f-stack/dpdk/drivers/net/sfc/sfc_mae_counter.c

998 lines
26 KiB
C

/* SPDX-License-Identifier: BSD-3-Clause
*
* Copyright(c) 2020-2021 Xilinx, Inc.
*/
#include <rte_common.h>
#include <rte_service_component.h>
#include "efx.h"
#include "efx_regs_counters_pkt_format.h"
#include "sfc_ev.h"
#include "sfc.h"
#include "sfc_rx.h"
#include "sfc_mae_counter.h"
#include "sfc_service.h"
/**
* Approximate maximum number of counters per packet.
* In fact maximum depends on per-counter data offset which is specified
* in counter packet header.
*/
#define SFC_MAE_COUNTERS_PER_PACKET_MAX \
((SFC_MAE_COUNTER_STREAM_PACKET_SIZE - \
ER_RX_SL_PACKETISER_HEADER_WORD_SIZE) / \
ER_RX_SL_PACKETISER_PAYLOAD_WORD_SIZE)
/**
* Minimum number of Rx buffers in counters only Rx queue.
*/
#define SFC_MAE_COUNTER_RXQ_BUFS_MIN \
(SFC_COUNTER_RXQ_RX_DESC_COUNT - SFC_COUNTER_RXQ_REFILL_LEVEL)
/**
* Approximate number of counter updates fit in counters only Rx queue.
* The number is inaccurate since SFC_MAE_COUNTERS_PER_PACKET_MAX is
* inaccurate (see above). However, it provides the gist for a number of
* counter updates which can fit in an Rx queue after empty poll.
*
* The define is not actually used, but provides calculations details.
*/
#define SFC_MAE_COUNTERS_RXQ_SPACE \
(SFC_MAE_COUNTER_RXQ_BUFS_MIN * SFC_MAE_COUNTERS_PER_PACKET_MAX)
static uint32_t
sfc_mae_counter_get_service_lcore(struct sfc_adapter *sa)
{
uint32_t cid;
cid = sfc_get_service_lcore(sa->socket_id);
if (cid != RTE_MAX_LCORE)
return cid;
if (sa->socket_id != SOCKET_ID_ANY)
cid = sfc_get_service_lcore(SOCKET_ID_ANY);
if (cid == RTE_MAX_LCORE) {
sfc_warn(sa, "failed to get service lcore for counter service");
} else if (sa->socket_id != SOCKET_ID_ANY) {
sfc_warn(sa,
"failed to get service lcore for counter service at socket %d, but got at socket %u",
sa->socket_id, rte_lcore_to_socket_id(cid));
}
return cid;
}
bool
sfc_mae_counter_rxq_required(struct sfc_adapter *sa)
{
const efx_nic_cfg_t *encp = efx_nic_cfg_get(sa->nic);
if (encp->enc_mae_supported == B_FALSE)
return false;
return true;
}
int
sfc_mae_counter_enable(struct sfc_adapter *sa,
struct sfc_mae_counter_id *counterp)
{
struct sfc_mae_counter_registry *reg = &sa->mae.counter_registry;
struct sfc_mae_counters *counters = &reg->counters;
struct sfc_mae_counter *p;
efx_counter_t mae_counter;
uint32_t generation_count;
uint32_t unused;
int rc;
/*
* The actual count of counters allocated is ignored since a failure
* to allocate a single counter is indicated by non-zero return code.
*/
rc = efx_mae_counters_alloc(sa->nic, 1, &unused, &mae_counter,
&generation_count);
if (rc != 0) {
sfc_err(sa, "failed to alloc MAE counter: %s",
rte_strerror(rc));
goto fail_mae_counter_alloc;
}
if (mae_counter.id >= counters->n_mae_counters) {
/*
* ID of a counter is expected to be within the range
* between 0 and the maximum count of counters to always
* fit into a pre-allocated array size of maximum counter ID.
*/
sfc_err(sa, "MAE counter ID is out of expected range");
rc = EFAULT;
goto fail_counter_id_range;
}
counterp->mae_id = mae_counter;
p = &counters->mae_counters[mae_counter.id];
/*
* Ordering is relaxed since it is the only operation on counter value.
