f-stack/dpdk/drivers/net/igc/base/igc_i225.c

1379 lines
36 KiB
C

/* SPDX-License-Identifier: BSD-3-Clause
* Copyright(c) 2001-2020 Intel Corporation
*/
#include "igc_api.h"
static s32 igc_init_nvm_params_i225(struct igc_hw *hw);
static s32 igc_init_mac_params_i225(struct igc_hw *hw);
static s32 igc_init_phy_params_i225(struct igc_hw *hw);
static s32 igc_reset_hw_i225(struct igc_hw *hw);
static s32 igc_acquire_nvm_i225(struct igc_hw *hw);
static void igc_release_nvm_i225(struct igc_hw *hw);
static s32 igc_get_hw_semaphore_i225(struct igc_hw *hw);
static s32 __igc_write_nvm_srwr(struct igc_hw *hw, u16 offset, u16 words,
u16 *data);
static s32 igc_pool_flash_update_done_i225(struct igc_hw *hw);
static s32 igc_valid_led_default_i225(struct igc_hw *hw, u16 *data);
/**
* igc_init_nvm_params_i225 - Init NVM func ptrs.
* @hw: pointer to the HW structure
**/
static s32 igc_init_nvm_params_i225(struct igc_hw *hw)
{
struct igc_nvm_info *nvm = &hw->nvm;
u32 eecd = IGC_READ_REG(hw, IGC_EECD);
u16 size;
DEBUGFUNC("igc_init_nvm_params_i225");
size = (u16)((eecd & IGC_EECD_SIZE_EX_MASK) >>
IGC_EECD_SIZE_EX_SHIFT);
/*
* Added to a constant, "size" becomes the left-shift value
* for setting word_size.
*/
size += NVM_WORD_SIZE_BASE_SHIFT;
/* Just in case size is out of range, cap it to the largest
* EEPROM size supported
*/
if (size > 15)
size = 15;
nvm->word_size = 1 << size;
nvm->opcode_bits = 8;
nvm->delay_usec = 1;
nvm->type = igc_nvm_eeprom_spi;
nvm->page_size = eecd & IGC_EECD_ADDR_BITS ? 32 : 8;
nvm->address_bits = eecd & IGC_EECD_ADDR_BITS ?
16 : 8;
if (nvm->word_size == (1 << 15))
nvm->page_size = 128;
nvm->ops.acquire = igc_acquire_nvm_i225;
nvm->ops.release = igc_release_nvm_i225;
nvm->ops.valid_led_default = igc_valid_led_default_i225;
if (igc_get_flash_presence_i225(hw)) {
hw->nvm.type = igc_nvm_flash_hw;
nvm->ops.read = igc_read_nvm_srrd_i225;
nvm->ops.write = igc_write_nvm_srwr_i225;
nvm->ops.validate = igc_validate_nvm_checksum_i225;
nvm->ops.update = igc_update_nvm_checksum_i225;
} else {
hw->nvm.type = igc_nvm_invm;
nvm->ops.write = igc_null_write_nvm;
nvm->ops.validate = igc_null_ops_generic;
nvm->ops.update = igc_null_ops_generic;
}
return IGC_SUCCESS;
}
/**
* igc_init_mac_params_i225 - Init MAC func ptrs.
* @hw: pointer to the HW structure
**/
static s32 igc_init_mac_params_i225(struct igc_hw *hw)
{
struct igc_mac_info *mac = &hw->mac;
struct igc_dev_spec_i225 *dev_spec = &hw->dev_spec._i225;
DEBUGFUNC("igc_init_mac_params_i225");
/* Initialize function pointer */
igc_init_mac_ops_generic(hw);
/* Set media type */
hw->phy.media_type = igc_media_type_copper;
/* Set mta register count */
mac->mta_reg_count = 128;
/* Set rar entry count */
mac->rar_entry_count = IGC_RAR_ENTRIES_BASE;
/* reset */
mac->ops.reset_hw = igc_reset_hw_i225;
/* hw initialization */
mac->ops.init_hw = igc_init_hw_i225;
/* link setup */
mac->ops.setup_link = igc_setup_link_generic;
/* check for link */
mac->ops.check_for_link = igc_check_for_link_i225;
/* link info */
mac->ops.get_link_up_info = igc_get_speed_and_duplex_copper_generic;
/* acquire SW_FW sync */
mac->ops.acquire_swfw_sync = igc_acquire_swfw_sync_i225;
/* release SW_FW sync */
mac->ops.release_swfw_sync = igc_release_swfw_sync_i225;
/* Allow a single clear of the SW semaphore on I225 */
dev_spec->clear_semaphore_once = true;
mac->ops.setup_physical_interface = igc_setup_copper_link_i225;
/* Set if part includes ASF firmware */
mac->asf_firmware_present = true;
/* multicast address update */
mac->ops.update_mc_addr_list = igc_update_mc_addr_list_generic;
mac->ops.write_vfta = igc_write_vfta_generic;
return IGC_SUCCESS;
}
/**
* igc_init_phy_params_i225 - Init PHY func ptrs.
* @hw: pointer to the HW structure
**/
static s32 igc_init_phy_params_i225(struct igc_hw *hw)
{
struct igc_phy_info *phy = &hw->phy;
s32 ret_val = IGC_SUCCESS;
u32 ctrl_ext;
DEBUGFUNC("igc_init_phy_params_i225");
phy->ops.read_i2c_byte = igc_read_i2c_byte_generic;
phy->ops.write_i2c_byte = igc_write_i2c_byte_generic;
if (hw->phy.media_type != igc_media_type_copper) {
phy->type = igc_phy_none;
goto out;
}
phy->ops.power_up = igc_power_up_phy_copper;
phy->ops.power_down = igc_power_down_phy_copper_base;
phy->autoneg_mask = AUTONEG_ADVERTISE_SPEED_DEFAULT_2500;
phy->reset_delay_us = 100;
phy->ops.acquire = igc_acquire_phy_base;
phy->ops.check_reset_block = igc_check_reset_block_generic;
phy->ops.commit = igc_phy_sw_reset_generic;
phy->ops.release = igc_release_phy_base;
ctrl_ext = IGC_READ_REG(hw, IGC_CTRL_EXT);
/* Make sure the PHY is in a good state. Several people have reported
* firmware leaving the PHY's page select register set to something
* other than the default of zero, which causes the PHY ID read to
* access something other than the intended register.
