f-stack/dpdk/drivers/net/iavf/iavf_ethdev.c

2827 lines
74 KiB
C

/* SPDX-License-Identifier: BSD-3-Clause
* Copyright(c) 2017 Intel Corporation
*/
#include <sys/queue.h>
#include <stdio.h>
#include <errno.h>
#include <stdint.h>
#include <string.h>
#include <unistd.h>
#include <stdarg.h>
#include <inttypes.h>
#include <rte_byteorder.h>
#include <rte_common.h>
#include <rte_interrupts.h>
#include <rte_debug.h>
#include <rte_pci.h>
#include <rte_alarm.h>
#include <rte_atomic.h>
#include <rte_eal.h>
#include <rte_ether.h>
#include <ethdev_driver.h>
#include <ethdev_pci.h>
#include <rte_malloc.h>
#include <rte_memzone.h>
#include <rte_dev.h>
#include "iavf.h"
#include "iavf_rxtx.h"
#include "iavf_generic_flow.h"
#include "rte_pmd_iavf.h"
#include "iavf_ipsec_crypto.h"
/* devargs */
#define IAVF_PROTO_XTR_ARG "proto_xtr"
static const char * const iavf_valid_args[] = {
IAVF_PROTO_XTR_ARG,
NULL
};
static const struct rte_mbuf_dynfield iavf_proto_xtr_metadata_param = {
.name = "intel_pmd_dynfield_proto_xtr_metadata",
.size = sizeof(uint32_t),
.align = __alignof__(uint32_t),
.flags = 0,
};
struct iavf_proto_xtr_ol {
const struct rte_mbuf_dynflag param;
uint64_t *ol_flag;
bool required;
};
static struct iavf_proto_xtr_ol iavf_proto_xtr_params[] = {
[IAVF_PROTO_XTR_VLAN] = {
.param = { .name = "intel_pmd_dynflag_proto_xtr_vlan" },
.ol_flag = &rte_pmd_ifd_dynflag_proto_xtr_vlan_mask },
[IAVF_PROTO_XTR_IPV4] = {
.param = { .name = "intel_pmd_dynflag_proto_xtr_ipv4" },
.ol_flag = &rte_pmd_ifd_dynflag_proto_xtr_ipv4_mask },
[IAVF_PROTO_XTR_IPV6] = {
.param = { .name = "intel_pmd_dynflag_proto_xtr_ipv6" },
.ol_flag = &rte_pmd_ifd_dynflag_proto_xtr_ipv6_mask },
[IAVF_PROTO_XTR_IPV6_FLOW] = {
.param = { .name = "intel_pmd_dynflag_proto_xtr_ipv6_flow" },
.ol_flag = &rte_pmd_ifd_dynflag_proto_xtr_ipv6_flow_mask },
[IAVF_PROTO_XTR_TCP] = {
.param = { .name = "intel_pmd_dynflag_proto_xtr_tcp" },
.ol_flag = &rte_pmd_ifd_dynflag_proto_xtr_tcp_mask },
[IAVF_PROTO_XTR_IP_OFFSET] = {
.param = { .name = "intel_pmd_dynflag_proto_xtr_ip_offset" },
.ol_flag = &rte_pmd_ifd_dynflag_proto_xtr_ip_offset_mask },
[IAVF_PROTO_XTR_IPSEC_CRYPTO_SAID] = {
.param = {
.name = "intel_pmd_dynflag_proto_xtr_ipsec_crypto_said" },
.ol_flag =
&rte_pmd_ifd_dynflag_proto_xtr_ipsec_crypto_said_mask },
};
static int iavf_dev_configure(struct rte_eth_dev *dev);
static int iavf_dev_start(struct rte_eth_dev *dev);
static int iavf_dev_stop(struct rte_eth_dev *dev);
static int iavf_dev_close(struct rte_eth_dev *dev);
static int iavf_dev_reset(struct rte_eth_dev *dev);
static int iavf_dev_info_get(struct rte_eth_dev *dev,
struct rte_eth_dev_info *dev_info);
static const uint32_t *iavf_dev_supported_ptypes_get(struct rte_eth_dev *dev);
static int iavf_dev_stats_get(struct rte_eth_dev *dev,
struct rte_eth_stats *stats);
static int iavf_dev_stats_reset(struct rte_eth_dev *dev);
static int iavf_dev_xstats_reset(struct rte_eth_dev *dev);
static int iavf_dev_xstats_get(struct rte_eth_dev *dev,
struct rte_eth_xstat *xstats, unsigned int n);
static int iavf_dev_xstats_get_names(struct rte_eth_dev *dev,
struct rte_eth_xstat_name *xstats_names,
unsigned int limit);
static int iavf_dev_promiscuous_enable(struct rte_eth_dev *dev);
static int iavf_dev_promiscuous_disable(struct rte_eth_dev *dev);
static int iavf_dev_allmulticast_enable(struct rte_eth_dev *dev);
static int iavf_dev_allmulticast_disable(struct rte_eth_dev *dev);
static int iavf_dev_add_mac_addr(struct rte_eth_dev *dev,
struct rte_ether_addr *addr,
uint32_t index,
uint32_t pool);
static void iavf_dev_del_mac_addr(struct rte_eth_dev *dev, uint32_t index);
static int iavf_dev_vlan_filter_set(struct rte_eth_dev *dev,
uint16_t vlan_id, int on);
static int iavf_dev_vlan_offload_set(struct rte_eth_dev *dev, int mask);
static int iavf_dev_rss_reta_update(struct rte_eth_dev *dev,
struct rte_eth_rss_reta_entry64 *reta_conf,
uint16_t reta_size);
static int iavf_dev_rss_reta_query(struct rte_eth_dev *dev,
struct rte_eth_rss_reta_entry64 *reta_conf,
uint16_t reta_size);
static int iavf_dev_rss_hash_update(struct rte_eth_dev *dev,
struct rte_eth_rss_conf *rss_conf);
static int iavf_dev_rss_hash_conf_get(struct rte_eth_dev *dev,
struct rte_eth_rss_conf *rss_conf);
static int iavf_dev_mtu_set(struct rte_eth_dev *dev, uint16_t mtu);
static int iavf_dev_set_default_mac_addr(struct rte_eth_dev *dev,
struct rte_ether_addr *mac_addr);
static int iavf_dev_rx_queue_intr_enable(struct rte_eth_dev *dev,
uint16_t queue_id);
static int iavf_dev_rx_queue_intr_disable(struct rte_eth_dev *dev,
uint16_t queue_id);
static int iavf_dev_flow_ops_get(struct rte_eth_dev *dev,
const struct rte_flow_ops **ops);
static int iavf_set_mc_addr_list(struct rte_eth_dev *dev,
struct rte_ether_addr *mc_addrs,
uint32_t mc_addrs_num);
static int iavf_tm_ops_get(struct rte_eth_dev *dev __rte_unused, void *arg);
static const struct rte_pci_id pci_id_iavf_map[] = {
{ RTE_PCI_DEVICE(IAVF_INTEL_VENDOR_ID, IAVF_DEV_ID_ADAPTIVE_VF) },
{ RTE_PCI_DEVICE(IAVF_INTEL_VENDOR_ID, IAVF_DEV_ID_VF) },
{ RTE_PCI_DEVICE(IAVF_INTEL_VENDOR_ID, IAVF_DEV_ID_VF_HV) },
{ RTE_PCI_DEVICE(IAVF_INTEL_VENDOR_ID, IAVF_DEV_ID_X722_VF) },
{ RTE_PCI_DEVICE(IAVF_INTEL_VENDOR_ID, IAVF_DEV_ID_X722_A0_VF) },
{ .vendor_id = 0, /* sentinel */ },
};
struct rte_iavf_xstats_name_off {
char name[RTE_ETH_XSTATS_NAME_SIZE];
unsigned int offset;
};
#define _OFF_OF(a) offsetof(struct iavf_eth_xstats, a)
static const struct rte_iavf_xstats_name_off rte_iavf_stats_strings[] = {
{"rx_bytes", _OFF_OF(eth_stats.rx_bytes)},
{"rx_unicast_packets", _OFF_OF(eth_stats.rx_unicast)},
{"rx_multicast_packets", _OFF_OF(eth_stats.rx_multicast)},
{"rx_broadcast_packets", _OFF_OF(eth_stats.rx_broadcast)},
{"rx_dropped_packets", _OFF_OF(eth_stats.rx_discards)},
{"rx_unknown_protocol_packets", offsetof(struct iavf_eth_stats,
rx_unknown_protocol)},
{"tx_bytes", _OFF_OF(eth_stats.tx_bytes)},
{"tx_unicast_packets", _OFF_OF(eth_stats.tx_unicast)},
{"tx_multicast_packets", _OFF_OF(eth_stats.tx_multicast)},
{"tx_broadcast_packets", _OFF_OF(eth_stats.tx_broadcast)},
{"tx_dropped_packets", _OFF_OF(eth_stats.tx_discards)},
{"tx_error_packets", _OFF_OF(eth_stats.tx_errors)},
{"inline_ipsec_crypto_ipackets", _OFF_OF(ips_stats.icount)},
{"inline_ipsec_crypto_ibytes", _OFF_OF(ips_stats.ibytes)},
{"inline_ipsec_crypto_ierrors", _OFF_OF(ips_stats.ierrors.count)},
{"inline_ipsec_crypto_ierrors_sad_lookup",
_OFF_OF(ips_stats.ierrors.sad_miss)},
{"inline_ipsec_crypto_ierrors_not_processed",
_OFF_OF(ips_stats.ierrors.not_processed)},
{"inline_ipsec_crypto_ierrors_icv_fail",
_OFF_OF(ips_stats.ierrors.icv_check)},
{"inline_ipsec_crypto_ierrors_length",
_OFF_OF(ips_stats.ierrors.ipsec_length)},
{"inline_ipsec_crypto_ierrors_misc",
_OFF_OF(ips_stats.ierrors.misc)},
};
#undef _OFF_OF
#define IAVF_NB_XSTATS (sizeof(rte_iavf_stats_strings) / \
sizeof(rte_iavf_stats_strings[0]))
static const struct eth_dev_ops iavf_eth_dev_ops = {
.dev_configure = iavf_dev_configure,
.dev_start = iavf_dev_start,
.dev_stop = iavf_dev_stop,
.dev_close = iavf_dev_close,
.dev_reset = iavf_dev_reset,
.dev_infos_get = iavf_dev_info_get,
.dev_supported_ptypes_get = iavf_dev_supported_ptypes_get,
.link_update = iavf_dev_link_update,
.stats_get = iavf_dev_stats_get,
.stats_reset = iavf_dev_stats_reset,
.xstats_get = iavf_dev_xstats_get,
.xstats_get_names = iavf_dev_xstats_get_names,
.xstats_reset = iavf_dev_xstats_reset,