* And it does not depend on different stores/loads in other threads.
* Paired with relaxed ordering in counter increment.
*/
__atomic_store(&p->reset.pkts_bytes.int128,
&p->value.pkts_bytes.int128, __ATOMIC_RELAXED);
p->generation_count = generation_count;
p->ft_group_hit_counter = counterp->ft_group_hit_counter;
/*
* The flag is set at the very end of add operation and reset
* at the beginning of delete operation. Release ordering is
* paired with acquire ordering on load in counter increment operation.
*/
__atomic_store_n(&p->inuse, true, __ATOMIC_RELEASE);
sfc_info(sa, "enabled MAE counter #%u with reset pkts=%" PRIu64
" bytes=%" PRIu64, mae_counter.id,
p->reset.pkts, p->reset.bytes);
return 0;
fail_counter_id_range:
(void)efx_mae_counters_free(sa->nic, 1, &unused, &mae_counter, NULL);
fail_mae_counter_alloc:
sfc_log_init(sa, "failed: %s", rte_strerror(rc));
return rc;
}
int
sfc_mae_counter_disable(struct sfc_adapter *sa,
struct sfc_mae_counter_id *counter)
{
struct sfc_mae_counter_registry *reg = &sa->mae.counter_registry;
struct sfc_mae_counters *counters = &reg->counters;
struct sfc_mae_counter *p;
uint32_t unused;
int rc;
if (counter->mae_id.id == EFX_MAE_RSRC_ID_INVALID)
return 0;
SFC_ASSERT(counter->mae_id.id < counters->n_mae_counters);
/*
* The flag is set at the very end of add operation and reset
* at the beginning of delete operation. Release ordering is
* paired with acquire ordering on load in counter increment operation.
*/
p = &counters->mae_counters[counter->mae_id.id];
__atomic_store_n(&p->inuse, false, __ATOMIC_RELEASE);
rc = efx_mae_counters_free(sa->nic, 1, &unused, &counter->mae_id, NULL);
if (rc != 0)
sfc_err(sa, "failed to free MAE counter %u: %s",
counter->mae_id.id, rte_strerror(rc));
sfc_info(sa, "disabled MAE counter #%u with reset pkts=%" PRIu64
" bytes=%" PRIu64, counter->mae_id.id,
p->reset.pkts, p->reset.bytes);
/*
* Do this regardless of what efx_mae_counters_free() return value is.
* If there's some error, the resulting resource leakage is bad, but
* nothing sensible can be done in this case.
*/
counter->mae_id.id = EFX_MAE_RSRC_ID_INVALID;
return rc;
}
static void
sfc_mae_counter_increment(struct sfc_adapter *sa,
struct sfc_mae_counters *counters,
uint32_t mae_counter_id,
uint32_t generation_count,
uint64_t pkts, uint64_t bytes)
{
struct sfc_mae_counter *p = &counters->mae_counters[mae_counter_id];
struct sfc_mae_counters_xstats *xstats = &counters->xstats;
union sfc_pkts_bytes cnt_val;
bool inuse;
/*
* Acquire ordering is paired with release ordering in counter add
* and delete operations.
*/
__atomic_load(&p->inuse, &inuse, __ATOMIC_ACQUIRE);
if (!inuse) {
/*
* Two possible cases include:
* 1) Counter is just allocated. Too early counter update
* cannot be processed properly.
* 2) Stale update of freed and not reallocated counter.
* There is no point in processing that update.
*/
xstats->not_inuse_update++;
return;
}
if (unlikely(generation_count < p->generation_count)) {
/*
* It is a stale update for the reallocated counter
* (i.e., freed and the same ID allocated again).
*/
xstats->realloc_update++;
return;
}
cnt_val.pkts = p->value.pkts + pkts;
cnt_val.bytes = p->value.bytes + bytes;
/*
* Ordering is relaxed since it is the only operation on counter value.
* And it does not depend on different stores/loads in other threads.
* Paired with relaxed ordering on counter reset.