*/
ret_val = hw->phy.ops.reset(hw);
if (ret_val)
goto out;
IGC_WRITE_REG(hw, IGC_CTRL_EXT, ctrl_ext);
phy->ops.read_reg = igc_read_phy_reg_gpy;
phy->ops.write_reg = igc_write_phy_reg_gpy;
ret_val = igc_get_phy_id(hw);
/* Verify phy id and set remaining function pointers */
switch (phy->id) {
case I225_I_PHY_ID:
phy->type = igc_phy_i225;
phy->ops.set_d0_lplu_state = igc_set_d0_lplu_state_i225;
phy->ops.set_d3_lplu_state = igc_set_d3_lplu_state_i225;
/* TODO - complete with GPY PHY information */
break;
default:
ret_val = -IGC_ERR_PHY;
goto out;
}
out:
return ret_val;
}
/**
* igc_reset_hw_i225 - Reset hardware
* @hw: pointer to the HW structure
*
* This resets the hardware into a known state.
**/
static s32 igc_reset_hw_i225(struct igc_hw *hw)
{
u32 ctrl;
s32 ret_val;
DEBUGFUNC("igc_reset_hw_i225");
/*
* Prevent the PCI-E bus from sticking if there is no TLP connection
* on the last TLP read/write transaction when MAC is reset.
*/
ret_val = igc_disable_pcie_master_generic(hw);
if (ret_val)
DEBUGOUT("PCI-E Master disable polling has failed.\n");
DEBUGOUT("Masking off all interrupts\n");
IGC_WRITE_REG(hw, IGC_IMC, 0xffffffff);
IGC_WRITE_REG(hw, IGC_RCTL, 0);
IGC_WRITE_REG(hw, IGC_TCTL, IGC_TCTL_PSP);
IGC_WRITE_FLUSH(hw);
msec_delay(10);
ctrl = IGC_READ_REG(hw, IGC_CTRL);
DEBUGOUT("Issuing a global reset to MAC\n");
IGC_WRITE_REG(hw, IGC_CTRL, ctrl | IGC_CTRL_RST);
ret_val = igc_get_auto_rd_done_generic(hw);
if (ret_val) {
/*
* When auto config read does not complete, do not
* return with an error. This can happen in situations
* where there is no eeprom and prevents getting link.
*/
DEBUGOUT("Auto Read Done did not complete\n");
}
/* Clear any pending interrupt events. */
IGC_WRITE_REG(hw, IGC_IMC, 0xffffffff);
IGC_READ_REG(hw, IGC_ICR);
/* Install any alternate MAC address into RAR0 */
ret_val = igc_check_alt_mac_addr_generic(hw);
return ret_val;
}
/* igc_acquire_nvm_i225 - Request for access to EEPROM
* @hw: pointer to the HW structure
*
* Acquire the necessary semaphores for exclusive access to the EEPROM.
* Set the EEPROM access request bit and wait for EEPROM access grant bit.
* Return successful if access grant bit set, else clear the request for
* EEPROM access and return -IGC_ERR_NVM (-1).
*/
static s32 igc_acquire_nvm_i225(struct igc_hw *hw)
{
s32 ret_val;
DEBUGFUNC("igc_acquire_nvm_i225");
ret_val = igc_acquire_swfw_sync_i225(hw, IGC_SWFW_EEP_SM);
return ret_val;
}
/* igc_release_nvm_i225 - Release exclusive access to EEPROM
* @hw: pointer to the HW structure
*
* Stop any current commands to the EEPROM and clear the EEPROM request bit,
* then release the semaphores acquired.
*/
static void igc_release_nvm_i225(struct igc_hw *hw)
{
DEBUGFUNC("igc_release_nvm_i225");
igc_release_swfw_sync_i225(hw, IGC_SWFW_EEP_SM);
}
/* igc_acquire_swfw_sync_i225 - Acquire SW/FW semaphore
* @hw: pointer to the HW structure
* @mask: specifies which semaphore to acquire
*
* Acquire the SW/FW semaphore to access the PHY or NVM. The mask
* will also specify which port we're acquiring the lock for.
*/
s32 igc_acquire_swfw_sync_i225(struct igc_hw *hw, u16 mask)
{
u32 swfw_sync;
u32 swmask = mask;
u32 fwmask = mask << 16;
s32 ret_val = IGC_SUCCESS;
s32 i = 0, timeout = 200; /* FIXME: find real value to use here */
DEBUGFUNC("igc_acquire_swfw_sync_i225");
while (i < timeout) {
if (igc_get_hw_semaphore_i225(hw)) {
ret_val = -IGC_ERR_SWFW_SYNC;
goto out;
}
swfw_sync = IGC_READ_REG(hw, IGC_SW_FW_SYNC);
if (!(swfw_sync & (fwmask | swmask)))
break;
/* Firmware currently using resource (fwmask)
* or other software thread using resource (swmask)
*/
igc_put_hw_semaphore_generic(hw);
msec_delay_irq(5);
i++;
}
if (i == timeout) {
DEBUGOUT("Driver can't access resource, SW_FW_SYNC timeout.\n");
ret_val = -IGC_ERR_SWFW_SYNC;
goto out;
}
swfw_sync |= swmask;
IGC_WRITE_REG(hw, IGC_SW_FW_SYNC, swfw_sync);
igc_put_hw_semaphore_generic(hw);
out:
return ret_val;
}
/* igc_release_swfw_sync_i225 - Release SW/FW semaphore
* @hw: pointer to the HW structure
* @mask: specifies which semaphore to acquire
*
* Release the SW/FW semaphore used to access the PHY or NVM. The mask
* will also specify which port we're releasing the lock for.
