist, ETH_TAP_IFACE_ARG) == 1) {
ret = rte_kvargs_process(kvlist,
ETH_TAP_IFACE_ARG,
&set_interface_name,
tun_name);
if (ret == -1)
goto leave;
}
}
}
pmd_link.link_speed = RTE_ETH_SPEED_NUM_10G;
TAP_LOG(DEBUG, "Initializing pmd_tun for %s", name);
ret = eth_dev_tap_create(dev, tun_name, remote_iface, 0,
ETH_TUNTAP_TYPE_TUN);
leave:
if (ret == -1) {
TAP_LOG(ERR, "Failed to create pmd for %s as %s",
name, tun_name);
}
rte_kvargs_free(kvlist);
return ret;
}
/* Request queue file descriptors from secondary to primary. */
static int
tap_mp_attach_queues(const char *port_name, struct rte_eth_dev *dev)
{
int ret;
struct timespec timeout = {.tv_sec = 1, .tv_nsec = 0};
struct rte_mp_msg request, *reply;
struct rte_mp_reply replies;
struct ipc_queues *request_param = (struct ipc_queues *)request.param;
struct ipc_queues *reply_param;
struct pmd_process_private *process_private = dev->process_private;
int queue, fd_iterator;
/* Prepare the request */
memset(&request, 0, sizeof(request));
strlcpy(request.name, TAP_MP_KEY, sizeof(request.name));
strlcpy(request_param->port_name, port_name,
sizeof(request_param->port_name));
request.len_param = sizeof(*request_param);
/* Send request and receive reply */
ret = rte_mp_request_sync(&request, &replies, &timeout);
if (ret < 0 || replies.nb_received != 1) {
TAP_LOG(ERR, "Failed to request queues from primary: %d",
rte_errno);
return -1;
}
reply = &replies.msgs[0];
reply_param = (struct ipc_queues *)reply->param;
TAP_LOG(DEBUG, "Received IPC reply for %s", reply_param->port_name);
/* Attach the queues from received file descriptors */
if (reply_param->rxq_count + reply_param->txq_count != reply->num_fds) {
TAP_LOG(ERR, "Unexpected number of fds received");
return -1;
}
dev->data->nb_rx_queues = reply_param->rxq_count;
dev->data->nb_tx_queues = reply_param->txq_count;
fd_iterator = 0;
for (queue = 0; queue < reply_param->rxq_count; queue++)
process_private->rxq_fds[queue] = reply->fds[fd_iterator++];
for (queue = 0; queue < reply_param->txq_count; queue++)
process_private->txq_fds[queue] = reply->fds[fd_iterator++];
free(reply);
return 0;
}
/* Send the queue file descriptors from the primary process to secondary. */
static int
tap_mp_sync_queues(const struct rte_mp_msg *request, const void *peer)
{
struct rte_eth_dev *dev;
struct pmd_process_private *process_private;
struct rte_mp_msg reply;
const struct ipc_queues *request_param =
(const struct ipc_queues *)request->param;
struct ipc_queues *reply_param =
(struct ipc_queues *)reply.param;
uint16_t port_id;
int queue;
int ret;
/* Get requested port */
TAP_LOG(DEBUG, "Received IPC request for %s", request_param->port_name);
ret = rte_eth_dev_get_port_by_name(request_param->port_name, &port_id);
if (ret) {
TAP_LOG(ERR, "Failed to get port id for %s",
request_param->port_name);
return -1;
}
dev = &rte_eth_devices[port_id];
process_private = dev->process_private;
/* Fill file descriptors for all queues */
reply.num_fds = 0;
reply_param->rxq_count = 0;
if (dev->data->nb_rx_queues + dev->data->nb_tx_queues >
RTE_MP_MAX_FD_NUM){
TAP_LOG(ERR, "Number of rx/tx queues exceeds max number of fds");
return -1;
}
for (queue = 0; queue < dev->data->nb_rx_queues; queue++) {
reply.fds[reply.num_fds++] = process_private->rxq_fds[queue];
reply_param->rxq_count++;
}
RTE_ASSERT(reply_param->rxq_count == dev->data->nb_rx_queues);
reply_param->txq_count = 0;
for (queue = 0; queue < dev->data->nb_tx_queues; queue++) {
reply.fds[reply.num_fds++] = process_private->txq_fds[queue];
reply_param->txq_count++;
}
RTE_ASSERT(reply_param->txq_count == dev->data->nb_tx_queues);
/* Send reply */
strlcpy(reply.name, request->name, sizeof(reply.name));
strlcpy(reply_param->port_name, request_param->port_name,
sizeof(reply_param->port_name));
reply.len_param = sizeof(*reply_param);
if (rte_mp_reply(&reply, peer) < 0) {
TAP_LOG(ERR, "Failed to reply an IPC request to sync queues");
return -1;
}
return 0;
}
/* Open a TAP interface device.