.promiscuous_enable = iavf_dev_promiscuous_enable,
.promiscuous_disable = iavf_dev_promiscuous_disable,
.allmulticast_enable = iavf_dev_allmulticast_enable,
.allmulticast_disable = iavf_dev_allmulticast_disable,
.mac_addr_add = iavf_dev_add_mac_addr,
.mac_addr_remove = iavf_dev_del_mac_addr,
.set_mc_addr_list = iavf_set_mc_addr_list,
.vlan_filter_set = iavf_dev_vlan_filter_set,
.vlan_offload_set = iavf_dev_vlan_offload_set,
.rx_queue_start = iavf_dev_rx_queue_start,
.rx_queue_stop = iavf_dev_rx_queue_stop,
.tx_queue_start = iavf_dev_tx_queue_start,
.tx_queue_stop = iavf_dev_tx_queue_stop,
.rx_queue_setup = iavf_dev_rx_queue_setup,
.rx_queue_release = iavf_dev_rx_queue_release,
.tx_queue_setup = iavf_dev_tx_queue_setup,
.tx_queue_release = iavf_dev_tx_queue_release,
.mac_addr_set = iavf_dev_set_default_mac_addr,
.reta_update = iavf_dev_rss_reta_update,
.reta_query = iavf_dev_rss_reta_query,
.rss_hash_update = iavf_dev_rss_hash_update,
.rss_hash_conf_get = iavf_dev_rss_hash_conf_get,
.rxq_info_get = iavf_dev_rxq_info_get,
.txq_info_get = iavf_dev_txq_info_get,
.mtu_set = iavf_dev_mtu_set,
.rx_queue_intr_enable = iavf_dev_rx_queue_intr_enable,
.rx_queue_intr_disable = iavf_dev_rx_queue_intr_disable,
.flow_ops_get = iavf_dev_flow_ops_get,
.tx_done_cleanup = iavf_dev_tx_done_cleanup,
.get_monitor_addr = iavf_get_monitor_addr,
.tm_ops_get = iavf_tm_ops_get,
};
static int
iavf_tm_ops_get(struct rte_eth_dev *dev,
void *arg)
{
struct iavf_adapter *adapter =
IAVF_DEV_PRIVATE_TO_ADAPTER(dev->data->dev_private);
if (adapter->closed)
return -EIO;
if (!arg)
return -EINVAL;
*(const void **)arg = &iavf_tm_ops;
return 0;
}
__rte_unused
static int
iavf_vfr_inprogress(struct iavf_hw *hw)
{
int inprogress = 0;
if ((IAVF_READ_REG(hw, IAVF_VFGEN_RSTAT) &
IAVF_VFGEN_RSTAT_VFR_STATE_MASK) ==
VIRTCHNL_VFR_INPROGRESS)
inprogress = 1;
if (inprogress)
PMD_DRV_LOG(INFO, "Watchdog detected VFR in progress");
return inprogress;
}
__rte_unused
static void
iavf_dev_watchdog(void *cb_arg)
{
struct iavf_adapter *adapter = cb_arg;
struct iavf_hw *hw = IAVF_DEV_PRIVATE_TO_HW(adapter);
int vfr_inprogress = 0, rc = 0;
/* check if watchdog has been disabled since last call */
if (!adapter->vf.watchdog_enabled)
return;
/* If in reset then poll vfr_inprogress register for completion */
if (adapter->vf.vf_reset) {
vfr_inprogress = iavf_vfr_inprogress(hw);
if (!vfr_inprogress) {
PMD_DRV_LOG(INFO, "VF \"%s\" reset has completed",
adapter->vf.eth_dev->data->name);
adapter->vf.vf_reset = false;
}
/* If not in reset then poll vfr_inprogress register for VFLR event */
} else {
vfr_inprogress = iavf_vfr_inprogress(hw);
if (vfr_inprogress) {
PMD_DRV_LOG(INFO,
"VF \"%s\" reset event detected by watchdog",
adapter->vf.eth_dev->data->name);
/* enter reset state with VFLR event */
adapter->vf.vf_reset = true;
rte_eth_dev_callback_process(adapter->vf.eth_dev,
RTE_ETH_EVENT_INTR_RESET, NULL);
}
}
/* re-alarm watchdog */
rc = rte_eal_alarm_set(IAVF_DEV_WATCHDOG_PERIOD,
&iavf_dev_watchdog, cb_arg);
if (rc)
PMD_DRV_LOG(ERR, "Failed \"%s\" to reset device watchdog alarm",
adapter->vf.eth_dev->data->name);
}
static void
iavf_dev_watchdog_enable(struct iavf_adapter *adapter __rte_unused)
{
#if (IAVF_DEV_WATCHDOG_PERIOD > 0)
PMD_DRV_LOG(INFO, "Enabling device watchdog");
adapter->vf.watchdog_enabled = true;
if (rte_eal_alarm_set(IAVF_DEV_WATCHDOG_PERIOD,
&iavf_dev_watchdog, (void *)adapter))
PMD_DRV_LOG(ERR, "Failed to enabled device watchdog");
#endif
}
static void
iavf_dev_watchdog_disable(struct iavf_adapter *adapter __rte_unused)
{
#if (IAVF_DEV_WATCHDOG_PERIOD > 0)
PMD_DRV_LOG(INFO, "Disabling device watchdog");
adapter->vf.watchdog_enabled = false;
#endif
}
static int
iavf_set_mc_addr_list(struct rte_eth_dev *dev,
struct rte_ether_addr *mc_addrs,
uint32_t mc_addrs_num)
{
struct iavf_info *vf = IAVF_DEV_PRIVATE_TO_VF(dev->data->dev_private);
struct iavf_adapter *adapter =
IAVF_DEV_PRIVATE_TO_ADAPTER(dev->data->dev_private);
int err, ret;
if (mc_addrs_num > IAVF_NUM_MACADDR_MAX) {
PMD_DRV_LOG(ERR,
"can't add more than a limited number (%u) of addresses.",
(uint32_t)IAVF_NUM_MACADDR_MAX);
return -EINVAL;
}
if (adapter->closed)
return -EIO;
/* flush previous addresses */
err = iavf_add_del_mc_addr_list(adapter, vf->mc_addrs, vf->mc_addrs_num,
false);
if (err)
return err;
/* add new ones */
err = iavf_add_del_mc_addr_list(adapter, mc_addrs, mc_addrs_num, true);
if (err) {
/* if adding mac address list fails, should add the previous
* addresses back.
*/
ret = iavf_add_del_mc_addr_list(adapter, vf->mc_addrs,
vf->mc_addrs_num, true);
if (ret)
return ret;
} else {
vf->mc_addrs_num = mc_addrs_num;
memcpy(vf->mc_addrs,
mc_addrs, mc_addrs_num * sizeof(*mc_addrs));
}
return err;
}
static void
iavf_config_rss_hf(struct iavf_adapter *adapter, uint64_t rss_hf)
{
static const uint64_t map_hena_rss[] = {
/* IPv4 */
[IAVF_FILTER_PCTYPE_NONF_UNICAST_IPV4_UDP] =
RTE_ETH_RSS_NONFRAG_IPV4_UDP,
[IAVF_FILTER_PCTYPE_NONF_MULTICAST_IPV4_UDP] =
RTE_ETH_RSS_NONFRAG_IPV4_UDP,
[IAVF_FILTER_PCTYPE_NONF_IPV4_UDP] =
RTE_ETH_RSS_NONFRAG_IPV4_UDP,
[IAVF_FILTER_PCTYPE_NONF_IPV4_TCP_SYN_NO_ACK] =
RTE_ETH_RSS_NONFRAG_IPV4_TCP,
[IAVF_FILTER_PCTYPE_NONF_IPV4_TCP] =
RTE_ETH_RSS_NONFRAG_IPV4_TCP,
[IAVF_FILTER_PCTYPE_NONF_IPV4_SCTP] =
RTE_ETH_RSS_NONFRAG_IPV4_SCTP,
[IAVF_FILTER_PCTYPE_NONF_IPV4_OTHER] =
RTE_ETH_RSS_NONFRAG_IPV4_OTHER,
[IAVF_FILTER_PCTYPE_FRAG_IPV4] = RTE_ETH_RSS_FRAG_IPV4,
/* IPv6 */
[IAVF_FILTER_PCTYPE_NONF_UNICAST_IPV6_UDP] =
RTE_ETH_RSS_NONFRAG_IPV6_UDP,
[IAVF_FILTER_PCTYPE_NONF_MULTICAST_IPV6_UDP] =
RTE_ETH_RSS_NONFRAG_IPV6_UDP,
[IAVF_FILTER_PCTYPE_NONF_IPV6_UDP] =
RTE_ETH_RSS_NONFRAG_IPV6_UDP,
[IAVF_FILTER_PCTYPE_NONF_IPV6_TCP_SYN_NO_ACK] =
RTE_ETH_RSS_NONFRAG_IPV6_TCP,
[IAVF_FILTER_PCTYPE_NONF_IPV6_TCP] =
RTE_ETH_RSS_NONFRAG_IPV6_TCP,
[IAVF_FILTER_PCTYPE_NONF_IPV6_SCTP] =
RTE_ETH_RSS_NONFRAG_IPV6_SCTP,
[IAVF_FILTER_PCTYPE_NONF_IPV6_OTHER] =
RTE_ETH_RSS_NONFRAG_IPV6_OTHER,
[IAVF_FILTER_PCTYPE_FRAG_IPV6] = RTE_ETH_RSS_FRAG_IPV6,
/* L2 Payload */
[IAVF_FILTER_PCTYPE_L2_PAYLOAD] = RTE_ETH_RSS_L2_PAYLOAD
};
const uint64_t ipv4_rss = RTE_ETH_RSS_NONFRAG_IPV4_UDP |
RTE_ETH_RSS_NONFRAG_IPV4_TCP |
RTE_ETH_RSS_NONFRAG_IPV4_SCTP |
RTE_ETH_RSS_NONFRAG_IPV4_OTHER |
RTE_ETH_RSS_FRAG_IPV4;
const uint64_t ipv6_rss = RTE_ETH_RSS_NONFRAG_IPV6_UDP |
RTE_ETH_RSS_NONFRAG_IPV6_TCP |
RTE_ETH_RSS_NONFRAG_IPV6_SCTP |
RTE_ETH_RSS_NONFRAG_IPV6_OTHER |
RTE_ETH_RSS_FRAG_IPV6;
struct iavf_info *vf = IAVF_DEV_PRIVATE_TO_VF(adapter);
uint64_t caps = 0, hena = 0, valid_rss_hf = 0;
uint32_t i;
int ret;
ret = iavf_get_hena_caps(adapter, &caps);
if (ret) {
/**
* RSS offload type configuration is not a necessary feature
* for VF, so here just print a warning and return.
*/
PMD_DRV_LOG(WARNING,
"fail to get RSS offload type caps, ret: %d", ret);
return;
}
/**
* RTE_ETH_RSS_IPV4 and RTE_ETH_RSS_IPV6 can be considered as 2
* generalizations of all other IPv4 and IPv6 RSS types.
*/
if (rss_hf & RTE_ETH_RSS_IPV4)
rss_hf |= ipv4_rss;
if (rss_hf & RTE_ETH_RSS_IPV6)
rss_hf |= ipv6_rss;
RTE_BUILD_BUG_ON(RTE_DIM(map_hena_rss) > sizeof(uint64_t) * CHAR_BIT);
for (i = 0; i < RTE_DIM(map_hena_rss); i++) {
uint64_t bit = BIT_ULL(i);
if ((caps & bit) && (map_hena_rss[i] & rss_hf)) {
valid_rss_hf |= map_hena_rss[i];
hena |= bit;
}
}
ret = iavf_set_hena(adapter, hena);
if (ret) {
/**
* RSS offload type configuration is not a necessary feature
* for VF, so here just print a warning and return.