*/
__atomic_store(&p->value.pkts_bytes,
&cnt_val.pkts_bytes, __ATOMIC_RELAXED);
if (p->ft_group_hit_counter != NULL) {
uint64_t ft_group_hit_counter;
ft_group_hit_counter = *p->ft_group_hit_counter + pkts;
__atomic_store_n(p->ft_group_hit_counter, ft_group_hit_counter,
__ATOMIC_RELAXED);
}
sfc_info(sa, "update MAE counter #%u: pkts+%" PRIu64 "=%" PRIu64
", bytes+%" PRIu64 "=%" PRIu64, mae_counter_id,
pkts, cnt_val.pkts, bytes, cnt_val.bytes);
}
static void
sfc_mae_parse_counter_packet(struct sfc_adapter *sa,
struct sfc_mae_counter_registry *counter_registry,
const struct rte_mbuf *m)
{
uint32_t generation_count;
const efx_xword_t *hdr;
const efx_oword_t *counters_data;
unsigned int version;
unsigned int id;
unsigned int header_offset;
unsigned int payload_offset;
unsigned int counter_count;
unsigned int required_len;
unsigned int i;
if (unlikely(m->nb_segs != 1)) {
sfc_err(sa, "unexpectedly scattered MAE counters packet (%u segments)",
m->nb_segs);
return;
}
if (unlikely(m->data_len < ER_RX_SL_PACKETISER_HEADER_WORD_SIZE)) {
sfc_err(sa, "too short MAE counters packet (%u bytes)",
m->data_len);
return;
}
/*
* The generation count is located in the Rx prefix in the USER_MARK
* field which is written into hash.fdir.hi field of an mbuf. See
* SF-123581-TC SmartNIC Datapath Offloads section 4.7.5 Counters.
*/
generation_count = m->hash.fdir.hi;
hdr = rte_pktmbuf_mtod(m, const efx_xword_t *);
version = EFX_XWORD_FIELD(*hdr, ERF_SC_PACKETISER_HEADER_VERSION);
if (unlikely(version != ERF_SC_PACKETISER_HEADER_VERSION_2)) {
sfc_err(sa, "unexpected MAE counters packet version %u",
version);
return;
}
id = EFX_XWORD_FIELD(*hdr, ERF_SC_PACKETISER_HEADER_IDENTIFIER);
if (unlikely(id != ERF_SC_PACKETISER_HEADER_IDENTIFIER_AR)) {
sfc_err(sa, "unexpected MAE counters source identifier %u", id);
return;
}
/* Packet layout definitions assume fixed header offset in fact */
header_offset =
EFX_XWORD_FIELD(*hdr, ERF_SC_PACKETISER_HEADER_HEADER_OFFSET);
if (unlikely(header_offset !=
ERF_SC_PACKETISER_HEADER_HEADER_OFFSET_DEFAULT)) {
sfc_err(sa, "unexpected MAE counters packet header offset %u",
header_offset);
return;
}
payload_offset =
EFX_XWORD_FIELD(*hdr, ERF_SC_PACKETISER_HEADER_PAYLOAD_OFFSET);
counter_count = EFX_XWORD_FIELD(*hdr, ERF_SC_PACKETISER_HEADER_COUNT);
required_len = payload_offset +
counter_count * sizeof(counters_data[0]);
if (unlikely(required_len > m->data_len)) {
sfc_err(sa, "truncated MAE counters packet: %u counters, packet length is %u vs %u required",
counter_count, m->data_len, required_len);
/*
* In theory it is possible process available counters data,
* but such condition is really unexpected and it is
* better to treat entire packet as corrupted.
*/
return;
}
/* Ensure that counters data is 32-bit aligned */
if (unlikely(payload_offset % sizeof(uint32_t) != 0)) {
sfc_err(sa, "unsupported MAE counters payload offset %u, must be 32-bit aligned",
payload_offset);
return;
}
RTE_BUILD_BUG_ON(sizeof(counters_data[0]) !=
ER_RX_SL_PACKETISER_PAYLOAD_WORD_SIZE);
counters_data =
rte_pktmbuf_mtod_offset(m, const efx_oword_t *, payload_offset);
sfc_info(sa, "update %u MAE counters with gc=%u",
counter_count, generation_count);
for (i = 0; i < counter_count; ++i) {
uint32_t packet_count_lo;
uint32_t packet_count_hi;
uint32_t byte_count_lo;
uint32_t byte_count_hi;
/*
* Use 32-bit field accessors below since counters data
* is not 64-bit aligned.