*/
void igc_release_swfw_sync_i225(struct igc_hw *hw, u16 mask)
{
u32 swfw_sync;
DEBUGFUNC("igc_release_swfw_sync_i225");
while (igc_get_hw_semaphore_i225(hw) != IGC_SUCCESS)
; /* Empty */
swfw_sync = IGC_READ_REG(hw, IGC_SW_FW_SYNC);
swfw_sync &= ~mask;
IGC_WRITE_REG(hw, IGC_SW_FW_SYNC, swfw_sync);
igc_put_hw_semaphore_generic(hw);
}
/*
* igc_setup_copper_link_i225 - Configure copper link settings
* @hw: pointer to the HW structure
*
* Configures the link for auto-neg or forced speed and duplex. Then we check
* for link, once link is established calls to configure collision distance
* and flow control are called.
*/
s32 igc_setup_copper_link_i225(struct igc_hw *hw)
{
u32 phpm_reg;
s32 ret_val;
u32 ctrl;
DEBUGFUNC("igc_setup_copper_link_i225");
ctrl = IGC_READ_REG(hw, IGC_CTRL);
ctrl |= IGC_CTRL_SLU;
ctrl &= ~(IGC_CTRL_FRCSPD | IGC_CTRL_FRCDPX);
IGC_WRITE_REG(hw, IGC_CTRL, ctrl);
phpm_reg = IGC_READ_REG(hw, IGC_I225_PHPM);
phpm_reg &= ~IGC_I225_PHPM_GO_LINKD;
IGC_WRITE_REG(hw, IGC_I225_PHPM, phpm_reg);
ret_val = igc_setup_copper_link_generic(hw);
return ret_val;
}
/* igc_get_hw_semaphore_i225 - Acquire hardware semaphore
* @hw: pointer to the HW structure
*
* Acquire the HW semaphore to access the PHY or NVM
*/
static s32 igc_get_hw_semaphore_i225(struct igc_hw *hw)
{
u32 swsm;
s32 timeout = hw->nvm.word_size + 1;
s32 i = 0;
DEBUGFUNC("igc_get_hw_semaphore_i225");
/* Get the SW semaphore */
while (i < timeout) {
swsm = IGC_READ_REG(hw, IGC_SWSM);
if (!(swsm & IGC_SWSM_SMBI))
break;
usec_delay(50);
i++;
}
if (i == timeout) {
/* In rare circumstances, the SW semaphore may already be held
* unintentionally. Clear the semaphore once before giving up.
*/
if (hw->dev_spec._i225.clear_semaphore_once) {
hw->dev_spec._i225.clear_semaphore_once = false;
igc_put_hw_semaphore_generic(hw);
for (i = 0; i < timeout; i++) {
swsm = IGC_READ_REG(hw, IGC_SWSM);
if (!(swsm & IGC_SWSM_SMBI))
break;
usec_delay(50);
}
}
/* If we do not have the semaphore here, we have to give up. */
if (i == timeout) {
DEBUGOUT("Driver can't access device -\n");
DEBUGOUT("SMBI bit is set.\n");
return -IGC_ERR_NVM;
}
}
/* Get the FW semaphore. */
for (i = 0; i < timeout; i++) {
swsm = IGC_READ_REG(hw, IGC_SWSM);
IGC_WRITE_REG(hw, IGC_SWSM, swsm | IGC_SWSM_SWESMBI);
/* Semaphore acquired if bit latched */
if (IGC_READ_REG(hw, IGC_SWSM) & IGC_SWSM_SWESMBI)
break;
usec_delay(50);
}
if (i == timeout) {
/* Release semaphores */
igc_put_hw_semaphore_generic(hw);
DEBUGOUT("Driver can't access the NVM\n");
return -IGC_ERR_NVM;
}
return IGC_SUCCESS;
}
/* igc_read_nvm_srrd_i225 - Reads Shadow Ram using EERD register
* @hw: pointer to the HW structure
* @offset: offset of word in the Shadow Ram to read
* @words: number of words to read
* @data: word read from the Shadow Ram
*
* Reads a 16 bit word from the Shadow Ram using the EERD register.
* Uses necessary synchronization semaphores.
*/
s32 igc_read_nvm_srrd_i225(struct igc_hw *hw, u16 offset, u16 words,
u16 *data)
{
s32 status = IGC_SUCCESS;
u16 i, count;
DEBUGFUNC("igc_read_nvm_srrd_i225");
/* We cannot hold synchronization semaphores for too long,
* because of forceful takeover procedure. However it is more efficient
* to read in bursts than synchronizing access for each word.
*/
for (i = 0; i < words; i += IGC_EERD_EEWR_MAX_COUNT) {
count = (words - i) / IGC_EERD_EEWR_MAX_COUNT > 0 ?
IGC_EERD_EEWR_MAX_COUNT : (words - i);
if (hw->nvm.ops.acquire(hw) == IGC_SUCCESS) {
status = igc_read_nvm_eerd(hw, offset, count,
data + i);
hw->nvm.ops.release(hw);
} else {
status = IGC_ERR_SWFW_SYNC;
}
if (status != IGC_SUCCESS)
break;
}
return status;
}
/* igc_write_nvm_srwr_i225 - Write to Shadow RAM using EEWR
* @hw: pointer to the HW structure
* @offset: offset within the Shadow RAM to be written to
* @words: number of words to write
* @data: 16 bit word(s) to be written to the Shadow RAM
*
* Writes data to Shadow RAM at offset using EEWR register.
*
* If igc_update_nvm_checksum is not called after this function , the
* data will not be committed to FLASH and also Shadow RAM will most likely
* contain an invalid checksum.
*
* If error code is returned, data and Shadow RAM may be inconsistent - buffer
* partially written.
*/
s32 igc_write_nvm_srwr_i225(struct igc_hw *hw, u16 offset, u16 words,
u16 *data)
{
s32 status = IGC_SUCCESS;
u16 i, count;
DEBUGFUNC("igc_write_nvm_srwr_i225");
/* We cannot hold synchronization semaphores for too long,
* because of forceful takeover procedure. However it is more efficient
* to write in bursts than synchronizing access for each word.