*/
PMD_DRV_LOG(WARNING,
"fail to set RSS offload types, ret: %d", ret);
return;
}
if (valid_rss_hf & ipv4_rss)
valid_rss_hf |= rss_hf & RTE_ETH_RSS_IPV4;
if (valid_rss_hf & ipv6_rss)
valid_rss_hf |= rss_hf & RTE_ETH_RSS_IPV6;
if (rss_hf & ~valid_rss_hf)
PMD_DRV_LOG(WARNING, "Unsupported rss_hf 0x%" PRIx64,
rss_hf & ~valid_rss_hf);
vf->rss_hf = valid_rss_hf;
}
static int
iavf_init_rss(struct iavf_adapter *adapter)
{
struct iavf_info *vf = IAVF_DEV_PRIVATE_TO_VF(adapter);
struct rte_eth_rss_conf *rss_conf;
uint16_t i, j, nb_q;
int ret;
rss_conf = &adapter->dev_data->dev_conf.rx_adv_conf.rss_conf;
nb_q = RTE_MIN(adapter->dev_data->nb_rx_queues,
vf->max_rss_qregion);
if (!(vf->vf_res->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_RSS_PF)) {
PMD_DRV_LOG(DEBUG, "RSS is not supported");
return -ENOTSUP;
}
/* configure RSS key */
if (!rss_conf->rss_key) {
/* Calculate the default hash key */
for (i = 0; i < vf->vf_res->rss_key_size; i++)
vf->rss_key[i] = (uint8_t)rte_rand();
} else
rte_memcpy(vf->rss_key, rss_conf->rss_key,
RTE_MIN(rss_conf->rss_key_len,
vf->vf_res->rss_key_size));
/* init RSS LUT table */
for (i = 0, j = 0; i < vf->vf_res->rss_lut_size; i++, j++) {
if (j >= nb_q)
j = 0;
vf->rss_lut[i] = j;
}
/* send virtchnl ops to configure RSS */
ret = iavf_configure_rss_lut(adapter);
if (ret)
return ret;
ret = iavf_configure_rss_key(adapter);
if (ret)
return ret;
if (vf->vf_res->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_ADV_RSS_PF) {
/* Set RSS hash configuration based on rss_conf->rss_hf. */
ret = iavf_rss_hash_set(adapter, rss_conf->rss_hf, true);
if (ret) {
PMD_DRV_LOG(ERR, "fail to set default RSS");
return ret;
}
} else {
iavf_config_rss_hf(adapter, rss_conf->rss_hf);
}
return 0;
}
static int
iavf_queues_req_reset(struct rte_eth_dev *dev, uint16_t num)
{
struct iavf_adapter *ad =
IAVF_DEV_PRIVATE_TO_ADAPTER(dev->data->dev_private);
struct iavf_info *vf = IAVF_DEV_PRIVATE_TO_VF(ad);
int ret;
ret = iavf_request_queues(dev, num);
if (ret) {
PMD_DRV_LOG(ERR, "request queues from PF failed");
return ret;
}
PMD_DRV_LOG(INFO, "change queue pairs from %u to %u",
vf->vsi_res->num_queue_pairs, num);
ret = iavf_dev_reset(dev);
if (ret) {
PMD_DRV_LOG(ERR, "vf reset failed");
return ret;
}
return 0;
}
static int
iavf_dev_vlan_insert_set(struct rte_eth_dev *dev)
{
struct iavf_adapter *adapter =
IAVF_DEV_PRIVATE_TO_ADAPTER(dev->data->dev_private);
struct iavf_info *vf = IAVF_DEV_PRIVATE_TO_VF(adapter);
bool enable;
if (!(vf->vf_res->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_VLAN_V2))
return 0;
enable = !!(dev->data->dev_conf.txmode.offloads &
RTE_ETH_TX_OFFLOAD_VLAN_INSERT);
iavf_config_vlan_insert_v2(adapter, enable);
return 0;
}
static int
iavf_dev_init_vlan(struct rte_eth_dev *dev)
{
int err;
err = iavf_dev_vlan_offload_set(dev,
RTE_ETH_VLAN_STRIP_MASK |
RTE_ETH_QINQ_STRIP_MASK |
RTE_ETH_VLAN_FILTER_MASK |
RTE_ETH_VLAN_EXTEND_MASK);
if (err) {
PMD_DRV_LOG(ERR, "Failed to update vlan offload");
return err;
}
err = iavf_dev_vlan_insert_set(dev);
if (err)
PMD_DRV_LOG(ERR, "Failed to update vlan insertion");
return err;
}
static int
iavf_dev_configure(struct rte_eth_dev *dev)
{
struct iavf_adapter *ad =
IAVF_DEV_PRIVATE_TO_ADAPTER(dev->data->dev_private);
struct iavf_info *vf = IAVF_DEV_PRIVATE_TO_VF(ad);
uint16_t num_queue_pairs = RTE_MAX(dev->data->nb_rx_queues,
dev->data->nb_tx_queues);
int ret;
if (ad->closed)
return -EIO;
ad->rx_bulk_alloc_allowed = true;
/* Initialize to TRUE. If any of Rx queues doesn't meet the
* vector Rx/Tx preconditions, it will be reset.
*/
ad->rx_vec_allowed = true;
ad->tx_vec_allowed = true;
if (dev->data->dev_conf.rxmode.mq_mode & RTE_ETH_MQ_RX_RSS_FLAG)
dev->data->dev_conf.rxmode.offloads |= RTE_ETH_RX_OFFLOAD_RSS_HASH;
/* Large VF setting */
if (num_queue_pairs > IAVF_MAX_NUM_QUEUES_DFLT) {
if (!(vf->vf_res->vf_cap_flags &
VIRTCHNL_VF_LARGE_NUM_QPAIRS)) {
PMD_DRV_LOG(ERR, "large VF is not supported");
return -1;
}
if (num_queue_pairs > IAVF_MAX_NUM_QUEUES_LV) {
PMD_DRV_LOG(ERR, "queue pairs number cannot be larger than %u",
IAVF_MAX_NUM_QUEUES_LV);
return -1;
}
ret = iavf_queues_req_reset(dev, num_queue_pairs);
if (ret)
return ret;
ret = iavf_get_max_rss_queue_region(ad);
if (ret) {
PMD_INIT_LOG(ERR, "get max rss queue region failed");
return ret;
}
vf->lv_enabled = true;
} else {
/* Check if large VF is already enabled. If so, disable and
* release redundant queue resource.
* Or check if enough queue pairs. If not, request them from PF.
*/
if (vf->lv_enabled ||
num_queue_pairs > vf->vsi_res->num_queue_pairs) {
ret = iavf_queues_req_reset(dev, num_queue_pairs);
if (ret)
return ret;
vf->lv_enabled = false;
}
/* if large VF is not required, use default rss queue region */
vf->max_rss_qregion = IAVF_MAX_NUM_QUEUES_DFLT;
}
ret = iavf_dev_init_vlan(dev);
if (ret)
PMD_DRV_LOG(ERR, "configure VLAN failed: %d", ret);
if (vf->vf_res->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_RSS_PF) {
if (iavf_init_rss(ad) != 0) {
PMD_DRV_LOG(ERR, "configure rss failed");
return -1;
}
}
return 0;
}
static int
iavf_init_rxq(struct rte_eth_dev *dev, struct iavf_rx_queue *rxq)
{
struct iavf_hw *hw = IAVF_DEV_PRIVATE_TO_HW(dev->data->dev_private);
struct rte_eth_dev_data *dev_data = dev->data;
uint16_t buf_size, max_pkt_len;
uint32_t frame_size = dev->data->mtu + IAVF_ETH_OVERHEAD;
buf_size = rte_pktmbuf_data_room_size(rxq->mp) - RTE_PKTMBUF_HEADROOM;
/* Calculate the maximum packet length allowed */
max_pkt_len = RTE_MIN((uint32_t)
rxq->rx_buf_len * IAVF_MAX_CHAINED_RX_BUFFERS,
frame_size);
/* Check if maximum packet length is set correctly. */
if (max_pkt_len <= RTE_ETHER_MIN_LEN ||
max_pkt_len > IAVF_FRAME_SIZE_MAX) {
PMD_DRV_LOG(ERR, "maximum packet length must be "
"larger than %u and smaller than %u",
(uint32_t)IAVF_ETH_MAX_LEN,
(uint32_t)IAVF_FRAME_SIZE_MAX);
return -EINVAL;
}
rxq->max_pkt_len = max_pkt_len;
if ((dev_data->dev_conf.rxmode.offloads & RTE_ETH_RX_OFFLOAD_SCATTER) ||
rxq->max_pkt_len > buf_size) {
dev_data->scattered_rx = 1;
}
IAVF_PCI_REG_WRITE(rxq->qrx_tail, rxq->nb_rx_desc - 1);
IAVF_WRITE_FLUSH(hw);
return 0;
}
static int
iavf_init_queues(struct rte_eth_dev *dev)
{
struct iavf_rx_queue **rxq =
(struct iavf_rx_queue **)dev->data->rx_queues;
int i, ret = IAVF_SUCCESS;
for (i = 0; i < dev->data->nb_rx_queues; i++) {
if (!rxq[i] || !rxq[i]->q_set)
continue;
ret = iavf_init_rxq(dev, rxq[i]);
if (ret != IAVF_SUCCESS)
break;
}
/* set rx/tx function to vector/scatter/single-segment
* according to parameters
*/
iavf_set_rx_function(dev);
iavf_set_tx_function(dev);
return ret;
}
static int iavf_config_rx_queues_irqs(struct rte_eth_dev *dev,
struct rte_intr_handle *intr_handle)
{
struct iavf_adapter *adapter =
IAVF_DEV_PRIVATE_TO_ADAPTER(dev->data->dev_private);
struct iavf_info *vf = IAVF_DEV_PRIVATE_TO_VF(adapter);
struct iavf_hw *hw = IAVF_DEV_PRIVATE_TO_HW(adapter);
struct iavf_qv_map *qv_map;
uint16_t interval, i;
int vec;
if (rte_intr_cap_multiple(intr_handle) &&
dev->data->dev_conf.intr_conf.rxq) {
if (rte_intr_efd_enable(intr_handle, dev->data->nb_rx_queues))
return -1;
}
if (rte_intr_dp_is_en(intr_handle)) {
if (rte_intr_vec_list_alloc(intr_handle, "intr_vec",
dev->data->nb_rx_queues)) {
PMD_DRV_LOG(ERR, "Failed to allocate %d rx intr_vec",
dev->data->nb_rx_queues);
return -1;
}
}
qv_map = rte_zmalloc("qv_map",
dev->data->nb_rx_queues * sizeof(struct iavf_qv_map), 0);
if (!qv_map) {
PMD_DRV_LOG(ERR, "Failed to allocate %d queue-vector map",
dev->data->nb_rx_queues);
goto qv_map_alloc_err;
}
if (!dev->data->dev_conf.intr_conf.rxq ||
!rte_intr_dp_is_en(intr_handle)) {
/* Rx interrupt disabled, Map interrupt only for writeback */
vf->nb_msix = 1;
if (vf->vf_res->vf_cap_flags &
VIRTCHNL_VF_OFFLOAD_WB_ON_ITR) {
/* If WB_ON_ITR supports, enable it */
vf->msix_base = IAVF_RX_VEC_START;
/* Set the ITR for index zero, to 2us to make sure that
* we leave time for aggregation to occur, but don't
* increase latency dramatically.
*/
IAVF_WRITE_REG(hw,
IAVF_VFINT_DYN_CTLN1(vf->msix_base - 1),
(0 << IAVF_VFINT_DYN_CTLN1_ITR_INDX_SHIFT) |
IAVF_VFINT_DYN_CTLN1_WB_ON_ITR_MASK |
(2UL << IAVF_VFINT_DYN_CTLN1_INTERVAL_SHIFT));
/* debug - check for success! the return value
* should be 2, offset is 0x2800
*/
/* IAVF_READ_REG(hw, IAVF_VFINT_ITRN1(0, 0)); */
} else {
/* If no WB_ON_ITR offload flags, need to set
* interrupt for descriptor write back.
