mirror of https://github.com/F-Stack/f-stack.git
1043 lines
28 KiB
C
1043 lines
28 KiB
C
/* SPDX-License-Identifier: BSD-3-Clause
|
|
*
|
|
* Copyright(c) 2019-2021 Xilinx, Inc.
|
|
* Copyright(c) 2018-2019 Solarflare Communications Inc.
|
|
*
|
|
* This software was jointly developed between OKTET Labs (under contract
|
|
* for Solarflare) and Solarflare Communications, Inc.
|
|
*/
|
|
|
|
#include <stdbool.h>
|
|
|
|
#include <rte_mbuf.h>
|
|
#include <rte_mbuf_dyn.h>
|
|
#include <rte_io.h>
|
|
#include <rte_net.h>
|
|
|
|
#include "efx.h"
|
|
#include "efx_types.h"
|
|
#include "efx_regs.h"
|
|
#include "efx_regs_ef100.h"
|
|
|
|
#include "sfc_debug.h"
|
|
#include "sfc_dp_tx.h"
|
|
#include "sfc_tweak.h"
|
|
#include "sfc_kvargs.h"
|
|
#include "sfc_ef100.h"
|
|
#include "sfc_nic_dma_dp.h"
|
|
|
|
|
|
#define sfc_ef100_tx_err(_txq, ...) \
|
|
SFC_DP_LOG(SFC_KVARG_DATAPATH_EF100, ERR, &(_txq)->dp.dpq, __VA_ARGS__)
|
|
|
|
#define sfc_ef100_tx_debug(_txq, ...) \
|
|
SFC_DP_LOG(SFC_KVARG_DATAPATH_EF100, DEBUG, &(_txq)->dp.dpq, \
|
|
__VA_ARGS__)
|
|
|
|
|
|
/** Maximum length of the send descriptor data */
|
|
#define SFC_EF100_TX_SEND_DESC_LEN_MAX \
|
|
((1u << ESF_GZ_TX_SEND_LEN_WIDTH) - 1)
|
|
|
|
/** Maximum length of the segment descriptor data */
|
|
#define SFC_EF100_TX_SEG_DESC_LEN_MAX \
|
|
((1u << ESF_GZ_TX_SEG_LEN_WIDTH) - 1)
|
|
|
|
/**
|
|
* Maximum number of descriptors/buffers in the Tx ring.
|
|
* It should guarantee that corresponding event queue never overfill.
|
|
* EF100 native datapath uses event queue of the same size as Tx queue.
|
|
* Maximum number of events on datapath can be estimated as number of
|
|
* Tx queue entries (one event per Tx buffer in the worst case) plus
|
|
* Tx error and flush events.
|
|
*/
|
|
#define SFC_EF100_TXQ_LIMIT(_ndesc) \
|
|
((_ndesc) - 1 /* head must not step on tail */ - \
|
|
1 /* Rx error */ - 1 /* flush */)
|
|
|
|
struct sfc_ef100_tx_sw_desc {
|
|
struct rte_mbuf *mbuf;
|
|
};
|
|
|
|
struct sfc_ef100_txq {
|
|
unsigned int flags;
|
|
#define SFC_EF100_TXQ_STARTED 0x1
|
|
#define SFC_EF100_TXQ_NOT_RUNNING 0x2
|
|
#define SFC_EF100_TXQ_EXCEPTION 0x4
|
|
#define SFC_EF100_TXQ_NIC_DMA_MAP 0x8
|
|
|
|
unsigned int ptr_mask;
|
|
unsigned int added;
|
|
unsigned int completed;
|
|
unsigned int max_fill_level;
|
|
unsigned int free_thresh;
|
|
struct sfc_ef100_tx_sw_desc *sw_ring;
|
|
efx_oword_t *txq_hw_ring;
|
|
volatile void *doorbell;
|
|
|
|
/* Completion/reap */
|
|
unsigned int evq_read_ptr;
|
|
unsigned int evq_phase_bit_shift;
|
|
volatile efx_qword_t *evq_hw_ring;
|
|
|
|
uint16_t tso_tcp_header_offset_limit;
|
|
uint16_t tso_max_nb_header_descs;
|
|
uint16_t tso_max_header_len;
|
|
uint16_t tso_max_nb_payload_descs;
|
|
uint32_t tso_max_payload_len;
|
|
uint32_t tso_max_nb_outgoing_frames;
|
|
|
|
/* Datapath transmit queue anchor */
|
|
struct sfc_dp_txq dp;
|
|
|
|
const struct sfc_nic_dma_info *nic_dma_info;
|
|
};
|
|
|
|
static inline struct sfc_ef100_txq *
|
|
sfc_ef100_txq_by_dp_txq(struct sfc_dp_txq *dp_txq)
|
|
{
|
|
return container_of(dp_txq, struct sfc_ef100_txq, dp);
|
|
}
|
|
|
|
static int
|
|
sfc_ef100_tx_prepare_pkt_tso(struct sfc_ef100_txq * const txq,
|
|
struct rte_mbuf *m)
|
|
{
|
|
size_t header_len = ((m->ol_flags & RTE_MBUF_F_TX_TUNNEL_MASK) ?
|
|
m->outer_l2_len + m->outer_l3_len : 0) +
|
|
m->l2_len + m->l3_len + m->l4_len;
|
|
size_t payload_len = m->pkt_len - header_len;
|
|
unsigned long mss_conformant_max_payload_len;
|
|
unsigned int nb_payload_descs;
|
|
|
|
#ifdef RTE_LIBRTE_SFC_EFX_DEBUG
|
|
switch (m->ol_flags & RTE_MBUF_F_TX_TUNNEL_MASK) {
|
|
case 0:
|
|
/* FALLTHROUGH */
|
|
case RTE_MBUF_F_TX_TUNNEL_VXLAN:
|
|
/* FALLTHROUGH */
|
|
case RTE_MBUF_F_TX_TUNNEL_GENEVE:
|
|
break;
|
|
default:
|
|
return ENOTSUP;
|
|
}
|
|
#endif
|
|
|
|
mss_conformant_max_payload_len =
|
|
m->tso_segsz * txq->tso_max_nb_outgoing_frames;
|
|
|
|
/*
|
|
* Don't really want to know exact number of payload segments.
|
|
* Just use total number of segments as upper limit. Practically
|
|
* maximum number of payload segments is significantly bigger
|
|
* than maximum number header segments, so we can neglect header
|
|
* segments excluded total number of segments to estimate number
|
|
* of payload segments required.