*/
for (i = 0; i < words; i += IGC_EERD_EEWR_MAX_COUNT) {
count = (words - i) / IGC_EERD_EEWR_MAX_COUNT > 0 ?
IGC_EERD_EEWR_MAX_COUNT : (words - i);
if (hw->nvm.ops.acquire(hw) == IGC_SUCCESS) {
status = __igc_write_nvm_srwr(hw, offset, count,
data + i);
hw->nvm.ops.release(hw);
} else {
status = IGC_ERR_SWFW_SYNC;
}
if (status != IGC_SUCCESS)
break;
}
return status;
}
/* __igc_write_nvm_srwr - Write to Shadow Ram using EEWR
* @hw: pointer to the HW structure
* @offset: offset within the Shadow Ram to be written to
* @words: number of words to write
* @data: 16 bit word(s) to be written to the Shadow Ram
*
* Writes data to Shadow Ram at offset using EEWR register.
*
* If igc_update_nvm_checksum is not called after this function , the
* Shadow Ram will most likely contain an invalid checksum.
*/
static s32 __igc_write_nvm_srwr(struct igc_hw *hw, u16 offset, u16 words,
u16 *data)
{
struct igc_nvm_info *nvm = &hw->nvm;
u32 i, k, eewr = 0;
u32 attempts = 100000;
s32 ret_val = IGC_SUCCESS;
DEBUGFUNC("__igc_write_nvm_srwr");
/* A check for invalid values: offset too large, too many words,
* too many words for the offset, and not enough words.
*/
if (offset >= nvm->word_size || words > (nvm->word_size - offset) ||
words == 0) {
DEBUGOUT("nvm parameter(s) out of bounds\n");
ret_val = -IGC_ERR_NVM;
goto out;
}
for (i = 0; i < words; i++) {
eewr = ((offset + i) << IGC_NVM_RW_ADDR_SHIFT) |
(data[i] << IGC_NVM_RW_REG_DATA) |
IGC_NVM_RW_REG_START;
IGC_WRITE_REG(hw, IGC_SRWR, eewr);
for (k = 0; k < attempts; k++) {
if (IGC_NVM_RW_REG_DONE &
IGC_READ_REG(hw, IGC_SRWR)) {
ret_val = IGC_SUCCESS;
break;
}
usec_delay(5);
}
if (ret_val != IGC_SUCCESS) {
DEBUGOUT("Shadow RAM write EEWR timed out\n");
break;
}
}
out:
return ret_val;
}
/* igc_read_invm_version_i225 - Reads iNVM version and image type
* @hw: pointer to the HW structure
* @invm_ver: version structure for the version read
*
* Reads iNVM version and image type.
*/
s32 igc_read_invm_version_i225(struct igc_hw *hw,
struct igc_fw_version *invm_ver)
{
u32 *record = NULL;
u32 *next_record = NULL;
u32 i = 0;
u32 invm_dword = 0;
u32 invm_blocks = IGC_INVM_SIZE - (IGC_INVM_ULT_BYTES_SIZE /
IGC_INVM_RECORD_SIZE_IN_BYTES);
u32 buffer[IGC_INVM_SIZE];
s32 status = -IGC_ERR_INVM_VALUE_NOT_FOUND;
u16 version = 0;
DEBUGFUNC("igc_read_invm_version_i225");
/* Read iNVM memory */
for (i = 0; i < IGC_INVM_SIZE; i++) {
invm_dword = IGC_READ_REG(hw, IGC_INVM_DATA_REG(i));
buffer[i] = invm_dword;
}
/* Read version number */
for (i = 1; i < invm_blocks; i++) {
record = &buffer[invm_blocks - i];
next_record = &buffer[invm_blocks - i + 1];
/* Check if we have first version location used */
if (i == 1 && (*record & IGC_INVM_VER_FIELD_ONE) == 0) {
version = 0;
status = IGC_SUCCESS;
break;
}
/* Check if we have second version location used */
else if ((i == 1) &&
((*record & IGC_INVM_VER_FIELD_TWO) == 0)) {
version = (*record & IGC_INVM_VER_FIELD_ONE) >> 3;
status = IGC_SUCCESS;
break;
}
/* Check if we have odd version location
* used and it is the last one used
*/
else if ((((*record & IGC_INVM_VER_FIELD_ONE) == 0) &&
((*record & 0x3) == 0)) || (((*record & 0x3) != 0) &&
(i != 1))) {
version = (*next_record & IGC_INVM_VER_FIELD_TWO)
>> 13;
status = IGC_SUCCESS;
break;
}
/* Check if we have even version location
* used and it is the last one used
*/
else if (((*record & IGC_INVM_VER_FIELD_TWO) == 0) &&
((*record & 0x3) == 0)) {
version = (*record & IGC_INVM_VER_FIELD_ONE) >> 3;
status = IGC_SUCCESS;
break;
}
}
if (status == IGC_SUCCESS) {
invm_ver->invm_major = (version & IGC_INVM_MAJOR_MASK)
>> IGC_INVM_MAJOR_SHIFT;
invm_ver->invm_minor = version & IGC_INVM_MINOR_MASK;
}
/* Read Image Type */
for (i = 1; i < invm_blocks; i++) {
record = &buffer[invm_blocks - i];
next_record = &buffer[invm_blocks - i + 1];
/* Check if we have image type in first location used */
if (i == 1 && (*record & IGC_INVM_IMGTYPE_FIELD) == 0) {
invm_ver->invm_img_type = 0;
status = IGC_SUCCESS;
break;
}
/* Check if we have image type in first location used */
else if ((((*record & 0x3) == 0) &&
((*record & IGC_INVM_IMGTYPE_FIELD) == 0)) ||
((((*record & 0x3) != 0) && (i != 1)))) {
invm_ver->invm_img_type =
(*next_record & IGC_INVM_IMGTYPE_FIELD) >> 23;
status = IGC_SUCCESS;
break;
}
}
return status;
}
/* igc_validate_nvm_checksum_i225 - Validate EEPROM checksum
* @hw: pointer to the HW structure
*
* Calculates the EEPROM checksum by reading/adding each word of the EEPROM
* and then verifies that the sum of the EEPROM is equal to 0xBABA.