*/
vf->msix_base = IAVF_MISC_VEC_ID;
/* set ITR to default */
interval = iavf_calc_itr_interval(
IAVF_QUEUE_ITR_INTERVAL_DEFAULT);
IAVF_WRITE_REG(hw, IAVF_VFINT_DYN_CTL01,
IAVF_VFINT_DYN_CTL01_INTENA_MASK |
(IAVF_ITR_INDEX_DEFAULT <<
IAVF_VFINT_DYN_CTL01_ITR_INDX_SHIFT) |
(interval <<
IAVF_VFINT_DYN_CTL01_INTERVAL_SHIFT));
}
IAVF_WRITE_FLUSH(hw);
/* map all queues to the same interrupt */
for (i = 0; i < dev->data->nb_rx_queues; i++) {
qv_map[i].queue_id = i;
qv_map[i].vector_id = vf->msix_base;
}
vf->qv_map = qv_map;
} else {
if (!rte_intr_allow_others(intr_handle)) {
vf->nb_msix = 1;
vf->msix_base = IAVF_MISC_VEC_ID;
for (i = 0; i < dev->data->nb_rx_queues; i++) {
qv_map[i].queue_id = i;
qv_map[i].vector_id = vf->msix_base;
rte_intr_vec_list_index_set(intr_handle,
i, IAVF_MISC_VEC_ID);
}
vf->qv_map = qv_map;
PMD_DRV_LOG(DEBUG,
"vector %u are mapping to all Rx queues",
vf->msix_base);
} else {
/* If Rx interrupt is required, and we can use
* multi interrupts, then the vec is from 1
*/
vf->nb_msix =
RTE_MIN(rte_intr_nb_efd_get(intr_handle),
(uint16_t)(vf->vf_res->max_vectors - 1));
vf->msix_base = IAVF_RX_VEC_START;
vec = IAVF_RX_VEC_START;
for (i = 0; i < dev->data->nb_rx_queues; i++) {
qv_map[i].queue_id = i;
qv_map[i].vector_id = vec;
rte_intr_vec_list_index_set(intr_handle,
i, vec++);
if (vec >= vf->nb_msix + IAVF_RX_VEC_START)
vec = IAVF_RX_VEC_START;
}
vf->qv_map = qv_map;
PMD_DRV_LOG(DEBUG,
"%u vectors are mapping to %u Rx queues",
vf->nb_msix, dev->data->nb_rx_queues);
}
}
if (!vf->lv_enabled) {
if (iavf_config_irq_map(adapter)) {
PMD_DRV_LOG(ERR, "config interrupt mapping failed");
goto config_irq_map_err;
}
} else {
uint16_t num_qv_maps = dev->data->nb_rx_queues;
uint16_t index = 0;
while (num_qv_maps > IAVF_IRQ_MAP_NUM_PER_BUF) {
if (iavf_config_irq_map_lv(adapter,
IAVF_IRQ_MAP_NUM_PER_BUF, index)) {
PMD_DRV_LOG(ERR, "config interrupt mapping for large VF failed");
goto config_irq_map_err;
}
num_qv_maps -= IAVF_IRQ_MAP_NUM_PER_BUF;
index += IAVF_IRQ_MAP_NUM_PER_BUF;
}
if (iavf_config_irq_map_lv(adapter, num_qv_maps, index)) {
PMD_DRV_LOG(ERR, "config interrupt mapping for large VF failed");
goto config_irq_map_err;
}
}
return 0;
config_irq_map_err:
rte_free(vf->qv_map);
vf->qv_map = NULL;
qv_map_alloc_err:
rte_intr_vec_list_free(intr_handle);
return -1;
}
static int
iavf_start_queues(struct rte_eth_dev *dev)
{
struct iavf_rx_queue *rxq;
struct iavf_tx_queue *txq;
int i;
uint16_t nb_txq, nb_rxq;
for (nb_txq = 0; nb_txq < dev->data->nb_tx_queues; nb_txq++) {
txq = dev->data->tx_queues[nb_txq];
if (txq->tx_deferred_start)
continue;
if (iavf_dev_tx_queue_start(dev, nb_txq) != 0) {
PMD_DRV_LOG(ERR, "Fail to start tx queue %u", nb_txq);
goto tx_err;
}
}
for (nb_rxq = 0; nb_rxq < dev->data->nb_rx_queues; nb_rxq++) {
rxq = dev->data->rx_queues[nb_rxq];
if (rxq->rx_deferred_start)
continue;
if (iavf_dev_rx_queue_start(dev, nb_rxq) != 0) {
PMD_DRV_LOG(ERR, "Fail to start rx queue %u", nb_rxq);
goto rx_err;
}
}
return 0;
rx_err:
for (i = 0; i < nb_rxq; i++)
iavf_dev_rx_queue_stop(dev, i);
tx_err:
for (i = 0; i < nb_txq; i++)
iavf_dev_tx_queue_stop(dev, i);
return -1;
}
static int
iavf_dev_start(struct rte_eth_dev *dev)
{
struct iavf_adapter *adapter =
IAVF_DEV_PRIVATE_TO_ADAPTER(dev->data->dev_private);
struct iavf_info *vf = IAVF_DEV_PRIVATE_TO_VF(dev->data->dev_private);
struct rte_intr_handle *intr_handle = dev->intr_handle;
uint16_t num_queue_pairs;
uint16_t index = 0;
PMD_INIT_FUNC_TRACE();
if (adapter->closed)
return -1;
adapter->stopped = 0;
vf->max_pkt_len = dev->data->mtu + IAVF_ETH_OVERHEAD;
vf->num_queue_pairs = RTE_MAX(dev->data->nb_rx_queues,
dev->data->nb_tx_queues);
num_queue_pairs = vf->num_queue_pairs;
if (vf->vf_res->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_QOS)
if (iavf_get_qos_cap(adapter)) {
PMD_INIT_LOG(ERR, "Failed to get qos capability");
return -1;
}
if (iavf_init_queues(dev) != 0) {
PMD_DRV_LOG(ERR, "failed to do Queue init");
return -1;
}
/* If needed, send configure queues msg multiple times to make the
* adminq buffer length smaller than the 4K limitation.
*/
while (num_queue_pairs > IAVF_CFG_Q_NUM_PER_BUF) {
if (iavf_configure_queues(adapter,
IAVF_CFG_Q_NUM_PER_BUF, index) != 0) {
PMD_DRV_LOG(ERR, "configure queues failed");
goto err_queue;
}
num_queue_pairs -= IAVF_CFG_Q_NUM_PER_BUF;
index += IAVF_CFG_Q_NUM_PER_BUF;
}
if (iavf_configure_queues(adapter, num_queue_pairs, index) != 0) {
PMD_DRV_LOG(ERR, "configure queues failed");
goto err_queue;
}
if (iavf_config_rx_queues_irqs(dev, intr_handle) != 0) {
PMD_DRV_LOG(ERR, "configure irq failed");
goto err_queue;
}
/* re-enable intr again, because efd assign may change */
if (dev->data->dev_conf.intr_conf.rxq != 0) {
if (vf->vf_res->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_WB_ON_ITR)
rte_intr_disable(intr_handle);
rte_intr_enable(intr_handle);
}
/* Set all mac addrs */
iavf_add_del_all_mac_addr(adapter, true);
/* Set all multicast addresses */
iavf_add_del_mc_addr_list(adapter, vf->mc_addrs, vf->mc_addrs_num,
true);
if (iavf_start_queues(dev) != 0) {
PMD_DRV_LOG(ERR, "enable queues failed");
goto err_mac;
}
return 0;
err_mac:
iavf_add_del_all_mac_addr(adapter, false);
err_queue:
return -1;
}
static int
iavf_dev_stop(struct rte_eth_dev *dev)
{
struct iavf_info *vf = IAVF_DEV_PRIVATE_TO_VF(dev->data->dev_private);
struct iavf_adapter *adapter =
IAVF_DEV_PRIVATE_TO_ADAPTER(dev->data->dev_private);
struct rte_intr_handle *intr_handle = dev->intr_handle;
PMD_INIT_FUNC_TRACE();
if (vf->vf_reset)
return 0;
if (adapter->closed)
return -1;
if (!(vf->vf_res->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_WB_ON_ITR) &&
dev->data->dev_conf.intr_conf.rxq != 0)
rte_intr_disable(intr_handle);
if (adapter->stopped == 1)
return 0;
/* Disable the interrupt for Rx */
rte_intr_efd_disable(intr_handle);
/* Rx interrupt vector mapping free */
rte_intr_vec_list_free(intr_handle);
/* remove all mac addrs */
iavf_add_del_all_mac_addr(adapter, false);
/* remove all multicast addresses */
iavf_add_del_mc_addr_list(adapter, vf->mc_addrs, vf->mc_addrs_num,
false);
iavf_stop_queues(dev);
adapter->stopped = 1;
dev->data->dev_started = 0;
return 0;
}
static int
iavf_dev_info_get(struct rte_eth_dev *dev, struct rte_eth_dev_info *dev_info)
{
struct iavf_adapter *adapter =
IAVF_DEV_PRIVATE_TO_ADAPTER(dev->data->dev_private);
struct iavf_info *vf = &adapter->vf;
if (adapter->closed)
return -EIO;
dev_info->max_rx_queues = IAVF_MAX_NUM_QUEUES_LV;
dev_info->max_tx_queues = IAVF_MAX_NUM_QUEUES_LV;
dev_info->min_rx_bufsize = IAVF_BUF_SIZE_MIN;
dev_info->max_rx_pktlen = IAVF_FRAME_SIZE_MAX;
dev_info->max_mtu = dev_info->max_rx_pktlen - IAVF_ETH_OVERHEAD;
dev_info->min_mtu = RTE_ETHER_MIN_MTU;
dev_info->hash_key_size = vf->vf_res->rss_key_size;
dev_info->reta_size = vf->vf_res->rss_lut_size;
dev_info->flow_type_rss_offloads = IAVF_RSS_OFFLOAD_ALL;
dev_info->max_mac_addrs = IAVF_NUM_MACADDR_MAX;
dev_info->dev_capa &= ~RTE_ETH_DEV_CAPA_FLOW_RULE_KEEP;
dev_info->rx_offload_capa =
RTE_ETH_RX_OFFLOAD_VLAN_STRIP |
RTE_ETH_RX_OFFLOAD_QINQ_STRIP |
RTE_ETH_RX_OFFLOAD_IPV4_CKSUM |
RTE_ETH_RX_OFFLOAD_UDP_CKSUM |
RTE_ETH_RX_OFFLOAD_TCP_CKSUM |
RTE_ETH_RX_OFFLOAD_OUTER_IPV4_CKSUM |
RTE_ETH_RX_OFFLOAD_SCATTER |
RTE_ETH_RX_OFFLOAD_VLAN_FILTER |
RTE_ETH_RX_OFFLOAD_VLAN_EXTEND |
RTE_ETH_RX_OFFLOAD_RSS_HASH;
dev_info->tx_offload_capa =
RTE_ETH_TX_OFFLOAD_VLAN_INSERT |
RTE_ETH_TX_OFFLOAD_QINQ_INSERT |
RTE_ETH_TX_OFFLOAD_IPV4_CKSUM |
RTE_ETH_TX_OFFLOAD_UDP_CKSUM |
RTE_ETH_TX_OFFLOAD_TCP_CKSUM |
RTE_ETH_TX_OFFLOAD_SCTP_CKSUM |
RTE_ETH_TX_OFFLOAD_OUTER_IPV4_CKSUM |
RTE_ETH_TX_OFFLOAD_TCP_TSO |
RTE_ETH_TX_OFFLOAD_VXLAN_TNL_TSO |
RTE_ETH_TX_OFFLOAD_GRE_TNL_TSO |
RTE_ETH_TX_OFFLOAD_IPIP_TNL_TSO |
RTE_ETH_TX_OFFLOAD_GENEVE_TNL_TSO |
RTE_ETH_TX_OFFLOAD_MULTI_SEGS |
RTE_ETH_TX_OFFLOAD_MBUF_FAST_FREE;
if (vf->vf_res->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_CRC)
dev_info->rx_offload_capa |= RTE_ETH_RX_OFFLOAD_KEEP_CRC;
if (iavf_ipsec_crypto_supported(adapter)) {
dev_info->rx_offload_capa |= RTE_ETH_RX_OFFLOAD_SECURITY;
dev_info->tx_offload_capa |= RTE_ETH_TX_OFFLOAD_SECURITY;
}
dev_info->default_rxconf = (struct rte_eth_rxconf) {
.rx_free_thresh = IAVF_DEFAULT_RX_FREE_THRESH,
.rx_drop_en = 0,
.offloads = 0,
};
dev_info->default_txconf = (struct rte_eth_txconf) {
.tx_free_thresh = IAVF_DEFAULT_TX_FREE_THRESH,
.tx_rs_thresh = IAVF_DEFAULT_TX_RS_THRESH,
.offloads = 0,
};
dev_info->rx_desc_lim = (struct rte_eth_desc_lim) {
.nb_max = IAVF_MAX_RING_DESC,
.nb_min = IAVF_MIN_RING_DESC,
.nb_align = IAVF_ALIGN_RING_DESC,
};
dev_info->tx_desc_lim = (struct rte_eth_desc_lim) {
.nb_max = IAVF_MAX_RING_DESC,
.nb_min = IAVF_MIN_RING_DESC,
.nb_align = IAVF_ALIGN_RING_DESC,
};
return 0;
}
static const uint32_t *
iavf_dev_supported_ptypes_get(struct rte_eth_dev *dev __rte_unused)
{
static const uint32_t ptypes[] = {
RTE_PTYPE_L2_ETHER,
RTE_PTYPE_L3_IPV4_EXT_UNKNOWN,
RTE_PTYPE_L4_FRAG,
RTE_PTYPE_L4_ICMP,
RTE_PTYPE_L4_NONFRAG,
RTE_PTYPE_L4_SCTP,
RTE_PTYPE_L4_TCP,
RTE_PTYPE_L4_UDP,
RTE_PTYPE_UNKNOWN
};
return ptypes;
}
int
iavf_dev_link_update(struct rte_eth_dev *dev,
__rte_unused int wait_to_complete)
{
struct rte_eth_link new_link;
struct iavf_info *vf = IAVF_DEV_PRIVATE_TO_VF(dev->data->dev_private);
memset(&new_link, 0, sizeof(new_link));
/* Only read status info stored in VF, and the info is updated
* when receive LINK_CHANGE evnet from PF by Virtchnnl.