* 32-bit alignment is checked above taking into account
* that start of packet data is 32-bit aligned
* (cache-line size aligned in fact).
*/
packet_count_lo =
EFX_OWORD_FIELD32(counters_data[i],
ERF_SC_PACKETISER_PAYLOAD_PACKET_COUNT_LO);
packet_count_hi =
EFX_OWORD_FIELD32(counters_data[i],
ERF_SC_PACKETISER_PAYLOAD_PACKET_COUNT_HI);
byte_count_lo =
EFX_OWORD_FIELD32(counters_data[i],
ERF_SC_PACKETISER_PAYLOAD_BYTE_COUNT_LO);
byte_count_hi =
EFX_OWORD_FIELD32(counters_data[i],
ERF_SC_PACKETISER_PAYLOAD_BYTE_COUNT_HI);
sfc_mae_counter_increment(sa,
&counter_registry->counters,
EFX_OWORD_FIELD32(counters_data[i],
ERF_SC_PACKETISER_PAYLOAD_COUNTER_INDEX),
generation_count,
(uint64_t)packet_count_lo |
((uint64_t)packet_count_hi <<
ERF_SC_PACKETISER_PAYLOAD_PACKET_COUNT_LO_WIDTH),
(uint64_t)byte_count_lo |
((uint64_t)byte_count_hi <<
ERF_SC_PACKETISER_PAYLOAD_BYTE_COUNT_LO_WIDTH));
}
}
static int32_t
sfc_mae_counter_poll_packets(struct sfc_adapter *sa)
{
struct sfc_mae_counter_registry *counter_registry =
&sa->mae.counter_registry;
struct rte_mbuf *mbufs[SFC_MAE_COUNTER_RX_BURST];
unsigned int pushed_diff;
unsigned int pushed;
unsigned int i;
uint16_t n;
int rc;
n = counter_registry->rx_pkt_burst(counter_registry->rx_dp, mbufs,
SFC_MAE_COUNTER_RX_BURST);
for (i = 0; i < n; i++)
sfc_mae_parse_counter_packet(sa, counter_registry, mbufs[i]);
rte_pktmbuf_free_bulk(mbufs, n);
if (!counter_registry->use_credits)
return n;
pushed = sfc_rx_get_pushed(sa, counter_registry->rx_dp);
pushed_diff = pushed - counter_registry->pushed_n_buffers;
if (pushed_diff >= SFC_COUNTER_RXQ_REFILL_LEVEL) {
rc = efx_mae_counters_stream_give_credits(sa->nic, pushed_diff);
if (rc == 0) {
counter_registry->pushed_n_buffers = pushed;
} else {
/*
* FIXME: counters might be important for the
* application. Handle the error in order to recover
* from the failure
*/
SFC_GENERIC_LOG(DEBUG, "Give credits failed: %s",
rte_strerror(rc));
}
}
return n;
}
static int32_t
sfc_mae_counter_service_routine(void *arg)
{
struct sfc_adapter *sa = arg;
/*
* We cannot propagate any errors and we don't need to know
* the number of packets we've received.
*/
(void)sfc_mae_counter_poll_packets(sa);
return 0;
}
static void *
sfc_mae_counter_thread(void *data)
{
struct sfc_adapter *sa = data;
struct sfc_mae_counter_registry *counter_registry =
&sa->mae.counter_registry;
int32_t rc;
while (__atomic_load_n(&counter_registry->polling.thread.run,
__ATOMIC_ACQUIRE)) {
rc = sfc_mae_counter_poll_packets(sa);
if (rc == 0) {
/*
* The queue is empty. Do not burn CPU.
* An empty queue has just enough space for about
* SFC_MAE_COUNTERS_RXQ_SPACE counter updates which is
* more than 100K, so we can sleep a bit. The queue uses
* a credit-based flow control anyway, so firmware will
* not enqueue more counter updates until the host
* supplies it with additional credits. The counters are
* 48bits wide, so the timeout need only be short enough
* to ensure that the counter values do not overflow
* before the next counter update. Also we should not
* delay counter updates for a long time, otherwise
* application may decide that flow is idle and should
* be removed.