*/
s32 igc_validate_nvm_checksum_i225(struct igc_hw *hw)
{
s32 status = IGC_SUCCESS;
s32 (*read_op_ptr)(struct igc_hw *hw, u16 offset,
u16 count, u16 *data);
DEBUGFUNC("igc_validate_nvm_checksum_i225");
if (hw->nvm.ops.acquire(hw) == IGC_SUCCESS) {
/* Replace the read function with semaphore grabbing with
* the one that skips this for a while.
* We have semaphore taken already here.
*/
read_op_ptr = hw->nvm.ops.read;
hw->nvm.ops.read = igc_read_nvm_eerd;
status = igc_validate_nvm_checksum_generic(hw);
/* Revert original read operation. */
hw->nvm.ops.read = read_op_ptr;
hw->nvm.ops.release(hw);
} else {
status = IGC_ERR_SWFW_SYNC;
}
return status;
}
/* igc_update_nvm_checksum_i225 - Update EEPROM checksum
* @hw: pointer to the HW structure
*
* Updates the EEPROM checksum by reading/adding each word of the EEPROM
* up to the checksum. Then calculates the EEPROM checksum and writes the
* value to the EEPROM. Next commit EEPROM data onto the Flash.
*/
s32 igc_update_nvm_checksum_i225(struct igc_hw *hw)
{
s32 ret_val;
u16 checksum = 0;
u16 i, nvm_data;
DEBUGFUNC("igc_update_nvm_checksum_i225");
/* Read the first word from the EEPROM. If this times out or fails, do
* not continue or we could be in for a very long wait while every
* EEPROM read fails
*/
ret_val = igc_read_nvm_eerd(hw, 0, 1, &nvm_data);
if (ret_val != IGC_SUCCESS) {
DEBUGOUT("EEPROM read failed\n");
goto out;
}
if (hw->nvm.ops.acquire(hw) == IGC_SUCCESS) {
/* Do not use hw->nvm.ops.write, hw->nvm.ops.read
* because we do not want to take the synchronization
* semaphores twice here.
*/
for (i = 0; i < NVM_CHECKSUM_REG; i++) {
ret_val = igc_read_nvm_eerd(hw, i, 1, &nvm_data);
if (ret_val) {
hw->nvm.ops.release(hw);
DEBUGOUT("NVM Read Error while updating\n");
DEBUGOUT("checksum.\n");
goto out;
}
checksum += nvm_data;
}
checksum = (u16)NVM_SUM - checksum;
ret_val = __igc_write_nvm_srwr(hw, NVM_CHECKSUM_REG, 1,
&checksum);
if (ret_val != IGC_SUCCESS) {
hw->nvm.ops.release(hw);
DEBUGOUT("NVM Write Error while updating checksum.\n");
goto out;
}
hw->nvm.ops.release(hw);
ret_val = igc_update_flash_i225(hw);
} else {
ret_val = IGC_ERR_SWFW_SYNC;
}
out:
return ret_val;
}
/* igc_get_flash_presence_i225 - Check if flash device is detected.
* @hw: pointer to the HW structure
*/
bool igc_get_flash_presence_i225(struct igc_hw *hw)
{
u32 eec = 0;
bool ret_val = false;
DEBUGFUNC("igc_get_flash_presence_i225");
eec = IGC_READ_REG(hw, IGC_EECD);
if (eec & IGC_EECD_FLASH_DETECTED_I225)
ret_val = true;
return ret_val;
}
/* igc_set_flsw_flash_burst_counter_i225 - sets FLSW NVM Burst
* Counter in FLSWCNT register.
*
* @hw: pointer to the HW structure
* @burst_counter: size in bytes of the Flash burst to read or write
*/
s32 igc_set_flsw_flash_burst_counter_i225(struct igc_hw *hw,
u32 burst_counter)
{
s32 ret_val = IGC_SUCCESS;
DEBUGFUNC("igc_set_flsw_flash_burst_counter_i225");
/* Validate input data */
if (burst_counter < IGC_I225_SHADOW_RAM_SIZE) {
/* Write FLSWCNT - burst counter */
IGC_WRITE_REG(hw, IGC_I225_FLSWCNT, burst_counter);
} else {
ret_val = IGC_ERR_INVALID_ARGUMENT;
}
return ret_val;
}
/* igc_write_erase_flash_command_i225 - write/erase to a sector
* region on a given address.
*
* @hw: pointer to the HW structure
* @opcode: opcode to be used for the write command
* @address: the offset to write into the FLASH image
*/
s32 igc_write_erase_flash_command_i225(struct igc_hw *hw, u32 opcode,
u32 address)
{
u32 flswctl = 0;
s32 timeout = IGC_NVM_GRANT_ATTEMPTS;
s32 ret_val = IGC_SUCCESS;
DEBUGFUNC("igc_write_erase_flash_command_i225");
flswctl = IGC_READ_REG(hw, IGC_I225_FLSWCTL);
/* Polling done bit on FLSWCTL register */
while (timeout) {
if (flswctl & IGC_FLSWCTL_DONE)
break;
usec_delay(5);
flswctl = IGC_READ_REG(hw, IGC_I225_FLSWCTL);
timeout--;
}
if (!timeout) {
DEBUGOUT("Flash transaction was not done\n");
return -IGC_ERR_NVM;
}
/* Build and issue command on FLSWCTL register */
flswctl = address | opcode;
IGC_WRITE_REG(hw, IGC_I225_FLSWCTL, flswctl);
/* Check if issued command is valid on FLSWCTL register */
flswctl = IGC_READ_REG(hw, IGC_I225_FLSWCTL);
if (!(flswctl & IGC_FLSWCTL_CMDV)) {
DEBUGOUT("Write flash command failed\n");
ret_val = IGC_ERR_INVALID_ARGUMENT;
}
return ret_val;
}
/* igc_update_flash_i225 - Commit EEPROM to the flash
* if fw_valid_bit is set, FW is active. setting FLUPD bit in EEC
* register makes the FW load the internal shadow RAM into the flash.