|
|
*/
|
|
nb_payload_descs = m->nb_segs;
|
|
|
|
/*
|
|
* Carry out multiple independent checks using bitwise OR
|
|
* to avoid unnecessary conditional branching.
|
|
*/
|
|
if (unlikely((header_len > txq->tso_max_header_len) |
|
|
(nb_payload_descs > txq->tso_max_nb_payload_descs) |
|
|
(payload_len > txq->tso_max_payload_len) |
|
|
(payload_len > mss_conformant_max_payload_len) |
|
|
(m->pkt_len == header_len)))
|
|
return EINVAL;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static uint16_t
|
|
sfc_ef100_tx_prepare_pkts(void *tx_queue, struct rte_mbuf **tx_pkts,
|
|
uint16_t nb_pkts)
|
|
{
|
|
struct sfc_ef100_txq * const txq = sfc_ef100_txq_by_dp_txq(tx_queue);
|
|
uint16_t i;
|
|
|
|
for (i = 0; i < nb_pkts; i++) {
|
|
struct rte_mbuf *m = tx_pkts[i];
|
|
unsigned int max_nb_header_segs = 0;
|
|
bool calc_phdr_cksum = false;
|
|
int ret;
|
|
|
|
/*
|
|
* Partial checksum offload is used in the case of
|
|
* inner TCP/UDP checksum offload. It requires
|
|
* pseudo-header checksum which is calculated below,
|
|
* but requires contiguous packet headers.
|
|
*/
|
|
if ((m->ol_flags & RTE_MBUF_F_TX_TUNNEL_MASK) &&
|
|
(m->ol_flags & RTE_MBUF_F_TX_L4_MASK)) {
|
|
calc_phdr_cksum = true;
|
|
max_nb_header_segs = 1;
|
|
} else if (m->ol_flags & RTE_MBUF_F_TX_TCP_SEG) {
|
|
max_nb_header_segs = txq->tso_max_nb_header_descs;
|
|
}
|
|
|
|
ret = sfc_dp_tx_prepare_pkt(m, max_nb_header_segs, 0,
|
|
txq->tso_tcp_header_offset_limit,
|
|
txq->max_fill_level, 1, 0);
|
|
if (unlikely(ret != 0)) {
|
|
rte_errno = ret;
|
|
break;
|
|
}
|
|
|
|
if (m->ol_flags & RTE_MBUF_F_TX_TCP_SEG) {
|
|
ret = sfc_ef100_tx_prepare_pkt_tso(txq, m);
|
|
if (unlikely(ret != 0)) {
|
|
rte_errno = ret;
|
|
break;
|
|
}
|
|
} else if (m->nb_segs > EFX_MASK32(ESF_GZ_TX_SEND_NUM_SEGS)) {
|
|
rte_errno = EINVAL;
|
|
break;
|
|
}
|
|
|
|
if (calc_phdr_cksum) {
|
|
/*
|
|
* Full checksum offload does IPv4 header checksum
|
|
* and does not require any assistance.
|
|
*/
|
|
ret = rte_net_intel_cksum_flags_prepare(m,
|
|
m->ol_flags & ~RTE_MBUF_F_TX_IP_CKSUM);
|
|
if (unlikely(ret != 0)) {
|
|
rte_errno = -ret;
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
return i;
|
|
}
|
|
|
|
static bool
|
|
sfc_ef100_tx_get_event(struct sfc_ef100_txq *txq, efx_qword_t *ev)
|
|
{
|
|
volatile efx_qword_t *evq_hw_ring = txq->evq_hw_ring;
|
|
|
|
/*
|
|
* Exception flag is set when reap is done.
|
|
* It is never done twice per packet burst get, and absence of
|
|
* the flag is checked on burst get entry.
|
|
*/
|
|
SFC_ASSERT((txq->flags & SFC_EF100_TXQ_EXCEPTION) == 0);
|
|
|
|
*ev = evq_hw_ring[txq->evq_read_ptr & txq->ptr_mask];
|
|
|
|
if (!sfc_ef100_ev_present(ev,
|
|
(txq->evq_read_ptr >> txq->evq_phase_bit_shift) & 1))
|
|
return false;
|
|
|
|
if (unlikely(!sfc_ef100_ev_type_is(ev,
|
|
ESE_GZ_EF100_EV_TX_COMPLETION))) {
|
|
/*
|
|
* Do not move read_ptr to keep the event for exception
|
|
* handling by the control path.
|
|
*/
|
|
txq->flags |= SFC_EF100_TXQ_EXCEPTION;
|
|
sfc_ef100_tx_err(txq,
|
|
"TxQ exception at EvQ ptr %u(%#x), event %08x:%08x",
|
|
txq->evq_read_ptr, txq->evq_read_ptr & txq->ptr_mask,
|
|
EFX_QWORD_FIELD(*ev, EFX_DWORD_1),
|
|
EFX_QWORD_FIELD(*ev, EFX_DWORD_0));
|
|
return false;
|
|
}
|
|
|
|
sfc_ef100_tx_debug(txq, "TxQ got event %08x:%08x at %u (%#x)",
|
|
EFX_QWORD_FIELD(*ev, EFX_DWORD_1),
|
|
EFX_QWORD_FIELD(*ev, EFX_DWORD_0),
|
|
txq->evq_read_ptr,
|
|
txq->evq_read_ptr & txq->ptr_mask);
|
|
|
|
txq->evq_read_ptr++;
|
|
return true;
|
|
}
|
|
|
|
static unsigned int
|
|
sfc_ef100_tx_process_events(struct sfc_ef100_txq *txq)
|
|
{
|
|
unsigned int num_descs = 0;
|
|