*/
static int
rte_pmd_tap_probe(struct rte_vdev_device *dev)
{
const char *name, *params;
int ret;
struct rte_kvargs *kvlist = NULL;
int speed;
char tap_name[RTE_ETH_NAME_MAX_LEN];
char remote_iface[RTE_ETH_NAME_MAX_LEN];
struct rte_ether_addr user_mac = { .addr_bytes = {0} };
struct rte_eth_dev *eth_dev;
int tap_devices_count_increased = 0;
name = rte_vdev_device_name(dev);
params = rte_vdev_device_args(dev);
if (rte_eal_process_type() == RTE_PROC_SECONDARY) {
eth_dev = rte_eth_dev_attach_secondary(name);
if (!eth_dev) {
TAP_LOG(ERR, "Failed to probe %s", name);
return -1;
}
eth_dev->dev_ops = &ops;
eth_dev->device = &dev->device;
eth_dev->rx_pkt_burst = pmd_rx_burst;
eth_dev->tx_pkt_burst = pmd_tx_burst;
if (!rte_eal_primary_proc_alive(NULL)) {
TAP_LOG(ERR, "Primary process is missing");
return -1;
}
eth_dev->process_private = (struct pmd_process_private *)
rte_zmalloc_socket(name,
sizeof(struct pmd_process_private),
RTE_CACHE_LINE_SIZE,
eth_dev->device->numa_node);
if (eth_dev->process_private == NULL) {
TAP_LOG(ERR,
"Failed to alloc memory for process private");
return -1;
}
ret = tap_mp_attach_queues(name, eth_dev);
if (ret != 0)
return -1;
if (!tap_devices_count) {
ret = rte_mp_action_register(TAP_MP_REQ_START_RXTX, tap_mp_req_start_rxtx);
if (ret < 0 && rte_errno != ENOTSUP) {
TAP_LOG(ERR, "tap: Failed to register IPC callback: %s",
strerror(rte_errno));
return -1;
}
}
tap_devices_count++;
rte_eth_dev_probing_finish(eth_dev);
return 0;
}
speed = RTE_ETH_SPEED_NUM_10G;
/* use tap%d which causes kernel to choose next available */
strlcpy(tap_name, DEFAULT_TAP_NAME "%d", RTE_ETH_NAME_MAX_LEN);
memset(remote_iface, 0, RTE_ETH_NAME_MAX_LEN);
if (params && (params[0] != '\0')) {
TAP_LOG(DEBUG, "parameters (%s)", params);
kvlist = rte_kvargs_parse(params, valid_arguments);
if (kvlist) {
if (rte_kvargs_count(kvlist, ETH_TAP_IFACE_ARG) == 1) {
ret = rte_kvargs_process(kvlist,
ETH_TAP_IFACE_ARG,
&set_interface_name,
tap_name);
if (ret == -1)
goto leave;
}
if (rte_kvargs_count(kvlist, ETH_TAP_REMOTE_ARG) == 1) {
ret = rte_kvargs_process(kvlist,
ETH_TAP_REMOTE_ARG,
&set_remote_iface,
remote_iface);
if (ret == -1)
goto leave;
}
if (rte_kvargs_count(kvlist, ETH_TAP_MAC_ARG) == 1) {
ret = rte_kvargs_process(kvlist,
ETH_TAP_MAC_ARG,
&set_mac_type,
&user_mac);
if (ret == -1)
goto leave;
}
}
}
pmd_link.link_speed = speed;
TAP_LOG(DEBUG, "Initializing pmd_tap for %s", name);
/* Register IPC feed callback */
if (!tap_devices_count) {
ret = rte_mp_action_register(TAP_MP_KEY, tap_mp_sync_queues);
if (ret < 0 && rte_errno != ENOTSUP) {
TAP_LOG(ERR, "tap: Failed to register IPC callback: %s",
strerror(rte_errno));
goto leave;
}
}
tap_devices_count++;
tap_devices_count_increased = 1;
ret = eth_dev_tap_create(dev, tap_name, remote_iface, &user_mac,
ETH_TUNTAP_TYPE_TAP);
leave:
if (ret == -1) {
TAP_LOG(ERR, "Failed to create pmd for %s as %s",
name, tap_name);
if (tap_devices_count_increased == 1) {
if (tap_devices_count == 1)
rte_mp_action_unregister(TAP_MP_KEY);
tap_devices_count--;
}
}
rte_kvargs_free(kvlist);
return ret;
}
/* detach a TUNTAP device.
*/
static int
rte_pmd_tap_remove(struct rte_vdev_device *dev)
{
struct rte_eth_dev *eth_dev = NULL;
/* find the ethdev entry */
eth_dev = rte_eth_dev_allocated(rte_vdev_device_name(dev));
if (!eth_dev)
return 0;
tap_dev_close(eth_dev);
rte_eth_dev_release_port(eth_dev);
return 0;
}
static struct rte_vdev_driver pmd_tun_drv = {
.probe = rte_pmd_tun_probe,
.remove = rte_pmd_tap_remove,
};
static struct rte_vdev_driver pmd_tap_drv = {
.probe = rte_pmd_tap_probe,
.remove = rte_pmd_tap_remove,
};
RTE_PMD_REGISTER_VDEV(net_tap, pmd_tap_drv);
RTE_PMD_REGISTER_VDEV(net_tun, pmd_tun_drv);
RTE_PMD_REGISTER_ALIAS(net_tap, eth_tap);
RTE_PMD_REGISTER_PARAM_STRING(net_tun,
ETH_TAP_IFACE_ARG "=<string> ");
RTE_PMD_REGISTER_PARAM_STRING(net_tap,
ETH_TAP_IFACE_ARG "=<string> "
ETH_TAP_MAC_ARG "=" ETH_TAP_MAC_ARG_FMT " "
ETH_TAP_REMOTE_ARG "=<string>");
RTE_LOG_REGISTER_DEFAULT(tap_logtype, NOTICE);