*/
rte_delay_ms(1);
}
}
return NULL;
}
static void
sfc_mae_counter_service_unregister(struct sfc_adapter *sa)
{
struct sfc_mae_counter_registry *registry =
&sa->mae.counter_registry;
const unsigned int wait_ms = 10000;
unsigned int i;
rte_service_runstate_set(registry->polling.service.id, 0);
rte_service_component_runstate_set(registry->polling.service.id, 0);
/*
* Wait for the counter routine to finish the last iteration.
* Give up on timeout.
*/
for (i = 0; i < wait_ms; i++) {
if (rte_service_may_be_active(registry->polling.service.id) == 0)
break;
rte_delay_ms(1);
}
if (i == wait_ms)
sfc_warn(sa, "failed to wait for counter service to stop");
rte_service_map_lcore_set(registry->polling.service.id,
registry->polling.service.core_id, 0);
rte_service_component_unregister(registry->polling.service.id);
}
static struct sfc_rxq_info *
sfc_counter_rxq_info_get(struct sfc_adapter *sa)
{
return &sfc_sa2shared(sa)->rxq_info[sa->counter_rxq.sw_index];
}
static void
sfc_mae_counter_registry_prepare(struct sfc_mae_counter_registry *registry,
struct sfc_adapter *sa,
uint32_t counter_stream_flags)
{
registry->rx_pkt_burst = sa->eth_dev->rx_pkt_burst;
registry->rx_dp = sfc_counter_rxq_info_get(sa)->dp;
registry->pushed_n_buffers = 0;
registry->use_credits = counter_stream_flags &
EFX_MAE_COUNTERS_STREAM_OUT_USES_CREDITS;
}
static int
sfc_mae_counter_service_register(struct sfc_adapter *sa,
uint32_t counter_stream_flags)
{
struct rte_service_spec service;
char counter_service_name[sizeof(service.name)] = "counter_service";
struct sfc_mae_counter_registry *counter_registry =
&sa->mae.counter_registry;
uint32_t cid;
uint32_t sid;
int rc;
sfc_log_init(sa, "entry");
/* Prepare service info */
memset(&service, 0, sizeof(service));
rte_strscpy(service.name, counter_service_name, sizeof(service.name));
service.socket_id = sa->socket_id;
service.callback = sfc_mae_counter_service_routine;
service.callback_userdata = sa;
sfc_mae_counter_registry_prepare(counter_registry, sa,
counter_stream_flags);
cid = sfc_get_service_lcore(sa->socket_id);
if (cid == RTE_MAX_LCORE && sa->socket_id != SOCKET_ID_ANY) {
/* Warn and try to allocate on any NUMA node */
sfc_warn(sa,
"failed to get service lcore for counter service at socket %d",
sa->socket_id);
cid = sfc_get_service_lcore(SOCKET_ID_ANY);
}
if (cid == RTE_MAX_LCORE) {
rc = ENOTSUP;
sfc_err(sa, "failed to get service lcore for counter service");
goto fail_get_service_lcore;
}
/* Service core may be in "stopped" state, start it */
rc = rte_service_lcore_start(cid);
if (rc != 0 && rc != -EALREADY) {
sfc_err(sa, "failed to start service core for counter service: %s",
rte_strerror(-rc));
rc = ENOTSUP;
goto fail_start_core;
}
/* Register counter service */
rc = rte_service_component_register(&service, &sid);
if (rc != 0) {
rc = ENOEXEC;
sfc_err(sa, "failed to register counter service component");
goto fail_register;
}
/* Map the service with the service core */
rc = rte_service_map_lcore_set(sid, cid, 1);
if (rc != 0) {
rc = -rc;
sfc_err(sa, "failed to map lcore for counter service: %s",
rte_strerror(rc));
goto fail_map_lcore;
}
/* Run the service */
rc = rte_service_component_runstate_set(sid, 1);
if (rc < 0) {
rc = -rc;