efx_qword_t tx_ev;
|
|
|
|
while (sfc_ef100_tx_get_event(txq, &tx_ev))
|
|
num_descs += EFX_QWORD_FIELD(tx_ev, ESF_GZ_EV_TXCMPL_NUM_DESC);
|
|
|
|
return num_descs;
|
|
}
|
|
|
|
static void
|
|
sfc_ef100_tx_reap_num_descs(struct sfc_ef100_txq *txq, unsigned int num_descs)
|
|
{
|
|
if (num_descs > 0) {
|
|
unsigned int completed = txq->completed;
|
|
unsigned int pending = completed + num_descs;
|
|
struct rte_mbuf *bulk[SFC_TX_REAP_BULK_SIZE];
|
|
unsigned int nb = 0;
|
|
|
|
do {
|
|
struct sfc_ef100_tx_sw_desc *txd;
|
|
struct rte_mbuf *m;
|
|
|
|
txd = &txq->sw_ring[completed & txq->ptr_mask];
|
|
if (txd->mbuf == NULL)
|
|
continue;
|
|
|
|
m = rte_pktmbuf_prefree_seg(txd->mbuf);
|
|
if (m == NULL)
|
|
continue;
|
|
|
|
txd->mbuf = NULL;
|
|
|
|
if (nb == RTE_DIM(bulk) ||
|
|
(nb != 0 && m->pool != bulk[0]->pool)) {
|
|
rte_mempool_put_bulk(bulk[0]->pool,
|
|
(void *)bulk, nb);
|
|
nb = 0;
|
|
}
|
|
|
|
bulk[nb++] = m;
|
|
} while (++completed != pending);
|
|
|
|
if (nb != 0)
|
|
rte_mempool_put_bulk(bulk[0]->pool, (void *)bulk, nb);
|
|
|
|
txq->completed = completed;
|
|
}
|
|
}
|
|
|
|
static void
|
|
sfc_ef100_tx_reap(struct sfc_ef100_txq *txq)
|
|
{
|
|
sfc_ef100_tx_reap_num_descs(txq, sfc_ef100_tx_process_events(txq));
|
|
}
|
|
|
|
static void
|
|
sfc_ef100_tx_qdesc_prefix_create(const struct rte_mbuf *m, efx_oword_t *tx_desc)
|
|
{
|
|
efx_mport_id_t *mport_id =
|
|
RTE_MBUF_DYNFIELD(m, sfc_dp_mport_offset, efx_mport_id_t *);
|
|
|
|
EFX_POPULATE_OWORD_3(*tx_desc,
|
|
ESF_GZ_TX_PREFIX_EGRESS_MPORT,
|
|
mport_id->id,
|
|
ESF_GZ_TX_PREFIX_EGRESS_MPORT_EN, 1,
|
|
ESF_GZ_TX_DESC_TYPE, ESE_GZ_TX_DESC_TYPE_PREFIX);
|
|
}
|
|
|
|
static uint8_t
|
|
sfc_ef100_tx_qdesc_cso_inner_l3(uint64_t tx_tunnel)
|
|
{
|
|
uint8_t inner_l3;
|
|
|
|
switch (tx_tunnel) {
|
|
case RTE_MBUF_F_TX_TUNNEL_VXLAN:
|
|
inner_l3 = ESE_GZ_TX_DESC_CS_INNER_L3_VXLAN;
|
|
break;
|
|
case RTE_MBUF_F_TX_TUNNEL_GENEVE:
|
|
inner_l3 = ESE_GZ_TX_DESC_CS_INNER_L3_GENEVE;
|
|
break;
|
|
default:
|
|
inner_l3 = ESE_GZ_TX_DESC_CS_INNER_L3_OFF;
|
|
break;
|
|
}
|
|
return inner_l3;
|
|
}
|
|
|
|
static int
|
|
sfc_ef100_tx_map(const struct sfc_ef100_txq *txq, rte_iova_t iova, size_t len,
|
|
rte_iova_t *dma_addr)
|
|
{
|
|
if ((txq->flags & SFC_EF100_TXQ_NIC_DMA_MAP) == 0) {
|
|
*dma_addr = iova;
|
|
} else {
|
|
*dma_addr = sfc_nic_dma_map(txq->nic_dma_info, iova, len);
|
|
if (unlikely(*dma_addr == RTE_BAD_IOVA))
|
|
sfc_ef100_tx_err(txq, "failed to map DMA address on Tx");
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
static int
|
|
sfc_ef100_tx_qdesc_send_create(const struct sfc_ef100_txq *txq,
|
|
const struct rte_mbuf *m, efx_oword_t *tx_desc)
|
|
{
|
|
bool outer_l3;
|
|
bool outer_l4;
|
|
uint8_t inner_l3;
|
|
uint8_t partial_en;
|
|
uint16_t part_cksum_w;
|
|
uint16_t l4_offset_w;
|
|
rte_iova_t dma_addr;
|
|
int rc;
|
|
|
|
if ((m->ol_flags & RTE_MBUF_F_TX_TUNNEL_MASK) == 0) {
|
|
outer_l3 = (m->ol_flags & RTE_MBUF_F_TX_IP_CKSUM);
|
|
outer_l4 = (m->ol_flags & RTE_MBUF_F_TX_L4_MASK);
|
|
inner_l3 = ESE_GZ_TX_DESC_CS_INNER_L3_OFF;
|
|
partial_en = ESE_GZ_TX_DESC_CSO_PARTIAL_EN_OFF;
|
|
part_cksum_w = 0;
|
|
l4_offset_w = 0;
|
|
} else {
|
|
outer_l3 = (m->ol_flags & RTE_MBUF_F_TX_OUTER_IP_CKSUM);
|
|
outer_l4 = (m->ol_flags & RTE_MBUF_F_TX_OUTER_UDP_CKSUM);
|
|
inner_l3 = sfc_ef100_tx_qdesc_cso_inner_l3(m->ol_flags &
|
|
RTE_MBUF_F_TX_TUNNEL_MASK);
|
|
|
|
switch (m->ol_flags & RTE_MBUF_F_TX_L4_MASK) {
|
|
case RTE_MBUF_F_TX_TCP_CKSUM:
|
|
partial_en = ESE_GZ_TX_DESC_CSO_PARTIAL_EN_TCP;
|
|
part_cksum_w = offsetof(struct rte_tcp_hdr, cksum) >> 1;
|
|
break;
|
|
case RTE_MBUF_F_TX_UDP_CKSUM:
|
|
partial_en = ESE_GZ_TX_DESC_CSO_PARTIAL_EN_UDP;
|
|
part_cksum_w = offsetof(struct rte_udp_hdr,
|
|
dgram_cksum) >> 1;
|
|
break;
|
|
default:
|
|
partial_en = ESE_GZ_TX_DESC_CSO_PARTIAL_EN_OFF;
|
|
part_cksum_w = 0;
|
|
break;
|
|
}
|
|
l4_offset_w = (m->outer_l2_len + m->outer_l3_len +
|
|
m->l2_len + m->l3_len) >> 1;
|
|
}
|
|
|
|
rc = sfc_ef100_tx_map(txq, rte_mbuf_data_iova_default(m),
|
|
rte_pktmbuf_data_len(m), &dma_addr);
|
|
if (unlikely(rc != 0))
|
|
return rc;
|
|
|
|
EFX_POPULATE_OWORD_10(*tx_desc,
|
|
ESF_GZ_TX_SEND_ADDR, dma_addr,
|
|
ESF_GZ_TX_SEND_LEN, rte_pktmbuf_data_len(m),
|
|
ESF_GZ_TX_SEND_NUM_SEGS, m->nb_segs,
|
|
ESF_GZ_TX_SEND_CSO_PARTIAL_START_W, l4_offset_w,
|
|
ESF_GZ_TX_SEND_CSO_PARTIAL_CSUM_W, part_cksum_w,
|
|
ESF_GZ_TX_SEND_CSO_PARTIAL_EN, partial_en,
|
|
ESF_GZ_TX_SEND_CSO_INNER_L3, inner_l3,
|
|
ESF_GZ_TX_SEND_CSO_OUTER_L3, outer_l3,
|
|
ESF_GZ_TX_SEND_CSO_OUTER_L4, outer_l4,
|
|
ESF_GZ_TX_DESC_TYPE, ESE_GZ_TX_DESC_TYPE_SEND);
|
|
|
|
if (m->ol_flags & RTE_MBUF_F_TX_VLAN) {
|
|
efx_oword_t tx_desc_extra_fields;
|
|
|
|
EFX_POPULATE_OWORD_2(tx_desc_extra_fields,
|
|
ESF_GZ_TX_SEND_VLAN_INSERT_EN, 1,
|
|
ESF_GZ_TX_SEND_VLAN_INSERT_TCI, m->vlan_tci);
|
|
|
|
EFX_OR_OWORD(*tx_desc, tx_desc_extra_fields);
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void
|
|
sfc_ef100_tx_qdesc_seg_create(rte_iova_t addr, uint16_t len,
|
|
efx_oword_t *tx_desc)
|
|
{
|
|
EFX_POPULATE_OWORD_3(*tx_desc,
|
|
ESF_GZ_TX_SEG_ADDR, addr,
|
|
ESF_GZ_TX_SEG_LEN, len,
|
|
ESF_GZ_TX_DESC_TYPE, ESE_GZ_TX_DESC_TYPE_SEG);
|
|
}
|
|
|
|
static void
|
|
sfc_ef100_tx_qdesc_tso_create(const struct rte_mbuf *m,
|
|
uint16_t nb_header_descs,
|
|
uint16_t nb_payload_descs,
|
|
size_t header_len, size_t payload_len,
|
|
size_t outer_iph_off, size_t outer_udph_off,
|
|
size_t iph_off, size_t tcph_off,
|
|
efx_oword_t *tx_desc)
|
|
{
|
|
efx_oword_t tx_desc_extra_fields;
|
|
int ed_outer_udp_len = (outer_udph_off != 0) ? 1 : 0;
|
|
int ed_outer_ip_len = (outer_iph_off != 0) ? 1 : 0;
|
|
int ed_outer_ip_id = (outer_iph_off != 0) ?
|
|
ESE_GZ_TX_DESC_IP4_ID_INC_MOD16 : 0;
|
|
/*
|
|
* If no tunnel encapsulation is present, then the ED_INNER
|
|
* fields should be used.
|
|
*/
|
|
int ed_inner_ip_id = ESE_GZ_TX_DESC_IP4_ID_INC_MOD16;
|
|
uint8_t inner_l3 = sfc_ef100_tx_qdesc_cso_inner_l3(
|
|
m->ol_flags & RTE_MBUF_F_TX_TUNNEL_MASK);
|
|
|
|
EFX_POPULATE_OWORD_10(*tx_desc,
|
|
ESF_GZ_TX_TSO_MSS, m->tso_segsz,
|
|
ESF_GZ_TX_TSO_HDR_NUM_SEGS, nb_header_descs,
|
|
ESF_GZ_TX_TSO_PAYLOAD_NUM_SEGS, nb_payload_descs,
|
|
ESF_GZ_TX_TSO_ED_OUTER_IP4_ID, ed_outer_ip_id,
|
|
ESF_GZ_TX_TSO_ED_INNER_IP4_ID, ed_inner_ip_id,
|
|
ESF_GZ_TX_TSO_ED_OUTER_IP_LEN, ed_outer_ip_len,
|
|
ESF_GZ_TX_TSO_ED_INNER_IP_LEN, 1,
|
|
ESF_GZ_TX_TSO_ED_OUTER_UDP_LEN, ed_outer_udp_len,
|
|
ESF_GZ_TX_TSO_HDR_LEN_W, header_len >> 1,
|
|
ESF_GZ_TX_TSO_PAYLOAD_LEN, payload_len);
|
|
|
|
EFX_POPULATE_OWORD_9(tx_desc_extra_fields,
|
|
/*
|
|
* Outer offsets are required for outer IPv4 ID
|
|
* and length edits in the case of tunnel TSO.
|
|
*/
|
|
ESF_GZ_TX_TSO_OUTER_L3_OFF_W, outer_iph_off >> 1,
|
|
ESF_GZ_TX_TSO_OUTER_L4_OFF_W, outer_udph_off >> 1,
|
|
/*
|
|
* Inner offsets are required for inner IPv4 ID
|
|
* and IP length edits and partial checksum
|
|
* offload in the case of tunnel TSO.
|
|
*/
|
|
ESF_GZ_TX_TSO_INNER_L3_OFF_W, iph_off >> 1,
|
|
ESF_GZ_TX_TSO_INNER_L4_OFF_W, tcph_off >> 1,
|
|
ESF_GZ_TX_TSO_CSO_INNER_L4,
|
|
inner_l3 != ESE_GZ_TX_DESC_CS_INNER_L3_OFF,
|
|
ESF_GZ_TX_TSO_CSO_INNER_L3, inner_l3,
|
|
/*
|
|
* Use outer full checksum offloads which do
|
|
* not require any extra information.