*/
switch (vf->link_speed) {
case 10:
new_link.link_speed = RTE_ETH_SPEED_NUM_10M;
break;
case 100:
new_link.link_speed = RTE_ETH_SPEED_NUM_100M;
break;
case 1000:
new_link.link_speed = RTE_ETH_SPEED_NUM_1G;
break;
case 10000:
new_link.link_speed = RTE_ETH_SPEED_NUM_10G;
break;
case 20000:
new_link.link_speed = RTE_ETH_SPEED_NUM_20G;
break;
case 25000:
new_link.link_speed = RTE_ETH_SPEED_NUM_25G;
break;
case 40000:
new_link.link_speed = RTE_ETH_SPEED_NUM_40G;
break;
case 50000:
new_link.link_speed = RTE_ETH_SPEED_NUM_50G;
break;
case 100000:
new_link.link_speed = RTE_ETH_SPEED_NUM_100G;
break;
default:
new_link.link_speed = RTE_ETH_SPEED_NUM_NONE;
break;
}
new_link.link_duplex = RTE_ETH_LINK_FULL_DUPLEX;
new_link.link_status = vf->link_up ? RTE_ETH_LINK_UP :
RTE_ETH_LINK_DOWN;
new_link.link_autoneg = !(dev->data->dev_conf.link_speeds &
RTE_ETH_LINK_SPEED_FIXED);
return rte_eth_linkstatus_set(dev, &new_link);
}
static int
iavf_dev_promiscuous_enable(struct rte_eth_dev *dev)
{
struct iavf_adapter *adapter =
IAVF_DEV_PRIVATE_TO_ADAPTER(dev->data->dev_private);
struct iavf_info *vf = IAVF_DEV_PRIVATE_TO_VF(adapter);
return iavf_config_promisc(adapter,
true, vf->promisc_multicast_enabled);
}
static int
iavf_dev_promiscuous_disable(struct rte_eth_dev *dev)
{
struct iavf_adapter *adapter =
IAVF_DEV_PRIVATE_TO_ADAPTER(dev->data->dev_private);
struct iavf_info *vf = IAVF_DEV_PRIVATE_TO_VF(adapter);
return iavf_config_promisc(adapter,
false, vf->promisc_multicast_enabled);
}
static int
iavf_dev_allmulticast_enable(struct rte_eth_dev *dev)
{
struct iavf_adapter *adapter =
IAVF_DEV_PRIVATE_TO_ADAPTER(dev->data->dev_private);
struct iavf_info *vf = IAVF_DEV_PRIVATE_TO_VF(adapter);
return iavf_config_promisc(adapter,
vf->promisc_unicast_enabled, true);
}
static int
iavf_dev_allmulticast_disable(struct rte_eth_dev *dev)
{
struct iavf_adapter *adapter =
IAVF_DEV_PRIVATE_TO_ADAPTER(dev->data->dev_private);
struct iavf_info *vf = IAVF_DEV_PRIVATE_TO_VF(adapter);
return iavf_config_promisc(adapter,
vf->promisc_unicast_enabled, false);
}
static int
iavf_dev_add_mac_addr(struct rte_eth_dev *dev, struct rte_ether_addr *addr,
__rte_unused uint32_t index,
__rte_unused uint32_t pool)
{
struct iavf_adapter *adapter =
IAVF_DEV_PRIVATE_TO_ADAPTER(dev->data->dev_private);
struct iavf_info *vf = IAVF_DEV_PRIVATE_TO_VF(adapter);
int err;
if (rte_is_zero_ether_addr(addr)) {
PMD_DRV_LOG(ERR, "Invalid Ethernet Address");
return -EINVAL;
}
err = iavf_add_del_eth_addr(adapter, addr, true, VIRTCHNL_ETHER_ADDR_EXTRA);
if (err) {
PMD_DRV_LOG(ERR, "fail to add MAC address");
return -EIO;
}
vf->mac_num++;
return 0;
}
static void
iavf_dev_del_mac_addr(struct rte_eth_dev *dev, uint32_t index)
{
struct iavf_adapter *adapter =
IAVF_DEV_PRIVATE_TO_ADAPTER(dev->data->dev_private);
struct iavf_info *vf = IAVF_DEV_PRIVATE_TO_VF(adapter);
struct rte_ether_addr *addr;
int err;
addr = &dev->data->mac_addrs[index];
err = iavf_add_del_eth_addr(adapter, addr, false, VIRTCHNL_ETHER_ADDR_EXTRA);
if (err)
PMD_DRV_LOG(ERR, "fail to delete MAC address");
vf->mac_num--;
}
static int
iavf_dev_vlan_filter_set(struct rte_eth_dev *dev, uint16_t vlan_id, int on)
{
struct iavf_adapter *adapter =
IAVF_DEV_PRIVATE_TO_ADAPTER(dev->data->dev_private);
struct iavf_info *vf = IAVF_DEV_PRIVATE_TO_VF(adapter);
int err;
if (adapter->closed)
return -EIO;
if (vf->vf_res->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_VLAN_V2) {
err = iavf_add_del_vlan_v2(adapter, vlan_id, on);
if (err)
return -EIO;
return 0;
}
if (!(vf->vf_res->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_VLAN))
return -ENOTSUP;
err = iavf_add_del_vlan(adapter, vlan_id, on);
if (err)
return -EIO;
return 0;
}
static void
iavf_iterate_vlan_filters_v2(struct rte_eth_dev *dev, bool enable)
{
struct rte_vlan_filter_conf *vfc = &dev->data->vlan_filter_conf;
struct iavf_adapter *adapter =
IAVF_DEV_PRIVATE_TO_ADAPTER(dev->data->dev_private);
uint32_t i, j;
uint64_t ids;
for (i = 0; i < RTE_DIM(vfc->ids); i++) {
if (vfc->ids[i] == 0)
continue;
ids = vfc->ids[i];
for (j = 0; ids != 0 && j < 64; j++, ids >>= 1) {
if (ids & 1)
iavf_add_del_vlan_v2(adapter,
64 * i + j, enable);
}
}
}
static int
iavf_dev_vlan_offload_set_v2(struct rte_eth_dev *dev, int mask)
{
struct rte_eth_rxmode *rxmode = &dev->data->dev_conf.rxmode;
struct iavf_adapter *adapter =
IAVF_DEV_PRIVATE_TO_ADAPTER(dev->data->dev_private);
bool enable;
int err;
if (mask & RTE_ETH_VLAN_FILTER_MASK) {
enable = !!(rxmode->offloads & RTE_ETH_RX_OFFLOAD_VLAN_FILTER);
iavf_iterate_vlan_filters_v2(dev, enable);
}
if (mask & RTE_ETH_VLAN_STRIP_MASK) {
enable = !!(rxmode->offloads & RTE_ETH_RX_OFFLOAD_VLAN_STRIP);
err = iavf_config_vlan_strip_v2(adapter, enable);
/* If not support, the stripping is already disabled by PF */
if (err == -ENOTSUP && !enable)
err = 0;
if (err)
return -EIO;
}
return 0;
}
static int
iavf_dev_vlan_offload_set(struct rte_eth_dev *dev, int mask)
{
struct iavf_adapter *adapter =
IAVF_DEV_PRIVATE_TO_ADAPTER(dev->data->dev_private);
struct iavf_info *vf = IAVF_DEV_PRIVATE_TO_VF(adapter);
struct rte_eth_conf *dev_conf = &dev->data->dev_conf;
int err;
if (adapter->closed)
return -EIO;
if (vf->vf_res->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_VLAN_V2)
return iavf_dev_vlan_offload_set_v2(dev, mask);
if (!(vf->vf_res->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_VLAN))
return -ENOTSUP;
/* Vlan stripping setting */
if (mask & RTE_ETH_VLAN_STRIP_MASK) {
/* Enable or disable VLAN stripping */
if (dev_conf->rxmode.offloads & RTE_ETH_RX_OFFLOAD_VLAN_STRIP)
err = iavf_enable_vlan_strip(adapter);
else
err = iavf_disable_vlan_strip(adapter);
if (err)
return -EIO;
}
return 0;
}
static int
iavf_dev_rss_reta_update(struct rte_eth_dev *dev,
struct rte_eth_rss_reta_entry64 *reta_conf,
uint16_t reta_size)
{
struct iavf_adapter *adapter =
IAVF_DEV_PRIVATE_TO_ADAPTER(dev->data->dev_private);
struct iavf_info *vf = IAVF_DEV_PRIVATE_TO_VF(adapter);
uint8_t *lut;
uint16_t i, idx, shift;
int ret;
if (adapter->closed)
return -EIO;
if (!(vf->vf_res->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_RSS_PF))
return -ENOTSUP;
if (reta_size != vf->vf_res->rss_lut_size) {
PMD_DRV_LOG(ERR, "The size of hash lookup table configured "
"(%d) doesn't match the number of hardware can "
"support (%d)", reta_size, vf->vf_res->rss_lut_size);
return -EINVAL;
}
lut = rte_zmalloc("rss_lut", reta_size, 0);
if (!lut) {
PMD_DRV_LOG(ERR, "No memory can be allocated");
return -ENOMEM;
}
/* store the old lut table temporarily */
rte_memcpy(lut, vf->rss_lut, reta_size);
for (i = 0; i < reta_size; i++) {
idx = i / RTE_ETH_RETA_GROUP_SIZE;
shift = i % RTE_ETH_RETA_GROUP_SIZE;
if (reta_conf[idx].mask & (1ULL << shift))
lut[i] = reta_conf[idx].reta[shift];
}
rte_memcpy(vf->rss_lut, lut, reta_size);
/* send virtchnl ops to configure RSS */
ret = iavf_configure_rss_lut(adapter);
if (ret) /* revert back */
rte_memcpy(vf->rss_lut, lut, reta_size);
rte_free(lut);
return ret;
}
static int
iavf_dev_rss_reta_query(struct rte_eth_dev *dev,
struct rte_eth_rss_reta_entry64 *reta_conf,
uint16_t reta_size)
{
struct iavf_adapter *adapter =
IAVF_DEV_PRIVATE_TO_ADAPTER(dev->data->dev_private);
struct iavf_info *vf = IAVF_DEV_PRIVATE_TO_VF(adapter);
uint16_t i, idx, shift;
if (adapter->closed)
return -EIO;
if (!(vf->vf_res->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_RSS_PF))
return -ENOTSUP;
if (reta_size != vf->vf_res->rss_lut_size) {
PMD_DRV_LOG(ERR, "The size of hash lookup table configured "
"(%d) doesn't match the number of hardware can "
"support (%d)", reta_size, vf->vf_res->rss_lut_size);
return -EINVAL;
}
for (i = 0; i < reta_size; i++) {
idx = i / RTE_ETH_RETA_GROUP_SIZE;
shift = i % RTE_ETH_RETA_GROUP_SIZE;
if (reta_conf[idx].mask & (1ULL << shift))
reta_conf[idx].reta[shift] = vf->rss_lut[i];
}
return 0;
}
static int
iavf_set_rss_key(struct iavf_adapter *adapter, uint8_t *key, uint8_t key_len)
{
struct iavf_info *vf = IAVF_DEV_PRIVATE_TO_VF(adapter);
/* HENA setting, it is enabled by default, no change */
if (!key || key_len == 0) {