sfc_err(sa, "failed to run counter service component: %s",
rte_strerror(rc));
goto fail_component_runstate_set;
}
rc = rte_service_runstate_set(sid, 1);
if (rc < 0) {
rc = -rc;
sfc_err(sa, "failed to run counter service");
goto fail_runstate_set;
}
counter_registry->polling_mode = SFC_MAE_COUNTER_POLLING_SERVICE;
counter_registry->polling.service.core_id = cid;
counter_registry->polling.service.id = sid;
sfc_log_init(sa, "done");
return 0;
fail_runstate_set:
rte_service_component_runstate_set(sid, 0);
fail_component_runstate_set:
rte_service_map_lcore_set(sid, cid, 0);
fail_map_lcore:
rte_service_component_unregister(sid);
fail_register:
fail_start_core:
fail_get_service_lcore:
sfc_log_init(sa, "failed: %s", rte_strerror(rc));
return rc;
}
static void
sfc_mae_counter_thread_stop(struct sfc_adapter *sa)
{
struct sfc_mae_counter_registry *counter_registry =
&sa->mae.counter_registry;
int rc;
/* Ensure that flag is set before attempting to join thread */
__atomic_store_n(&counter_registry->polling.thread.run, false,
__ATOMIC_RELEASE);
rc = pthread_join(counter_registry->polling.thread.id, NULL);
if (rc != 0)
sfc_err(sa, "failed to join the MAE counter polling thread");
counter_registry->polling_mode = SFC_MAE_COUNTER_POLLING_OFF;
}
static int
sfc_mae_counter_thread_spawn(struct sfc_adapter *sa,
uint32_t counter_stream_flags)
{
struct sfc_mae_counter_registry *counter_registry =
&sa->mae.counter_registry;
int rc;
sfc_log_init(sa, "entry");
sfc_mae_counter_registry_prepare(counter_registry, sa,
counter_stream_flags);
counter_registry->polling_mode = SFC_MAE_COUNTER_POLLING_THREAD;
counter_registry->polling.thread.run = true;
rc = rte_ctrl_thread_create(&sa->mae.counter_registry.polling.thread.id,
"mae_counter_thread", NULL,
sfc_mae_counter_thread, sa);
return rc;
}
int
sfc_mae_counters_init(struct sfc_mae_counters *counters,
uint32_t nb_counters_max)
{
int rc;
SFC_GENERIC_LOG(DEBUG, "%s: entry", __func__);
counters->mae_counters = rte_zmalloc("sfc_mae_counters",
sizeof(*counters->mae_counters) * nb_counters_max, 0);
if (counters->mae_counters == NULL) {
rc = ENOMEM;
SFC_GENERIC_LOG(ERR, "%s: failed: %s", __func__,
rte_strerror(rc));
return rc;
}
counters->n_mae_counters = nb_counters_max;
SFC_GENERIC_LOG(DEBUG, "%s: done", __func__);
return 0;
}
void
sfc_mae_counters_fini(struct sfc_mae_counters *counters)
{
rte_free(counters->mae_counters);
counters->mae_counters = NULL;
}
int
sfc_mae_counter_rxq_attach(struct sfc_adapter *sa)
{
struct sfc_adapter_shared * const sas = sfc_sa2shared(sa);
char name[RTE_MEMPOOL_NAMESIZE];
struct rte_mempool *mp;
unsigned int n_elements;
unsigned int cache_size;
/* The mempool is internal and private area is not required */
const uint16_t priv_size = 0;
const uint16_t data_room_size = RTE_PKTMBUF_HEADROOM +
SFC_MAE_COUNTER_STREAM_PACKET_SIZE;
int rc;
sfc_log_init(sa, "entry");
if (!sas->counters_rxq_allocated) {
sfc_log_init(sa, "counter queue is not supported - skip");
return 0;
}
/*
* At least one element in the ring is always unused to distinguish
* between empty and full ring cases.
*/
n_elements = SFC_COUNTER_RXQ_RX_DESC_COUNT - 1;
/*
* The cache must have sufficient space to put received buckets
* before they're reused on refill.