* Otherwise, fw_valid_bit is 0. if FL_SECU.block_prtotected_sw = 0
* then FW is not active so the SW is responsible shadow RAM dump.
*
* @hw: pointer to the HW structure
*/
s32 igc_update_flash_i225(struct igc_hw *hw)
{
u16 current_offset_data = 0;
u32 block_sw_protect = 1;
u16 base_address = 0x0;
u32 i, fw_valid_bit;
u16 current_offset;
s32 ret_val = 0;
u32 flup;
DEBUGFUNC("igc_update_flash_i225");
block_sw_protect = IGC_READ_REG(hw, IGC_I225_FLSECU) &
IGC_FLSECU_BLK_SW_ACCESS_I225;
fw_valid_bit = IGC_READ_REG(hw, IGC_FWSM) &
IGC_FWSM_FW_VALID_I225;
if (fw_valid_bit) {
ret_val = igc_pool_flash_update_done_i225(hw);
if (ret_val == -IGC_ERR_NVM) {
DEBUGOUT("Flash update time out\n");
goto out;
}
flup = IGC_READ_REG(hw, IGC_EECD) | IGC_EECD_FLUPD_I225;
IGC_WRITE_REG(hw, IGC_EECD, flup);
ret_val = igc_pool_flash_update_done_i225(hw);
if (ret_val == IGC_SUCCESS)
DEBUGOUT("Flash update complete\n");
else
DEBUGOUT("Flash update time out\n");
} else if (!block_sw_protect) {
/* FW is not active and security protection is disabled.
* therefore, SW is in charge of shadow RAM dump.
* Check which sector is valid. if sector 0 is valid,
* base address remains 0x0. otherwise, sector 1 is
* valid and it's base address is 0x1000
*/
if (IGC_READ_REG(hw, IGC_EECD) & IGC_EECD_SEC1VAL_I225)
base_address = 0x1000;
/* Valid sector erase */
ret_val = igc_write_erase_flash_command_i225(hw,
IGC_I225_ERASE_CMD_OPCODE,
base_address);
if (!ret_val) {
DEBUGOUT("Sector erase failed\n");
goto out;
}
current_offset = base_address;
/* Write */
for (i = 0; i < IGC_I225_SHADOW_RAM_SIZE / 2; i++) {
/* Set burst write length */
ret_val = igc_set_flsw_flash_burst_counter_i225(hw,
0x2);
if (ret_val != IGC_SUCCESS)
break;
/* Set address and opcode */
ret_val = igc_write_erase_flash_command_i225(hw,
IGC_I225_WRITE_CMD_OPCODE,
2 * current_offset);
if (ret_val != IGC_SUCCESS)
break;
ret_val = igc_read_nvm_eerd(hw, current_offset,
1, &current_offset_data);
if (ret_val) {
DEBUGOUT("Failed to read from EEPROM\n");
goto out;
}
/* Write CurrentOffseData to FLSWDATA register */
IGC_WRITE_REG(hw, IGC_I225_FLSWDATA,
current_offset_data);
current_offset++;
/* Wait till operation has finished */
ret_val = igc_poll_eerd_eewr_done(hw,
IGC_NVM_POLL_READ);
if (ret_val)
break;
usec_delay(1000);
}
}
out:
return ret_val;
}
/* igc_pool_flash_update_done_i225 - Pool FLUDONE status.
* @hw: pointer to the HW structure
*/
s32 igc_pool_flash_update_done_i225(struct igc_hw *hw)
{
s32 ret_val = -IGC_ERR_NVM;
u32 i, reg;
DEBUGFUNC("igc_pool_flash_update_done_i225");
for (i = 0; i < IGC_FLUDONE_ATTEMPTS; i++) {
reg = IGC_READ_REG(hw, IGC_EECD);
if (reg & IGC_EECD_FLUDONE_I225) {
ret_val = IGC_SUCCESS;
break;
}
usec_delay(5);
}
return ret_val;
}
/* igc_set_ltr_i225 - Set Latency Tolerance Reporting thresholds.
* @hw: pointer to the HW structure
* @link: bool indicating link status
*
* Set the LTR thresholds based on the link speed (Mbps), EEE, and DMAC
* settings, otherwise specify that there is no LTR requirement.
*/
static s32 igc_set_ltr_i225(struct igc_hw *hw, bool link)
{
u16 speed, duplex;
u32 tw_system, ltrc, ltrv, ltr_min, ltr_max, scale_min, scale_max;
s32 size;
DEBUGFUNC("igc_set_ltr_i225");
/* If we do not have link, LTR thresholds are zero. */
if (link) {
hw->mac.ops.get_link_up_info(hw, &speed, &duplex);
/* Check if using copper interface with EEE enabled or if the
* link speed is 10 Mbps.
*/
if (hw->phy.media_type == igc_media_type_copper &&
!hw->dev_spec._i225.eee_disable &&
speed != SPEED_10) {
/* EEE enabled, so send LTRMAX threshold. */
ltrc = IGC_READ_REG(hw, IGC_LTRC) |
IGC_LTRC_EEEMS_EN;
IGC_WRITE_REG(hw, IGC_LTRC, ltrc);
/* Calculate tw_system (nsec). */
if (speed == SPEED_100)
tw_system = ((IGC_READ_REG(hw, IGC_EEE_SU) &
IGC_TW_SYSTEM_100_MASK) >>
IGC_TW_SYSTEM_100_SHIFT) * 500;
else
tw_system = (IGC_READ_REG(hw, IGC_EEE_SU) &
IGC_TW_SYSTEM_1000_MASK) * 500;
} else {
tw_system = 0;
}
/* Get the Rx packet buffer size. */
size = IGC_READ_REG(hw, IGC_RXPBS) &
IGC_RXPBS_SIZE_I225_MASK;
/* Calculations vary based on DMAC settings. */
if (IGC_READ_REG(hw, IGC_DMACR) & IGC_DMACR_DMAC_EN) {
size -= (IGC_READ_REG(hw, IGC_DMACR) &
IGC_DMACR_DMACTHR_MASK) >>
IGC_DMACR_DMACTHR_SHIFT;
/* Convert size to bits. */
size *= 1024 * 8;
} else {
/* Convert size to bytes, subtract the MTU, and then
* convert the size to bits.