PMD_DRV_LOG(DEBUG, "No key to be configured");
return 0;
} else if (key_len != vf->vf_res->rss_key_size) {
PMD_DRV_LOG(ERR, "The size of hash key configured "
"(%d) doesn't match the size of hardware can "
"support (%d)", key_len,
vf->vf_res->rss_key_size);
return -EINVAL;
}
rte_memcpy(vf->rss_key, key, key_len);
return iavf_configure_rss_key(adapter);
}
static int
iavf_dev_rss_hash_update(struct rte_eth_dev *dev,
struct rte_eth_rss_conf *rss_conf)
{
struct iavf_adapter *adapter =
IAVF_DEV_PRIVATE_TO_ADAPTER(dev->data->dev_private);
struct iavf_info *vf = IAVF_DEV_PRIVATE_TO_VF(adapter);
int ret;
adapter->dev_data->dev_conf.rx_adv_conf.rss_conf = *rss_conf;
if (adapter->closed)
return -EIO;
if (!(vf->vf_res->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_RSS_PF))
return -ENOTSUP;
/* Set hash key. */
ret = iavf_set_rss_key(adapter, rss_conf->rss_key,
rss_conf->rss_key_len);
if (ret)
return ret;
if (rss_conf->rss_hf == 0) {
vf->rss_hf = 0;
ret = iavf_set_hena(adapter, 0);
/* It is a workaround, temporarily allow error to be returned
* due to possible lack of PF handling for hena = 0.
*/
if (ret)
PMD_DRV_LOG(WARNING, "fail to clean existing RSS, lack PF support");
return 0;
}
if (vf->vf_res->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_ADV_RSS_PF) {
/* Clear existing RSS. */
ret = iavf_set_hena(adapter, 0);
/* It is a workaround, temporarily allow error to be returned
* due to possible lack of PF handling for hena = 0.
*/
if (ret)
PMD_DRV_LOG(WARNING, "fail to clean existing RSS,"
"lack PF support");
/* Set new RSS configuration. */
ret = iavf_rss_hash_set(adapter, rss_conf->rss_hf, true);
if (ret) {
PMD_DRV_LOG(ERR, "fail to set new RSS");
return ret;
}
} else {
iavf_config_rss_hf(adapter, rss_conf->rss_hf);
}
return 0;
}
static int
iavf_dev_rss_hash_conf_get(struct rte_eth_dev *dev,
struct rte_eth_rss_conf *rss_conf)
{
struct iavf_adapter *adapter =
IAVF_DEV_PRIVATE_TO_ADAPTER(dev->data->dev_private);
struct iavf_info *vf = IAVF_DEV_PRIVATE_TO_VF(adapter);
if (adapter->closed)
return -EIO;
if (!(vf->vf_res->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_RSS_PF))
return -ENOTSUP;
rss_conf->rss_hf = vf->rss_hf;
if (!rss_conf->rss_key)
return 0;
rss_conf->rss_key_len = vf->vf_res->rss_key_size;
rte_memcpy(rss_conf->rss_key, vf->rss_key, rss_conf->rss_key_len);
return 0;
}
static int
iavf_dev_mtu_set(struct rte_eth_dev *dev, uint16_t mtu __rte_unused)
{
/* mtu setting is forbidden if port is start */
if (dev->data->dev_started) {
PMD_DRV_LOG(ERR, "port must be stopped before configuration");
return -EBUSY;
}
return 0;
}
static int
iavf_dev_set_default_mac_addr(struct rte_eth_dev *dev,
struct rte_ether_addr *mac_addr)
{
struct iavf_adapter *adapter =
IAVF_DEV_PRIVATE_TO_ADAPTER(dev->data->dev_private);
struct iavf_hw *hw = IAVF_DEV_PRIVATE_TO_HW(adapter);
struct rte_ether_addr *old_addr;
int ret;
old_addr = (struct rte_ether_addr *)hw->mac.addr;
if (rte_is_same_ether_addr(old_addr, mac_addr))
return 0;
ret = iavf_add_del_eth_addr(adapter, old_addr, false, VIRTCHNL_ETHER_ADDR_PRIMARY);
if (ret)
PMD_DRV_LOG(ERR, "Fail to delete old MAC:"
RTE_ETHER_ADDR_PRT_FMT,
RTE_ETHER_ADDR_BYTES(old_addr));
ret = iavf_add_del_eth_addr(adapter, mac_addr, true, VIRTCHNL_ETHER_ADDR_PRIMARY);
if (ret)
PMD_DRV_LOG(ERR, "Fail to add new MAC:"
RTE_ETHER_ADDR_PRT_FMT,
RTE_ETHER_ADDR_BYTES(mac_addr));
if (ret)
return -EIO;
rte_ether_addr_copy(mac_addr, (struct rte_ether_addr *)hw->mac.addr);
return 0;
}
static void
iavf_stat_update_48(uint64_t *offset, uint64_t *stat)
{
if (*stat >= *offset)
*stat = *stat - *offset;
else
*stat = (uint64_t)((*stat +
((uint64_t)1 << IAVF_48_BIT_WIDTH)) - *offset);
*stat &= IAVF_48_BIT_MASK;
}
static void
iavf_stat_update_32(uint64_t *offset, uint64_t *stat)
{
if (*stat >= *offset)
*stat = (uint64_t)(*stat - *offset);
else
*stat = (uint64_t)((*stat +
((uint64_t)1 << IAVF_32_BIT_WIDTH)) - *offset);
}
static void
iavf_update_stats(struct iavf_vsi *vsi, struct virtchnl_eth_stats *nes)
{
struct virtchnl_eth_stats *oes = &vsi->eth_stats_offset.eth_stats;
iavf_stat_update_48(&oes->rx_bytes, &nes->rx_bytes);
iavf_stat_update_48(&oes->rx_unicast, &nes->rx_unicast);
iavf_stat_update_48(&oes->rx_multicast, &nes->rx_multicast);
iavf_stat_update_48(&oes->rx_broadcast, &nes->rx_broadcast);
iavf_stat_update_32(&oes->rx_discards, &nes->rx_discards);
iavf_stat_update_48(&oes->tx_bytes, &nes->tx_bytes);
iavf_stat_update_48(&oes->tx_unicast, &nes->tx_unicast);
iavf_stat_update_48(&oes->tx_multicast, &nes->tx_multicast);
iavf_stat_update_48(&oes->tx_broadcast, &nes->tx_broadcast);
iavf_stat_update_32(&oes->tx_errors, &nes->tx_errors);
iavf_stat_update_32(&oes->tx_discards, &nes->tx_discards);
}
static int
iavf_dev_stats_get(struct rte_eth_dev *dev, struct rte_eth_stats *stats)
{
struct iavf_adapter *adapter =
IAVF_DEV_PRIVATE_TO_ADAPTER(dev->data->dev_private);
struct iavf_info *vf = IAVF_DEV_PRIVATE_TO_VF(dev->data->dev_private);
struct iavf_vsi *vsi = &vf->vsi;
struct virtchnl_eth_stats *pstats = NULL;
int ret;
ret = iavf_query_stats(adapter, &pstats);
if (ret == 0) {
uint8_t crc_stats_len = (dev->data->dev_conf.rxmode.offloads &
RTE_ETH_RX_OFFLOAD_KEEP_CRC) ? 0 :
RTE_ETHER_CRC_LEN;
iavf_update_stats(vsi, pstats);
stats->ipackets = pstats->rx_unicast + pstats->rx_multicast +
pstats->rx_broadcast - pstats->rx_discards;
stats->opackets = pstats->tx_broadcast + pstats->tx_multicast +
pstats->tx_unicast;
stats->imissed = pstats->rx_discards;
stats->oerrors = pstats->tx_errors + pstats->tx_discards;
stats->ibytes = pstats->rx_bytes;
stats->ibytes -= stats->ipackets * crc_stats_len;
stats->obytes = pstats->tx_bytes;
} else {
PMD_DRV_LOG(ERR, "Get statistics failed");
}
return ret;
}
static int
iavf_dev_stats_reset(struct rte_eth_dev *dev)
{
int ret;
struct iavf_adapter *adapter =
IAVF_DEV_PRIVATE_TO_ADAPTER(dev->data->dev_private);
struct iavf_info *vf = IAVF_DEV_PRIVATE_TO_VF(dev->data->dev_private);
struct iavf_vsi *vsi = &vf->vsi;
struct virtchnl_eth_stats *pstats = NULL;
/* read stat values to clear hardware registers */
ret = iavf_query_stats(adapter, &pstats);
if (ret != 0)
return ret;
/* set stats offset base on current values */
vsi->eth_stats_offset.eth_stats = *pstats;
return 0;
}
static int
iavf_dev_xstats_reset(struct rte_eth_dev *dev)
{
struct iavf_info *vf = IAVF_DEV_PRIVATE_TO_VF(dev->data->dev_private);
iavf_dev_stats_reset(dev);
memset(&vf->vsi.eth_stats_offset.ips_stats, 0,
sizeof(struct iavf_ipsec_crypto_stats));
return 0;
}
static int iavf_dev_xstats_get_names(__rte_unused struct rte_eth_dev *dev,
struct rte_eth_xstat_name *xstats_names,
__rte_unused unsigned int limit)
{
unsigned int i;
if (xstats_names != NULL)
for (i = 0; i < IAVF_NB_XSTATS; i++) {
snprintf(xstats_names[i].name,
sizeof(xstats_names[i].name),
"%s", rte_iavf_stats_strings[i].name);
}
return IAVF_NB_XSTATS;
}
static void
iavf_dev_update_ipsec_xstats(struct rte_eth_dev *ethdev,
struct iavf_ipsec_crypto_stats *ips)
{
uint16_t idx;
for (idx = 0; idx < ethdev->data->nb_rx_queues; idx++) {
struct iavf_rx_queue *rxq;
struct iavf_ipsec_crypto_stats *stats;
rxq = (struct iavf_rx_queue *)ethdev->data->rx_queues[idx];
stats = &rxq->stats.ipsec_crypto;
ips->icount += stats->icount;
ips->ibytes += stats->ibytes;
ips->ierrors.count += stats->ierrors.count;
ips->ierrors.sad_miss += stats->ierrors.sad_miss;
ips->ierrors.not_processed += stats->ierrors.not_processed;
ips->ierrors.icv_check += stats->ierrors.icv_check;
ips->ierrors.ipsec_length += stats->ierrors.ipsec_length;
ips->ierrors.misc += stats->ierrors.misc;
}
}
static int iavf_dev_xstats_get(struct rte_eth_dev *dev,
struct rte_eth_xstat *xstats, unsigned int n)
{
int ret;
unsigned int i;
struct iavf_adapter *adapter =
IAVF_DEV_PRIVATE_TO_ADAPTER(dev->data->dev_private);
struct iavf_info *vf = IAVF_DEV_PRIVATE_TO_VF(dev->data->dev_private);
struct iavf_vsi *vsi = &vf->vsi;
struct virtchnl_eth_stats *pstats = NULL;
struct iavf_eth_xstats iavf_xtats = {{0}};
if (n < IAVF_NB_XSTATS)
return IAVF_NB_XSTATS;
ret = iavf_query_stats(adapter, &pstats);
if (ret != 0)
return 0;