|
|
*/
|
|
ESF_GZ_TX_TSO_CSO_OUTER_L3, 1,
|
|
ESF_GZ_TX_TSO_CSO_OUTER_L4, 1,
|
|
ESF_GZ_TX_DESC_TYPE, ESE_GZ_TX_DESC_TYPE_TSO);
|
|
|
|
EFX_OR_OWORD(*tx_desc, tx_desc_extra_fields);
|
|
|
|
if (m->ol_flags & RTE_MBUF_F_TX_VLAN) {
|
|
EFX_POPULATE_OWORD_2(tx_desc_extra_fields,
|
|
ESF_GZ_TX_TSO_VLAN_INSERT_EN, 1,
|
|
ESF_GZ_TX_TSO_VLAN_INSERT_TCI, m->vlan_tci);
|
|
|
|
EFX_OR_OWORD(*tx_desc, tx_desc_extra_fields);
|
|
}
|
|
}
|
|
|
|
static inline void
|
|
sfc_ef100_tx_qpush(struct sfc_ef100_txq *txq, unsigned int added)
|
|
{
|
|
efx_dword_t dword;
|
|
|
|
EFX_POPULATE_DWORD_1(dword, ERF_GZ_TX_RING_PIDX, added & txq->ptr_mask);
|
|
|
|
/* DMA sync to device is not required */
|
|
|
|
/*
|
|
* rte_write32() has rte_io_wmb() which guarantees that the STORE
|
|
* operations (i.e. Rx and event descriptor updates) that precede
|
|
* the rte_io_wmb() call are visible to NIC before the STORE
|
|
* operations that follow it (i.e. doorbell write).
|
|
*/
|
|
rte_write32(dword.ed_u32[0], txq->doorbell);
|
|
txq->dp.dpq.dbells++;
|
|
|
|
sfc_ef100_tx_debug(txq, "TxQ pushed doorbell at pidx %u (added=%u)",
|
|
EFX_DWORD_FIELD(dword, ERF_GZ_TX_RING_PIDX),
|
|
added);
|
|
}
|
|
|
|
static unsigned int
|
|
sfc_ef100_tx_pkt_descs_max(const struct rte_mbuf *m)
|
|
{
|
|
unsigned int extra_descs = 0;
|
|
|
|
/** Maximum length of an mbuf segment data */
|
|
#define SFC_MBUF_SEG_LEN_MAX UINT16_MAX
|
|
RTE_BUILD_BUG_ON(sizeof(m->data_len) != 2);
|
|
|
|
if (m->ol_flags & RTE_MBUF_F_TX_TCP_SEG) {
|
|
/* Tx TSO descriptor */
|
|
extra_descs++;
|
|
/*
|
|
* Extra Tx segment descriptor may be required if header
|
|
* ends in the middle of segment.
|
|
*/
|
|
extra_descs++;
|
|
} else {
|
|
/*
|
|
* mbuf segment cannot be bigger than maximum segment length
|
|
* and maximum packet length since TSO is not supported yet.
|
|
* Make sure that the first segment does not need fragmentation
|
|
* (split into many Tx descriptors).
|
|
*/
|
|
RTE_BUILD_BUG_ON(SFC_EF100_TX_SEND_DESC_LEN_MAX <
|
|
RTE_MIN((unsigned int)EFX_MAC_PDU_MAX,
|
|
SFC_MBUF_SEG_LEN_MAX));
|
|
}
|
|
|
|
if (m->ol_flags & sfc_dp_mport_override) {
|
|
/* Tx override prefix descriptor will be used */
|
|
extra_descs++;
|
|
}
|
|
|
|
/*
|
|
* Any segment of scattered packet cannot be bigger than maximum
|
|
* segment length. Make sure that subsequent segments do not need
|
|
* fragmentation (split into many Tx descriptors).
|
|
*/
|
|
RTE_BUILD_BUG_ON(SFC_EF100_TX_SEG_DESC_LEN_MAX < SFC_MBUF_SEG_LEN_MAX);
|
|
|
|
return m->nb_segs + extra_descs;
|
|
}
|
|
|
|
static int
|
|
sfc_ef100_xmit_tso_pkt(struct sfc_ef100_txq * const txq,
|
|
struct rte_mbuf **m, unsigned int *added)
|
|
{
|
|
struct rte_mbuf *m_seg = *m;
|
|
unsigned int nb_hdr_descs;
|
|
unsigned int nb_pld_descs;
|
|
unsigned int seg_split = 0;
|
|
unsigned int tso_desc_id;
|
|
unsigned int id;
|
|
size_t outer_iph_off;
|
|
size_t outer_udph_off;
|
|
size_t iph_off;
|
|
size_t tcph_off;
|
|
size_t header_len;
|
|
size_t remaining_hdr_len;
|
|
rte_iova_t dma_addr;
|
|
int rc;
|
|
|
|
if (m_seg->ol_flags & RTE_MBUF_F_TX_TUNNEL_MASK) {
|
|
outer_iph_off = m_seg->outer_l2_len;
|
|
outer_udph_off = outer_iph_off + m_seg->outer_l3_len;
|
|
} else {
|
|
outer_iph_off = 0;
|
|
outer_udph_off = 0;
|
|
}
|
|
iph_off = outer_udph_off + m_seg->l2_len;
|
|
tcph_off = iph_off + m_seg->l3_len;
|
|
header_len = tcph_off + m_seg->l4_len;
|
|
|
|
/*
|
|
* Remember ID of the TX_TSO descriptor to be filled in.
|
|
* We can't fill it in right now since we need to calculate
|
|
* number of header and payload segments first and don't want
|
|
* to traverse it twice here.
|
|
*/
|
|
tso_desc_id = (*added)++ & txq->ptr_mask;
|
|
|
|
remaining_hdr_len = header_len;
|
|
do {
|
|
rc = sfc_ef100_tx_map(txq, rte_mbuf_data_iova(m_seg),
|
|
rte_pktmbuf_data_len(m_seg), &dma_addr);
|
|
if (unlikely(rc != 0))
|
|
return rc;
|
|
|
|
id = (*added)++ & txq->ptr_mask;
|
|
if (rte_pktmbuf_data_len(m_seg) <= remaining_hdr_len) {
|
|
/* The segment is fully header segment */
|
|
sfc_ef100_tx_qdesc_seg_create(dma_addr,
|
|
rte_pktmbuf_data_len(m_seg),
|
|
&txq->txq_hw_ring[id]);
|
|
remaining_hdr_len -= rte_pktmbuf_data_len(m_seg);
|
|
} else {
|
|
/*
|
|
* The segment must be split into header and
|
|
* payload segments
|
|
*/
|
|
sfc_ef100_tx_qdesc_seg_create(dma_addr,
|
|
remaining_hdr_len, &txq->txq_hw_ring[id]);
|
|
txq->sw_ring[id].mbuf = NULL;
|
|
|
|
id = (*added)++ & txq->ptr_mask;
|
|
sfc_ef100_tx_qdesc_seg_create(
|
|
dma_addr + remaining_hdr_len,
|
|
rte_pktmbuf_data_len(m_seg) - remaining_hdr_len,
|
|
&txq->txq_hw_ring[id]);
|
|
remaining_hdr_len = 0;
|
|
seg_split = 1;
|
|
}
|
|
txq->sw_ring[id].mbuf = m_seg;
|
|
m_seg = m_seg->next;
|
|
} while (remaining_hdr_len > 0);
|
|
|
|
/*
|
|
* If a segment is split into header and payload segments, added
|
|
* pointer counts it twice and we should correct it.