*/
size *= 1024;
size -= hw->dev_spec._i225.mtu;
size *= 8;
}
if (size < 0) {
DEBUGOUT1("Invalid effective Rx buffer size %d\n",
size);
return -IGC_ERR_CONFIG;
}
/* Calculate the thresholds. Since speed is in Mbps, simplify
* the calculation by multiplying size/speed by 1000 for result
* to be in nsec before dividing by the scale in nsec. Set the
* scale such that the LTR threshold fits in the register.
*/
ltr_min = (1000 * size) / speed;
ltr_max = ltr_min + tw_system;
scale_min = (ltr_min / 1024) < 1024 ? IGC_LTRMINV_SCALE_1024 :
IGC_LTRMINV_SCALE_32768;
scale_max = (ltr_max / 1024) < 1024 ? IGC_LTRMAXV_SCALE_1024 :
IGC_LTRMAXV_SCALE_32768;
ltr_min /= scale_min == IGC_LTRMINV_SCALE_1024 ? 1024 : 32768;
ltr_max /= scale_max == IGC_LTRMAXV_SCALE_1024 ? 1024 : 32768;
/* Only write the LTR thresholds if they differ from before. */
ltrv = IGC_READ_REG(hw, IGC_LTRMINV);
if (ltr_min != (ltrv & IGC_LTRMINV_LTRV_MASK)) {
ltrv = IGC_LTRMINV_LSNP_REQ | ltr_min |
(scale_min << IGC_LTRMINV_SCALE_SHIFT);
IGC_WRITE_REG(hw, IGC_LTRMINV, ltrv);
}
ltrv = IGC_READ_REG(hw, IGC_LTRMAXV);
if (ltr_max != (ltrv & IGC_LTRMAXV_LTRV_MASK)) {
ltrv = IGC_LTRMAXV_LSNP_REQ | ltr_max |
(scale_min << IGC_LTRMAXV_SCALE_SHIFT);
IGC_WRITE_REG(hw, IGC_LTRMAXV, ltrv);
}
}
return IGC_SUCCESS;
}
/* igc_check_for_link_i225 - Check for link
* @hw: pointer to the HW structure
*
* Checks to see of the link status of the hardware has changed. If a
* change in link status has been detected, then we read the PHY registers
* to get the current speed/duplex if link exists.
*/
s32 igc_check_for_link_i225(struct igc_hw *hw)
{
struct igc_mac_info *mac = &hw->mac;
s32 ret_val;
bool link = false;
DEBUGFUNC("igc_check_for_link_i225");
/* We only want to go out to the PHY registers to see if
* Auto-Neg has completed and/or if our link status has
* changed. The get_link_status flag is set upon receiving
* a Link Status Change or Rx Sequence Error interrupt.
*/
if (!mac->get_link_status) {
ret_val = IGC_SUCCESS;
goto out;
}
/* First we want to see if the MII Status Register reports
* link. If so, then we want to get the current speed/duplex
* of the PHY.
*/
ret_val = igc_phy_has_link_generic(hw, 1, 0, &link);
if (ret_val)
goto out;
if (!link)
goto out; /* No link detected */
mac->get_link_status = false;
/* Check if there was DownShift, must be checked
* immediately after link-up
*/
igc_check_downshift_generic(hw);
/* If we are forcing speed/duplex, then we simply return since
* we have already determined whether we have link or not.
*/
if (!mac->autoneg)
goto out;
/* Auto-Neg is enabled. Auto Speed Detection takes care
* of MAC speed/duplex configuration. So we only need to
* configure Collision Distance in the MAC.
*/
mac->ops.config_collision_dist(hw);
/* Configure Flow Control now that Auto-Neg has completed.
* First, we need to restore the desired flow control
* settings because we may have had to re-autoneg with a
* different link partner.
*/
ret_val = igc_config_fc_after_link_up_generic(hw);
if (ret_val)
DEBUGOUT("Error configuring flow control\n");
out:
/* Now that we are aware of our link settings, we can set the LTR
* thresholds.
*/
ret_val = igc_set_ltr_i225(hw, link);
return ret_val;
}
/* igc_init_function_pointers_i225 - Init func ptrs.
* @hw: pointer to the HW structure
*
* Called to initialize all function pointers and parameters.
*/
void igc_init_function_pointers_i225(struct igc_hw *hw)
{
igc_init_mac_ops_generic(hw);
igc_init_phy_ops_generic(hw);
igc_init_nvm_ops_generic(hw);
hw->mac.ops.init_params = igc_init_mac_params_i225;
hw->nvm.ops.init_params = igc_init_nvm_params_i225;
hw->phy.ops.init_params = igc_init_phy_params_i225;
}
/* igc_valid_led_default_i225 - Verify a valid default LED config
* @hw: pointer to the HW structure
* @data: pointer to the NVM (EEPROM)
*
* Read the EEPROM for the current default LED configuration. If the
* LED configuration is not valid, set to a valid LED configuration.
*/
static s32 igc_valid_led_default_i225(struct igc_hw *hw, u16 *data)
{
s32 ret_val;
DEBUGFUNC("igc_valid_led_default_i225");
ret_val = hw->nvm.ops.read(hw, NVM_ID_LED_SETTINGS, 1, data);
if (ret_val) {
DEBUGOUT("NVM Read Error\n");
goto out;
}
if (*data == ID_LED_RESERVED_0000 || *data == ID_LED_RESERVED_FFFF) {
switch (hw->phy.media_type) {
case igc_media_type_internal_serdes:
*data = ID_LED_DEFAULT_I225_SERDES;
break;
case igc_media_type_copper:
default:
*data = ID_LED_DEFAULT_I225;
break;
}
}
out:
return ret_val;
}
/* igc_get_cfg_done_i225 - Read config done bit
* @hw: pointer to the HW structure
*
* Read the management control register for the config done bit for
* completion status. NOTE: silicon which is EEPROM-less will fail trying
* to read the config done bit, so an error is *ONLY* logged and returns
* IGC_SUCCESS. If we were to return with error, EEPROM-less silicon
* would not be able to be reset or change link.