*/
cache_size = rte_align32pow2(SFC_COUNTER_RXQ_REFILL_LEVEL +
SFC_MAE_COUNTER_RX_BURST - 1);
if (snprintf(name, sizeof(name), "counter_rxq-pool-%u", sas->port_id) >=
(int)sizeof(name)) {
sfc_err(sa, "failed: counter RxQ mempool name is too long");
rc = ENAMETOOLONG;
goto fail_long_name;
}
/*
* It could be single-producer single-consumer ring mempool which
* requires minimal barriers. However, cache size and refill/burst
* policy are aligned, therefore it does not matter which
* mempool backend is chosen since backend is unused.
*/
mp = rte_pktmbuf_pool_create(name, n_elements, cache_size,
priv_size, data_room_size, sa->socket_id);
if (mp == NULL) {
sfc_err(sa, "failed to create counter RxQ mempool");
rc = rte_errno;
goto fail_mp_create;
}
sa->counter_rxq.sw_index = sfc_counters_rxq_sw_index(sas);
sa->counter_rxq.mp = mp;
sa->counter_rxq.state |= SFC_COUNTER_RXQ_ATTACHED;
sfc_log_init(sa, "done");
return 0;
fail_mp_create:
fail_long_name:
sfc_log_init(sa, "failed: %s", rte_strerror(rc));
return rc;
}
void
sfc_mae_counter_rxq_detach(struct sfc_adapter *sa)
{
struct sfc_adapter_shared * const sas = sfc_sa2shared(sa);
sfc_log_init(sa, "entry");
if (!sas->counters_rxq_allocated) {
sfc_log_init(sa, "counter queue is not supported - skip");
return;
}
if ((sa->counter_rxq.state & SFC_COUNTER_RXQ_ATTACHED) == 0) {
sfc_log_init(sa, "counter queue is not attached - skip");
return;
}
rte_mempool_free(sa->counter_rxq.mp);
sa->counter_rxq.mp = NULL;
sa->counter_rxq.state &= ~SFC_COUNTER_RXQ_ATTACHED;
sfc_log_init(sa, "done");
}
int
sfc_mae_counter_rxq_init(struct sfc_adapter *sa)
{
struct sfc_adapter_shared * const sas = sfc_sa2shared(sa);
const struct rte_eth_rxconf rxconf = {
.rx_free_thresh = SFC_COUNTER_RXQ_REFILL_LEVEL,
.rx_drop_en = 1,
};
uint16_t nb_rx_desc = SFC_COUNTER_RXQ_RX_DESC_COUNT;
int rc;
sfc_log_init(sa, "entry");
if (!sas->counters_rxq_allocated) {
sfc_log_init(sa, "counter queue is not supported - skip");
return 0;
}
if ((sa->counter_rxq.state & SFC_COUNTER_RXQ_ATTACHED) == 0) {
sfc_log_init(sa, "counter queue is not attached - skip");
return 0;
}
nb_rx_desc = RTE_MIN(nb_rx_desc, sa->rxq_max_entries);
nb_rx_desc = RTE_MAX(nb_rx_desc, sa->rxq_min_entries);
rc = sfc_rx_qinit_info(sa, sa->counter_rxq.sw_index,
EFX_RXQ_FLAG_USER_MARK);
if (rc != 0)
goto fail_counter_rxq_init_info;
rc = sfc_rx_qinit(sa, sa->counter_rxq.sw_index, nb_rx_desc,
sa->socket_id, &rxconf, sa->counter_rxq.mp);
if (rc != 0) {
sfc_err(sa, "failed to init counter RxQ");
goto fail_counter_rxq_init;
}
sa->counter_rxq.state |= SFC_COUNTER_RXQ_INITIALIZED;
sfc_log_init(sa, "done");
return 0;
fail_counter_rxq_init:
fail_counter_rxq_init_info:
sfc_log_init(sa, "failed: %s", rte_strerror(rc));
return rc;
}
void
sfc_mae_counter_rxq_fini(struct sfc_adapter *sa)
{
struct sfc_adapter_shared * const sas = sfc_sa2shared(sa);
sfc_log_init(sa, "entry");
if (!sas->counters_rxq_allocated) {
sfc_log_init(sa, "counter queue is not supported - skip");
return;
}
if ((sa->counter_rxq.state & SFC_COUNTER_RXQ_INITIALIZED) == 0) {
sfc_log_init(sa, "counter queue is not initialized - skip");