|
|
*/
|
|
nb_hdr_descs = ((id - tso_desc_id) & txq->ptr_mask) - seg_split;
|
|
nb_pld_descs = (*m)->nb_segs - nb_hdr_descs + seg_split;
|
|
|
|
sfc_ef100_tx_qdesc_tso_create(*m, nb_hdr_descs, nb_pld_descs, header_len,
|
|
rte_pktmbuf_pkt_len(*m) - header_len,
|
|
outer_iph_off, outer_udph_off,
|
|
iph_off, tcph_off,
|
|
&txq->txq_hw_ring[tso_desc_id]);
|
|
|
|
*m = m_seg;
|
|
return 0;
|
|
}
|
|
|
|
static uint16_t
|
|
sfc_ef100_xmit_pkts(void *tx_queue, struct rte_mbuf **tx_pkts, uint16_t nb_pkts)
|
|
{
|
|
struct sfc_ef100_txq * const txq = sfc_ef100_txq_by_dp_txq(tx_queue);
|
|
unsigned int added;
|
|
unsigned int dma_desc_space;
|
|
bool reap_done;
|
|
struct rte_mbuf **pktp;
|
|
struct rte_mbuf **pktp_end;
|
|
rte_iova_t dma_addr;
|
|
int rc;
|
|
|
|
if (unlikely(txq->flags &
|
|
(SFC_EF100_TXQ_NOT_RUNNING | SFC_EF100_TXQ_EXCEPTION)))
|
|
return 0;
|
|
|
|
added = txq->added;
|
|
dma_desc_space = txq->max_fill_level - (added - txq->completed);
|
|
|
|
reap_done = (dma_desc_space < txq->free_thresh);
|
|
if (reap_done) {
|
|
sfc_ef100_tx_reap(txq);
|
|
dma_desc_space = txq->max_fill_level - (added - txq->completed);
|
|
}
|
|
|
|
for (pktp = &tx_pkts[0], pktp_end = &tx_pkts[nb_pkts];
|
|
pktp != pktp_end;
|
|
++pktp) {
|
|
struct rte_mbuf *m_seg = *pktp;
|
|
unsigned int pkt_start = added;
|
|
unsigned int id;
|
|
|
|
if (likely(pktp + 1 != pktp_end))
|
|
rte_mbuf_prefetch_part1(pktp[1]);
|
|
|
|
if (sfc_ef100_tx_pkt_descs_max(m_seg) > dma_desc_space) {
|
|
if (reap_done)
|
|
break;
|
|
|
|
/* Push already prepared descriptors before polling */
|
|
if (added != txq->added) {
|
|
sfc_ef100_tx_qpush(txq, added);
|
|
txq->added = added;
|
|
}
|
|
|
|
sfc_ef100_tx_reap(txq);
|
|
reap_done = true;
|
|
dma_desc_space = txq->max_fill_level -
|
|
(added - txq->completed);
|
|
if (sfc_ef100_tx_pkt_descs_max(m_seg) > dma_desc_space)
|
|
break;
|
|
}
|
|
|
|
if (m_seg->ol_flags & sfc_dp_mport_override) {
|
|
id = added++ & txq->ptr_mask;
|
|
sfc_ef100_tx_qdesc_prefix_create(m_seg,
|
|
&txq->txq_hw_ring[id]);
|
|
txq->sw_ring[id].mbuf = NULL;
|
|
}
|
|
|
|
if (m_seg->ol_flags & RTE_MBUF_F_TX_TCP_SEG) {
|
|
rc = sfc_ef100_xmit_tso_pkt(txq, &m_seg, &added);
|
|
} else {
|
|
id = added++ & txq->ptr_mask;
|
|
rc = sfc_ef100_tx_qdesc_send_create(txq, m_seg,
|
|
&txq->txq_hw_ring[id]);
|
|
|
|
/*
|
|
* rte_pktmbuf_free() is commonly used in DPDK for
|
|
* recycling packets - the function checks every
|
|
* segment's reference counter and returns the
|
|
* buffer to its pool whenever possible;
|
|
* nevertheless, freeing mbuf segments one by one
|
|
* may entail some performance decline;
|
|
* from this point, sfc_efx_tx_reap() does the same job
|
|
* on its own and frees buffers in bulks (all mbufs
|
|
* within a bulk belong to the same pool);
|
|
* from this perspective, individual segment pointers
|
|
* must be associated with the corresponding SW
|
|
* descriptors independently so that only one loop
|
|
* is sufficient on reap to inspect all the buffers
|
|
*/
|
|
txq->sw_ring[id].mbuf = m_seg;
|
|
m_seg = m_seg->next;
|
|
}
|
|
|
|
while (likely(rc == 0) && m_seg != NULL) {
|
|
RTE_BUILD_BUG_ON(SFC_MBUF_SEG_LEN_MAX >
|
|
SFC_EF100_TX_SEG_DESC_LEN_MAX);
|
|
|
|
id = added++ & txq->ptr_mask;
|
|
rc = sfc_ef100_tx_map(txq, rte_mbuf_data_iova(m_seg),
|
|
rte_pktmbuf_data_len(m_seg),
|
|
&dma_addr);
|
|
sfc_ef100_tx_qdesc_seg_create(dma_addr,
|
|
rte_pktmbuf_data_len(m_seg),
|
|
&txq->txq_hw_ring[id]);
|
|
txq->sw_ring[id].mbuf = m_seg;
|
|
m_seg = m_seg->next;
|
|
}
|
|
|
|
if (likely(rc == 0)) {
|
|
dma_desc_space -= (added - pkt_start);
|
|
|
|
sfc_pkts_bytes_add(&txq->dp.dpq.stats, 1,
|
|
rte_pktmbuf_pkt_len(*pktp));
|
|
} else {
|
|
added = pkt_start;
|
|
}
|
|
}
|
|
|
|
if (likely(added != txq->added)) {
|
|
sfc_ef100_tx_qpush(txq, added);
|
|
txq->added = added;
|
|
}
|
|
|
|
#if SFC_TX_XMIT_PKTS_REAP_AT_LEAST_ONCE
|
|
if (!reap_done)
|
|
sfc_ef100_tx_reap(txq);
|
|
#endif
|
|
|
|
return pktp - &tx_pkts[0];
|
|
}
|
|
|
|
static sfc_dp_tx_get_dev_info_t sfc_ef100_get_dev_info;
|
|
static void
|
|
sfc_ef100_get_dev_info(struct rte_eth_dev_info *dev_info)
|
|
{
|
|
/*
|
|
* Number of descriptors just defines maximum number of pushed
|
|
* descriptors (fill level).