if (!xstats)
return 0;
iavf_update_stats(vsi, pstats);
iavf_xtats.eth_stats = *pstats;
if (iavf_ipsec_crypto_supported(adapter))
iavf_dev_update_ipsec_xstats(dev, &iavf_xtats.ips_stats);
/* loop over xstats array and values from pstats */
for (i = 0; i < IAVF_NB_XSTATS; i++) {
xstats[i].id = i;
xstats[i].value = *(uint64_t *)(((char *)&iavf_xtats) +
rte_iavf_stats_strings[i].offset);
}
return IAVF_NB_XSTATS;
}
static int
iavf_dev_rx_queue_intr_enable(struct rte_eth_dev *dev, uint16_t queue_id)
{
struct iavf_adapter *adapter =
IAVF_DEV_PRIVATE_TO_ADAPTER(dev->data->dev_private);
struct rte_pci_device *pci_dev = RTE_ETH_DEV_TO_PCI(dev);
struct iavf_hw *hw = IAVF_DEV_PRIVATE_TO_HW(adapter);
struct iavf_info *vf = IAVF_DEV_PRIVATE_TO_VF(adapter);
uint16_t msix_intr;
if (adapter->closed)
return -EIO;
msix_intr = rte_intr_vec_list_index_get(pci_dev->intr_handle,
queue_id);
if (msix_intr == IAVF_MISC_VEC_ID) {
PMD_DRV_LOG(INFO, "MISC is also enabled for control");
IAVF_WRITE_REG(hw, IAVF_VFINT_DYN_CTL01,
IAVF_VFINT_DYN_CTL01_INTENA_MASK |
IAVF_VFINT_DYN_CTL01_CLEARPBA_MASK |
IAVF_VFINT_DYN_CTL01_ITR_INDX_MASK);
} else {
IAVF_WRITE_REG(hw,
IAVF_VFINT_DYN_CTLN1
(msix_intr - IAVF_RX_VEC_START),
IAVF_VFINT_DYN_CTLN1_INTENA_MASK |
IAVF_VFINT_DYN_CTL01_CLEARPBA_MASK |
IAVF_VFINT_DYN_CTLN1_ITR_INDX_MASK);
}
IAVF_WRITE_FLUSH(hw);
if (vf->vf_res->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_WB_ON_ITR)
rte_intr_ack(pci_dev->intr_handle);
return 0;
}
static int
iavf_dev_rx_queue_intr_disable(struct rte_eth_dev *dev, uint16_t queue_id)
{
struct rte_pci_device *pci_dev = RTE_ETH_DEV_TO_PCI(dev);
struct iavf_hw *hw = IAVF_DEV_PRIVATE_TO_HW(dev->data->dev_private);
uint16_t msix_intr;
msix_intr = rte_intr_vec_list_index_get(pci_dev->intr_handle,
queue_id);
if (msix_intr == IAVF_MISC_VEC_ID) {
PMD_DRV_LOG(ERR, "MISC is used for control, cannot disable it");
return -EIO;
}
IAVF_WRITE_REG(hw,
IAVF_VFINT_DYN_CTLN1(msix_intr - IAVF_RX_VEC_START),
IAVF_VFINT_DYN_CTLN1_WB_ON_ITR_MASK);
IAVF_WRITE_FLUSH(hw);
return 0;
}
static int
iavf_check_vf_reset_done(struct iavf_hw *hw)
{
int i, reset;
for (i = 0; i < IAVF_RESET_WAIT_CNT; i++) {
reset = IAVF_READ_REG(hw, IAVF_VFGEN_RSTAT) &
IAVF_VFGEN_RSTAT_VFR_STATE_MASK;
reset = reset >> IAVF_VFGEN_RSTAT_VFR_STATE_SHIFT;
if (reset == VIRTCHNL_VFR_VFACTIVE ||
reset == VIRTCHNL_VFR_COMPLETED)
break;
rte_delay_ms(20);
}
if (i >= IAVF_RESET_WAIT_CNT)
return -1;
return 0;
}
static int
iavf_lookup_proto_xtr_type(const char *flex_name)
{
static struct {
const char *name;
enum iavf_proto_xtr_type type;
} xtr_type_map[] = {
{ "vlan", IAVF_PROTO_XTR_VLAN },
{ "ipv4", IAVF_PROTO_XTR_IPV4 },
{ "ipv6", IAVF_PROTO_XTR_IPV6 },
{ "ipv6_flow", IAVF_PROTO_XTR_IPV6_FLOW },
{ "tcp", IAVF_PROTO_XTR_TCP },
{ "ip_offset", IAVF_PROTO_XTR_IP_OFFSET },
{ "ipsec_crypto_said", IAVF_PROTO_XTR_IPSEC_CRYPTO_SAID },
};
uint32_t i;
for (i = 0; i < RTE_DIM(xtr_type_map); i++) {
if (strcmp(flex_name, xtr_type_map[i].name) == 0)
return xtr_type_map[i].type;
}
PMD_DRV_LOG(ERR, "wrong proto_xtr type, it should be: "
"vlan|ipv4|ipv6|ipv6_flow|tcp|ip_offset|ipsec_crypto_said");
return -1;
}
/**
* Parse elem, the elem could be single number/range or '(' ')' group
* 1) A single number elem, it's just a simple digit. e.g. 9
* 2) A single range elem, two digits with a '-' between. e.g. 2-6
* 3) A group elem, combines multiple 1) or 2) with '( )'. e.g (0,2-4,6)
* Within group elem, '-' used for a range separator;
* ',' used for a single number.
*/
static int
iavf_parse_queue_set(const char *input, int xtr_type,
struct iavf_devargs *devargs)
{
const char *str = input;
char *end = NULL;
uint32_t min, max;
uint32_t idx;
while (isblank(*str))
str++;
if (!isdigit(*str) && *str != '(')
return -1;
/* process single number or single range of number */
if (*str != '(') {
errno = 0;
idx = strtoul(str, &end, 10);
if (errno || !end || idx >= IAVF_MAX_QUEUE_NUM)
return -1;
while (isblank(*end))
end++;
min = idx;
max = idx;
/* process single <number>-<number> */
if (*end == '-') {
end++;
while (isblank(*end))
end++;
if (!isdigit(*end))
return -1;
errno = 0;
idx = strtoul(end, &end, 10);
if (errno || !end || idx >= IAVF_MAX_QUEUE_NUM)
return -1;
max = idx;
while (isblank(*end))
end++;
}
if (*end != ':')
return -1;
for (idx = RTE_MIN(min, max);
idx <= RTE_MAX(min, max); idx++)
devargs->proto_xtr[idx] = xtr_type;
return 0;
}
/* process set within bracket */
str++;
while (isblank(*str))
str++;
if (*str == '\0')
return -1;
min = IAVF_MAX_QUEUE_NUM;
do {
/* go ahead to the first digit */
while (isblank(*str))
str++;
if (!isdigit(*str))
return -1;
/* get the digit value */
errno = 0;
idx = strtoul(str, &end, 10);
if (errno || !end || idx >= IAVF_MAX_QUEUE_NUM)
return -1;
/* go ahead to separator '-',',' and ')' */
while (isblank(*end))
end++;
if (*end == '-') {
if (min == IAVF_MAX_QUEUE_NUM)
min = idx;
else /* avoid continuous '-' */
return -1;
} else if (*end == ',' || *end == ')') {
max = idx;
if (min == IAVF_MAX_QUEUE_NUM)
min = idx;
for (idx = RTE_MIN(min, max);
idx <= RTE_MAX(min, max); idx++)
devargs->proto_xtr[idx] = xtr_type;
min = IAVF_MAX_QUEUE_NUM;
} else {
return -1;
}
str = end + 1;
} while (*end != ')' && *end != '\0');
return 0;
}
static int
iavf_parse_queue_proto_xtr(const char *queues, struct iavf_devargs *devargs)
{
const char *queue_start;
uint32_t idx;
int xtr_type;
char flex_name[32];
while (isblank(*queues))
queues++;
if (*queues != '[') {
xtr_type = iavf_lookup_proto_xtr_type(queues);
if (xtr_type < 0)
return -1;
devargs->proto_xtr_dflt = xtr_type;
return 0;
}
queues++;
do {
while (isblank(*queues))
queues++;
if (*queues == '\0')
return -1;
queue_start = queues;
/* go across a complete bracket */
if (*queue_start == '(') {
queues += strcspn(queues, ")");
if (*queues != ')')
return -1;
}
/* scan the separator ':' */
queues += strcspn(queues, ":");
if (*queues++ != ':')
return -1;
while (isblank(*queues))
queues++;
for (idx = 0; ; idx++) {
if (isblank(queues[idx]) ||
queues[idx] == ',' ||
queues[idx] == ']' ||
queues[idx] == '\0')
break;
if (idx > sizeof(flex_name) - 2)
return -1;
flex_name[idx] = queues[idx];
}
flex_name[idx] = '\0';
xtr_type = iavf_lookup_proto_xtr_type(flex_name);
if (xtr_type < 0)
return -1;
queues += idx;
while (isblank(*queues) || *queues == ',' || *queues == ']')
queues++;
if (iavf_parse_queue_set(queue_start, xtr_type, devargs) < 0)
return -1;
} while (*queues != '\0');
return 0;
}
static int
iavf_handle_proto_xtr_arg(__rte_unused const char *key, const char *value,
void *extra_args)
{
struct iavf_devargs *devargs = extra_args;
if (!value || !extra_args)
return -EINVAL;
if (iavf_parse_queue_proto_xtr(value, devargs) < 0) {
PMD_DRV_LOG(ERR, "the proto_xtr's parameter is wrong : '%s'",
value);
return -1;
}
return 0;
}
static int iavf_parse_devargs(struct rte_eth_dev *dev)
{
struct iavf_adapter *ad =
IAVF_DEV_PRIVATE_TO_ADAPTER(dev->data->dev_private);
struct rte_devargs *devargs = dev->device->devargs;
struct rte_kvargs *kvlist;
int ret;
if (!devargs)
return 0;
kvlist = rte_kvargs_parse(devargs->args, iavf_valid_args);
if (!kvlist) {
PMD_INIT_LOG(ERR, "invalid kvargs key\n");
return -EINVAL;
}
ad->devargs.proto_xtr_dflt = IAVF_PROTO_XTR_NONE;
memset(ad->devargs.proto_xtr, IAVF_PROTO_XTR_NONE,
sizeof(ad->devargs.proto_xtr));
ret = rte_kvargs_process(kvlist, IAVF_PROTO_XTR_ARG,
&iavf_handle_proto_xtr_arg, &ad->devargs);
if (ret)
goto bail;
bail:
rte_kvargs_free(kvlist);
return ret;
}
static void
iavf_init_proto_xtr(struct rte_eth_dev *dev)
{
struct iavf_info *vf = IAVF_DEV_PRIVATE_TO_VF(dev->data->dev_private);
struct iavf_adapter *ad =
IAVF_DEV_PRIVATE_TO_ADAPTER(dev->data->dev_private);
const struct iavf_proto_xtr_ol *xtr_ol;
bool proto_xtr_enable = false;
int offset;
uint16_t i;
vf->proto_xtr = rte_zmalloc("vf proto xtr",
vf->vsi_res->num_queue_pairs, 0);
if (unlikely(!(vf->proto_xtr))) {
PMD_DRV_LOG(ERR, "no memory for setting up proto_xtr's table");
return;
}
for (i = 0; i < vf->vsi_res->num_queue_pairs; i++) {
vf->proto_xtr[i] = ad->devargs.proto_xtr[i] !=
IAVF_PROTO_XTR_NONE ?