*/
static s32 igc_get_cfg_done_i225(struct igc_hw *hw)
{
s32 timeout = PHY_CFG_TIMEOUT;
u32 mask = IGC_NVM_CFG_DONE_PORT_0;
DEBUGFUNC("igc_get_cfg_done_i225");
while (timeout) {
if (IGC_READ_REG(hw, IGC_EEMNGCTL_I225) & mask)
break;
msec_delay(1);
timeout--;
}
if (!timeout)
DEBUGOUT("MNG configuration cycle has not completed.\n");
return IGC_SUCCESS;
}
/* igc_init_hw_i225 - Init hw for I225
* @hw: pointer to the HW structure
*
* Called to initialize hw for i225 hw family.
*/
s32 igc_init_hw_i225(struct igc_hw *hw)
{
s32 ret_val;
DEBUGFUNC("igc_init_hw_i225");
hw->phy.ops.get_cfg_done = igc_get_cfg_done_i225;
ret_val = igc_init_hw_base(hw);
return ret_val;
}
/*
* igc_set_d0_lplu_state_i225 - Set Low-Power-Link-Up (LPLU) D0 state
* @hw: pointer to the HW structure
* @active: true to enable LPLU, false to disable
*
* Note: since I225 does not actually support LPLU, this function
* simply enables/disables 1G and 2.5G speeds in D0.
*/
s32 igc_set_d0_lplu_state_i225(struct igc_hw *hw, bool active)
{
u32 data;
DEBUGFUNC("igc_set_d0_lplu_state_i225");
data = IGC_READ_REG(hw, IGC_I225_PHPM);
if (active) {
data |= IGC_I225_PHPM_DIS_1000;
data |= IGC_I225_PHPM_DIS_2500;
} else {
data &= ~IGC_I225_PHPM_DIS_1000;
data &= ~IGC_I225_PHPM_DIS_2500;
}
IGC_WRITE_REG(hw, IGC_I225_PHPM, data);
return IGC_SUCCESS;
}
/*
* igc_set_d3_lplu_state_i225 - Set Low-Power-Link-Up (LPLU) D3 state
* @hw: pointer to the HW structure
* @active: true to enable LPLU, false to disable
*
* Note: since I225 does not actually support LPLU, this function
* simply enables/disables 100M, 1G and 2.5G speeds in D3.
*/
s32 igc_set_d3_lplu_state_i225(struct igc_hw *hw, bool active)
{
u32 data;
DEBUGFUNC("igc_set_d3_lplu_state_i225");
data = IGC_READ_REG(hw, IGC_I225_PHPM);
if (active) {
data |= IGC_I225_PHPM_DIS_100_D3;
data |= IGC_I225_PHPM_DIS_1000_D3;
data |= IGC_I225_PHPM_DIS_2500_D3;
} else {
data &= ~IGC_I225_PHPM_DIS_100_D3;
data &= ~IGC_I225_PHPM_DIS_1000_D3;
data &= ~IGC_I225_PHPM_DIS_2500_D3;
}
IGC_WRITE_REG(hw, IGC_I225_PHPM, data);
return IGC_SUCCESS;
}
/**
* igc_set_eee_i225 - Enable/disable EEE support
* @hw: pointer to the HW structure
* @adv2p5G: boolean flag enabling 2.5G EEE advertisement
* @adv1G: boolean flag enabling 1G EEE advertisement
* @adv100M: boolean flag enabling 100M EEE advertisement
*
* Enable/disable EEE based on setting in dev_spec structure.
*
**/
s32 igc_set_eee_i225(struct igc_hw *hw, bool adv2p5G, bool adv1G,
bool adv100M)
{
u32 ipcnfg, eeer;
DEBUGFUNC("igc_set_eee_i225");
if (hw->mac.type != igc_i225 ||
hw->phy.media_type != igc_media_type_copper)
goto out;
ipcnfg = IGC_READ_REG(hw, IGC_IPCNFG);
eeer = IGC_READ_REG(hw, IGC_EEER);
/* enable or disable per user setting */
if (!(hw->dev_spec._i225.eee_disable)) {
u32 eee_su = IGC_READ_REG(hw, IGC_EEE_SU);
if (adv100M)
ipcnfg |= IGC_IPCNFG_EEE_100M_AN;
else
ipcnfg &= ~IGC_IPCNFG_EEE_100M_AN;
if (adv1G)
ipcnfg |= IGC_IPCNFG_EEE_1G_AN;
else
ipcnfg &= ~IGC_IPCNFG_EEE_1G_AN;
if (adv2p5G)
ipcnfg |= IGC_IPCNFG_EEE_2_5G_AN;
else
ipcnfg &= ~IGC_IPCNFG_EEE_2_5G_AN;
eeer |= (IGC_EEER_TX_LPI_EN | IGC_EEER_RX_LPI_EN |
IGC_EEER_LPI_FC);
/* This bit should not be set in normal operation. */
if (eee_su & IGC_EEE_SU_LPI_CLK_STP)
DEBUGOUT("LPI Clock Stop Bit should not be set!\n");
} else {
ipcnfg &= ~(IGC_IPCNFG_EEE_2_5G_AN | IGC_IPCNFG_EEE_1G_AN |
IGC_IPCNFG_EEE_100M_AN);
eeer &= ~(IGC_EEER_TX_LPI_EN | IGC_EEER_RX_LPI_EN |
IGC_EEER_LPI_FC);
}
IGC_WRITE_REG(hw, IGC_IPCNFG, ipcnfg);
IGC_WRITE_REG(hw, IGC_EEER, eeer);
IGC_READ_REG(hw, IGC_IPCNFG);
IGC_READ_REG(hw, IGC_EEER);
out:
return IGC_SUCCESS;
}