|
|
*/
|
|
dev_info->tx_desc_lim.nb_min = 1;
|
|
dev_info->tx_desc_lim.nb_align = 1;
|
|
}
|
|
|
|
static sfc_dp_tx_qsize_up_rings_t sfc_ef100_tx_qsize_up_rings;
|
|
static int
|
|
sfc_ef100_tx_qsize_up_rings(uint16_t nb_tx_desc,
|
|
struct sfc_dp_tx_hw_limits *limits,
|
|
unsigned int *txq_entries,
|
|
unsigned int *evq_entries,
|
|
unsigned int *txq_max_fill_level)
|
|
{
|
|
/*
|
|
* rte_ethdev API guarantees that the number meets min, max and
|
|
* alignment requirements.
|
|
*/
|
|
if (nb_tx_desc <= limits->txq_min_entries)
|
|
*txq_entries = limits->txq_min_entries;
|
|
else
|
|
*txq_entries = rte_align32pow2(nb_tx_desc);
|
|
|
|
*evq_entries = *txq_entries;
|
|
|
|
*txq_max_fill_level = RTE_MIN(nb_tx_desc,
|
|
SFC_EF100_TXQ_LIMIT(*evq_entries));
|
|
return 0;
|
|
}
|
|
|
|
static sfc_dp_tx_qcreate_t sfc_ef100_tx_qcreate;
|
|
static int
|
|
sfc_ef100_tx_qcreate(uint16_t port_id, uint16_t queue_id,
|
|
const struct rte_pci_addr *pci_addr, int socket_id,
|
|
const struct sfc_dp_tx_qcreate_info *info,
|
|
struct sfc_dp_txq **dp_txqp)
|
|
{
|
|
struct sfc_ef100_txq *txq;
|
|
int rc;
|
|
|
|
rc = EINVAL;
|
|
if (info->txq_entries != info->evq_entries)
|
|
goto fail_bad_args;
|
|
|
|
rc = ENOMEM;
|
|
txq = rte_zmalloc_socket("sfc-ef100-txq", sizeof(*txq),
|
|
RTE_CACHE_LINE_SIZE, socket_id);
|
|
if (txq == NULL)
|
|
goto fail_txq_alloc;
|
|
|
|
sfc_dp_queue_init(&txq->dp.dpq, port_id, queue_id, pci_addr);
|
|
|
|
rc = ENOMEM;
|
|
txq->sw_ring = rte_calloc_socket("sfc-ef100-txq-sw_ring",
|
|
info->txq_entries,
|
|
sizeof(*txq->sw_ring),
|
|
RTE_CACHE_LINE_SIZE, socket_id);
|
|
if (txq->sw_ring == NULL)
|
|
goto fail_sw_ring_alloc;
|
|
|
|
txq->flags = SFC_EF100_TXQ_NOT_RUNNING;
|
|
txq->ptr_mask = info->txq_entries - 1;
|
|
txq->max_fill_level = info->max_fill_level;
|
|
txq->free_thresh = info->free_thresh;
|
|
txq->evq_phase_bit_shift = rte_bsf32(info->evq_entries);
|
|
txq->txq_hw_ring = info->txq_hw_ring;
|
|
txq->doorbell = (volatile uint8_t *)info->mem_bar +
|
|
ER_GZ_TX_RING_DOORBELL_OFST +
|
|
(info->hw_index << info->vi_window_shift);
|
|
txq->evq_hw_ring = info->evq_hw_ring;
|
|
|
|
txq->tso_tcp_header_offset_limit = info->tso_tcp_header_offset_limit;
|
|
txq->tso_max_nb_header_descs = info->tso_max_nb_header_descs;
|
|
txq->tso_max_header_len = info->tso_max_header_len;
|
|
txq->tso_max_nb_payload_descs = info->tso_max_nb_payload_descs;
|
|
txq->tso_max_payload_len = info->tso_max_payload_len;
|
|
txq->tso_max_nb_outgoing_frames = info->tso_max_nb_outgoing_frames;
|
|
|
|
txq->nic_dma_info = info->nic_dma_info;
|
|
if (txq->nic_dma_info->nb_regions > 0)
|
|
txq->flags |= SFC_EF100_TXQ_NIC_DMA_MAP;
|
|
|
|
sfc_ef100_tx_debug(txq, "TxQ doorbell is %p", txq->doorbell);
|
|
|
|
*dp_txqp = &txq->dp;
|
|
return 0;
|
|
|
|
fail_sw_ring_alloc:
|
|
rte_free(txq);
|
|
|
|
fail_txq_alloc:
|
|
fail_bad_args:
|
|
return rc;
|
|
}
|
|
|
|
static sfc_dp_tx_qdestroy_t sfc_ef100_tx_qdestroy;
|
|
static void
|
|
sfc_ef100_tx_qdestroy(struct sfc_dp_txq *dp_txq)
|
|
{
|
|
struct sfc_ef100_txq *txq = sfc_ef100_txq_by_dp_txq(dp_txq);
|
|
|
|
rte_free(txq->sw_ring);
|
|
rte_free(txq);
|
|
}
|
|
|
|
static sfc_dp_tx_qstart_t sfc_ef100_tx_qstart;
|
|
static int
|
|
sfc_ef100_tx_qstart(struct sfc_dp_txq *dp_txq, unsigned int evq_read_ptr,
|
|
unsigned int txq_desc_index)
|
|
{
|
|
struct sfc_ef100_txq *txq = sfc_ef100_txq_by_dp_txq(dp_txq);
|
|
|
|
txq->evq_read_ptr = evq_read_ptr;
|
|
txq->added = txq->completed = txq_desc_index;
|
|
|
|
txq->flags |= SFC_EF100_TXQ_STARTED;
|
|
txq->flags &= ~(SFC_EF100_TXQ_NOT_RUNNING | SFC_EF100_TXQ_EXCEPTION);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static sfc_dp_tx_qstop_t sfc_ef100_tx_qstop;