return;
}
sfc_rx_qfini(sa, sa->counter_rxq.sw_index);
sfc_log_init(sa, "done");
}
void
sfc_mae_counter_stop(struct sfc_adapter *sa)
{
struct sfc_mae *mae = &sa->mae;
sfc_log_init(sa, "entry");
if (!mae->counter_rxq_running) {
sfc_log_init(sa, "counter queue is not running - skip");
return;
}
SFC_ASSERT(mae->counter_registry.polling_mode !=
SFC_MAE_COUNTER_POLLING_OFF);
if (mae->counter_registry.polling_mode ==
SFC_MAE_COUNTER_POLLING_SERVICE)
sfc_mae_counter_service_unregister(sa);
else
sfc_mae_counter_thread_stop(sa);
efx_mae_counters_stream_stop(sa->nic, sa->counter_rxq.sw_index, NULL);
mae->counter_rxq_running = false;
sfc_log_init(sa, "done");
}
int
sfc_mae_counter_start(struct sfc_adapter *sa)
{
struct sfc_mae *mae = &sa->mae;
uint32_t flags;
int rc;
SFC_ASSERT(sa->counter_rxq.state & SFC_COUNTER_RXQ_ATTACHED);
if (mae->counter_rxq_running)
return 0;
sfc_log_init(sa, "entry");
rc = efx_mae_counters_stream_start(sa->nic, sa->counter_rxq.sw_index,
SFC_MAE_COUNTER_STREAM_PACKET_SIZE,
0 /* No flags required */, &flags);
if (rc != 0) {
sfc_err(sa, "failed to start MAE counters stream: %s",
rte_strerror(rc));
goto fail_counter_stream;
}
sfc_log_init(sa, "stream start flags: 0x%x", flags);
if (sfc_mae_counter_get_service_lcore(sa) != RTE_MAX_LCORE) {
rc = sfc_mae_counter_service_register(sa, flags);
if (rc != 0)
goto fail_service_register;
} else {
rc = sfc_mae_counter_thread_spawn(sa, flags);
if (rc != 0)
goto fail_thread_spawn;
}
mae->counter_rxq_running = true;
return 0;
fail_service_register:
fail_thread_spawn:
efx_mae_counters_stream_stop(sa->nic, sa->counter_rxq.sw_index, NULL);
fail_counter_stream:
sfc_log_init(sa, "failed: %s", rte_strerror(rc));
return rc;
}
int
sfc_mae_counter_get(struct sfc_mae_counters *counters,
const struct sfc_mae_counter_id *counter,
struct rte_flow_query_count *data)
{
struct sfc_flow_tunnel *ft = counter->ft;
uint64_t non_reset_jump_hit_counter;
struct sfc_mae_counter *p;
union sfc_pkts_bytes value;
SFC_ASSERT(counter->mae_id.id < counters->n_mae_counters);
p = &counters->mae_counters[counter->mae_id.id];
/*
* Ordering is relaxed since it is the only operation on counter value.
* And it does not depend on different stores/loads in other threads.
* Paired with relaxed ordering in counter increment.
*/
value.pkts_bytes.int128 = __atomic_load_n(&p->value.pkts_bytes.int128,
__ATOMIC_RELAXED);
data->hits_set = 1;
data->hits = value.pkts - p->reset.pkts;
if (ft != NULL) {
data->hits += ft->group_hit_counter;
non_reset_jump_hit_counter = data->hits;
data->hits -= ft->reset_jump_hit_counter;
} else {
data->bytes_set = 1;
data->bytes = value.bytes - p->reset.bytes;
}
if (data->reset != 0) {
if (ft != NULL) {
ft->reset_jump_hit_counter = non_reset_jump_hit_counter;
} else {
p->reset.pkts = value.pkts;
p->reset.bytes = value.bytes;
}
}
return 0;
}
bool
sfc_mae_counter_stream_enabled(struct sfc_adapter *sa)
{
if ((sa->counter_rxq.state & SFC_COUNTER_RXQ_INITIALIZED) == 0 ||
sfc_get_service_lcore(SOCKET_ID_ANY) == RTE_MAX_LCORE)
return B_FALSE;
else
return B_TRUE;
}