|
|
static void
|
|
sfc_ef100_tx_qstop(struct sfc_dp_txq *dp_txq, unsigned int *evq_read_ptr)
|
|
{
|
|
struct sfc_ef100_txq *txq = sfc_ef100_txq_by_dp_txq(dp_txq);
|
|
|
|
txq->flags |= SFC_EF100_TXQ_NOT_RUNNING;
|
|
|
|
*evq_read_ptr = txq->evq_read_ptr;
|
|
}
|
|
|
|
static sfc_dp_tx_qtx_ev_t sfc_ef100_tx_qtx_ev;
|
|
static bool
|
|
sfc_ef100_tx_qtx_ev(struct sfc_dp_txq *dp_txq, unsigned int num_descs)
|
|
{
|
|
struct sfc_ef100_txq *txq = sfc_ef100_txq_by_dp_txq(dp_txq);
|
|
|
|
SFC_ASSERT(txq->flags & SFC_EF100_TXQ_NOT_RUNNING);
|
|
|
|
sfc_ef100_tx_reap_num_descs(txq, num_descs);
|
|
|
|
return false;
|
|
}
|
|
|
|
static sfc_dp_tx_qreap_t sfc_ef100_tx_qreap;
|
|
static void
|
|
sfc_ef100_tx_qreap(struct sfc_dp_txq *dp_txq)
|
|
{
|
|
struct sfc_ef100_txq *txq = sfc_ef100_txq_by_dp_txq(dp_txq);
|
|
unsigned int completed;
|
|
|
|
for (completed = txq->completed; completed != txq->added; ++completed) {
|
|
struct sfc_ef100_tx_sw_desc *txd;
|
|
|
|
txd = &txq->sw_ring[completed & txq->ptr_mask];
|
|
if (txd->mbuf != NULL) {
|
|
rte_pktmbuf_free_seg(txd->mbuf);
|
|
txd->mbuf = NULL;
|
|
}
|
|
}
|
|
|
|
txq->flags &= ~SFC_EF100_TXQ_STARTED;
|
|
}
|
|
|
|
static unsigned int
|
|
sfc_ef100_tx_qdesc_npending(struct sfc_ef100_txq *txq)
|
|
{
|
|
const unsigned int evq_old_read_ptr = txq->evq_read_ptr;
|
|
unsigned int npending = 0;
|
|
efx_qword_t tx_ev;
|
|
|
|
if (unlikely(txq->flags &
|
|
(SFC_EF100_TXQ_NOT_RUNNING | SFC_EF100_TXQ_EXCEPTION)))
|
|
return 0;
|
|
|
|
while (sfc_ef100_tx_get_event(txq, &tx_ev))
|
|
npending += EFX_QWORD_FIELD(tx_ev, ESF_GZ_EV_TXCMPL_NUM_DESC);
|
|
|
|
/*
|
|
* The function does not process events, so return event queue read
|
|
* pointer to the original position to allow the events that were
|
|
* read to be processed later
|
|
*/
|
|
txq->evq_read_ptr = evq_old_read_ptr;
|
|
|
|
return npending;
|
|
}
|
|
|
|
static sfc_dp_tx_qdesc_status_t sfc_ef100_tx_qdesc_status;
|
|
static int
|
|
sfc_ef100_tx_qdesc_status(struct sfc_dp_txq *dp_txq, uint16_t offset)
|
|
{
|
|
struct sfc_ef100_txq *txq = sfc_ef100_txq_by_dp_txq(dp_txq);
|
|
unsigned int pushed = txq->added - txq->completed;
|
|
|
|
if (unlikely(offset > txq->ptr_mask))
|
|
return -EINVAL;
|
|
|
|
if (unlikely(offset >= txq->max_fill_level))
|
|
return RTE_ETH_TX_DESC_UNAVAIL;
|
|
|
|
return (offset >= pushed ||
|
|
offset < sfc_ef100_tx_qdesc_npending(txq)) ?
|
|
RTE_ETH_TX_DESC_DONE : RTE_ETH_TX_DESC_FULL;
|
|
}
|
|
|
|
struct sfc_dp_tx sfc_ef100_tx = {
|
|
.dp = {
|
|
.name = SFC_KVARG_DATAPATH_EF100,
|
|
.type = SFC_DP_TX,
|
|
.hw_fw_caps = SFC_DP_HW_FW_CAP_EF100,
|
|
},
|
|
.features = SFC_DP_TX_FEAT_MULTI_PROCESS |
|
|
SFC_DP_TX_FEAT_STATS,
|
|
.dev_offload_capa = 0,
|
|
.queue_offload_capa = RTE_ETH_TX_OFFLOAD_VLAN_INSERT |
|
|
RTE_ETH_TX_OFFLOAD_IPV4_CKSUM |
|
|
RTE_ETH_TX_OFFLOAD_OUTER_IPV4_CKSUM |
|
|
RTE_ETH_TX_OFFLOAD_OUTER_UDP_CKSUM |
|
|
RTE_ETH_TX_OFFLOAD_UDP_CKSUM |
|
|
RTE_ETH_TX_OFFLOAD_TCP_CKSUM |
|
|
RTE_ETH_TX_OFFLOAD_MULTI_SEGS |
|
|
RTE_ETH_TX_OFFLOAD_TCP_TSO |
|
|
RTE_ETH_TX_OFFLOAD_VXLAN_TNL_TSO |
|
|
RTE_ETH_TX_OFFLOAD_GENEVE_TNL_TSO,
|
|
.get_dev_info = sfc_ef100_get_dev_info,
|
|
.qsize_up_rings = sfc_ef100_tx_qsize_up_rings,
|
|
.qcreate = sfc_ef100_tx_qcreate,
|
|
.qdestroy = sfc_ef100_tx_qdestroy,
|
|
.qstart = sfc_ef100_tx_qstart,
|
|
.qtx_ev = sfc_ef100_tx_qtx_ev,
|
|
.qstop = sfc_ef100_tx_qstop,
|
|
.qreap = sfc_ef100_tx_qreap,
|
|
.qdesc_status = sfc_ef100_tx_qdesc_status,
|
|
.pkt_prepare = sfc_ef100_tx_prepare_pkts,
|
|
.pkt_burst = sfc_ef100_xmit_pkts,
|
|
};
|