ad->devargs.proto_xtr[i] :
ad->devargs.proto_xtr_dflt;
if (vf->proto_xtr[i] != IAVF_PROTO_XTR_NONE) {
uint8_t type = vf->proto_xtr[i];
iavf_proto_xtr_params[type].required = true;
proto_xtr_enable = true;
}
}
if (likely(!proto_xtr_enable))
return;
offset = rte_mbuf_dynfield_register(&iavf_proto_xtr_metadata_param);
if (unlikely(offset == -1)) {
PMD_DRV_LOG(ERR,
"failed to extract protocol metadata, error %d",
-rte_errno);
return;
}
PMD_DRV_LOG(DEBUG,
"proto_xtr metadata offset in mbuf is : %d",
offset);
rte_pmd_ifd_dynfield_proto_xtr_metadata_offs = offset;
for (i = 0; i < RTE_DIM(iavf_proto_xtr_params); i++) {
xtr_ol = &iavf_proto_xtr_params[i];
uint8_t rxdid = iavf_proto_xtr_type_to_rxdid((uint8_t)i);
if (!xtr_ol->required)
continue;
if (!(vf->supported_rxdid & BIT(rxdid))) {
PMD_DRV_LOG(ERR,
"rxdid[%u] is not supported in hardware",
rxdid);
rte_pmd_ifd_dynfield_proto_xtr_metadata_offs = -1;
break;
}
offset = rte_mbuf_dynflag_register(&xtr_ol->param);
if (unlikely(offset == -1)) {
PMD_DRV_LOG(ERR,
"failed to register proto_xtr offload '%s', error %d",
xtr_ol->param.name, -rte_errno);
rte_pmd_ifd_dynfield_proto_xtr_metadata_offs = -1;
break;
}
PMD_DRV_LOG(DEBUG,
"proto_xtr offload '%s' offset in mbuf is : %d",
xtr_ol->param.name, offset);
*xtr_ol->ol_flag = 1ULL << offset;
}
}
static int
iavf_init_vf(struct rte_eth_dev *dev)
{
int err, bufsz;
struct iavf_adapter *adapter =
IAVF_DEV_PRIVATE_TO_ADAPTER(dev->data->dev_private);
struct iavf_hw *hw = IAVF_DEV_PRIVATE_TO_HW(dev->data->dev_private);
struct iavf_info *vf = IAVF_DEV_PRIVATE_TO_VF(dev->data->dev_private);
vf->eth_dev = dev;
err = iavf_parse_devargs(dev);
if (err) {
PMD_INIT_LOG(ERR, "Failed to parse devargs");
goto err;
}
err = iavf_set_mac_type(hw);
if (err) {
PMD_INIT_LOG(ERR, "set_mac_type failed: %d", err);
goto err;
}
err = iavf_check_vf_reset_done(hw);
if (err) {
PMD_INIT_LOG(ERR, "VF is still resetting");
goto err;
}
iavf_init_adminq_parameter(hw);
err = iavf_init_adminq(hw);
if (err) {
PMD_INIT_LOG(ERR, "init_adminq failed: %d", err);
goto err;
}
vf->aq_resp = rte_zmalloc("vf_aq_resp", IAVF_AQ_BUF_SZ, 0);
if (!vf->aq_resp) {
PMD_INIT_LOG(ERR, "unable to allocate vf_aq_resp memory");
goto err_aq;
}
if (iavf_check_api_version(adapter) != 0) {
PMD_INIT_LOG(ERR, "check_api version failed");
goto err_api;
}
bufsz = sizeof(struct virtchnl_vf_resource) +
(IAVF_MAX_VF_VSI * sizeof(struct virtchnl_vsi_resource));
vf->vf_res = rte_zmalloc("vf_res", bufsz, 0);
if (!vf->vf_res) {
PMD_INIT_LOG(ERR, "unable to allocate vf_res memory");
goto err_api;
}
if (iavf_get_vf_resource(adapter) != 0) {
PMD_INIT_LOG(ERR, "iavf_get_vf_config failed");
goto err_alloc;
}
/* Allocate memort for RSS info */
if (vf->vf_res->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_RSS_PF) {
vf->rss_key = rte_zmalloc("rss_key",
vf->vf_res->rss_key_size, 0);
if (!vf->rss_key) {
PMD_INIT_LOG(ERR, "unable to allocate rss_key memory");
goto err_rss;
}
vf->rss_lut = rte_zmalloc("rss_lut",
vf->vf_res->rss_lut_size, 0);
if (!vf->rss_lut) {
PMD_INIT_LOG(ERR, "unable to allocate rss_lut memory");
goto err_rss;
}
}
if (vf->vf_res->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_RX_FLEX_DESC) {
if (iavf_get_supported_rxdid(adapter) != 0) {
PMD_INIT_LOG(ERR, "failed to do get supported rxdid");
goto err_rss;
}
}
if (vf->vf_res->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_VLAN_V2) {
if (iavf_get_vlan_offload_caps_v2(adapter) != 0) {
PMD_INIT_LOG(ERR, "failed to do get VLAN offload v2 capabilities");
goto err_rss;
}
}
if (vf->vf_res->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_QOS) {
bufsz = sizeof(struct virtchnl_qos_cap_list) +
IAVF_MAX_TRAFFIC_CLASS *
sizeof(struct virtchnl_qos_cap_elem);
vf->qos_cap = rte_zmalloc("qos_cap", bufsz, 0);
if (!vf->qos_cap) {
PMD_INIT_LOG(ERR, "unable to allocate qos_cap memory");
goto err_rss;
}
iavf_tm_conf_init(dev);
}
iavf_init_proto_xtr(dev);
return 0;
err_rss:
rte_free(vf->rss_key);
rte_free(vf->rss_lut);
err_alloc:
rte_free(vf->qos_cap);
rte_free(vf->vf_res);
vf->vsi_res = NULL;
err_api:
rte_free(vf->aq_resp);
err_aq:
iavf_shutdown_adminq(hw);
err:
return -1;
}
static void
iavf_uninit_vf(struct rte_eth_dev *dev)
{
struct iavf_hw *hw = IAVF_DEV_PRIVATE_TO_HW(dev->data->dev_private);
struct iavf_info *vf = IAVF_DEV_PRIVATE_TO_VF(dev->data->dev_private);
iavf_shutdown_adminq(hw);
rte_free(vf->vf_res);
vf->vsi_res = NULL;
vf->vf_res = NULL;
rte_free(vf->aq_resp);
vf->aq_resp = NULL;
rte_free(vf->qos_cap);
vf->qos_cap = NULL;
rte_free(vf->rss_lut);
vf->rss_lut = NULL;
rte_free(vf->rss_key);
vf->rss_key = NULL;
}
/* Enable default admin queue interrupt setting */
static inline void
iavf_enable_irq0(struct iavf_hw *hw)
{
/* Enable admin queue interrupt trigger */
IAVF_WRITE_REG(hw, IAVF_VFINT_ICR0_ENA1,
IAVF_VFINT_ICR0_ENA1_ADMINQ_MASK);
IAVF_WRITE_REG(hw, IAVF_VFINT_DYN_CTL01,
IAVF_VFINT_DYN_CTL01_INTENA_MASK |
IAVF_VFINT_DYN_CTL01_CLEARPBA_MASK |
IAVF_VFINT_DYN_CTL01_ITR_INDX_MASK);
IAVF_WRITE_FLUSH(hw);
}
static inline void
iavf_disable_irq0(struct iavf_hw *hw)
{
/* Disable all interrupt types */
IAVF_WRITE_REG(hw, IAVF_VFINT_ICR0_ENA1, 0);
IAVF_WRITE_REG(hw, IAVF_VFINT_DYN_CTL01,
IAVF_VFINT_DYN_CTL01_ITR_INDX_MASK);
IAVF_WRITE_FLUSH(hw);
}
static void
iavf_dev_interrupt_handler(void *param)
{
struct rte_eth_dev *dev = (struct rte_eth_dev *)param;
struct iavf_hw *hw = IAVF_DEV_PRIVATE_TO_HW(dev->data->dev_private);
iavf_disable_irq0(hw);
iavf_handle_virtchnl_msg(dev);
iavf_enable_irq0(hw);
}
void
iavf_dev_alarm_handler(void *param)
{
struct rte_eth_dev *dev = (struct rte_eth_dev *)param;
struct iavf_hw *hw = IAVF_DEV_PRIVATE_TO_HW(dev->data->dev_private);
uint32_t icr0;
iavf_disable_irq0(hw);
/* read out interrupt causes */
icr0 = IAVF_READ_REG(hw, IAVF_VFINT_ICR01);
if (icr0 & IAVF_VFINT_ICR01_ADMINQ_MASK) {
PMD_DRV_LOG(DEBUG, "ICR01_ADMINQ is reported");
iavf_handle_virtchnl_msg(dev);
}
iavf_enable_irq0(hw);
rte_eal_alarm_set(IAVF_ALARM_INTERVAL,
iavf_dev_alarm_handler, dev);
}
static int
iavf_dev_flow_ops_get(struct rte_eth_dev *dev,
const struct rte_flow_ops **ops)
{
struct iavf_adapter *adapter =
IAVF_DEV_PRIVATE_TO_ADAPTER(dev->data->dev_private);
if (adapter->closed)
return -EIO;
*ops = &iavf_flow_ops;
return 0;
}
static void
iavf_default_rss_disable(struct iavf_adapter *adapter)
{
struct iavf_info *vf = IAVF_DEV_PRIVATE_TO_VF(adapter);
int ret = 0;
if (vf->vf_res->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_RSS_PF) {
/* Set hena = 0 to ask PF to cleanup all existing RSS. */
ret = iavf_set_hena(adapter, 0);
if (ret)
/* It is a workaround, temporarily allow error to be
* returned due to possible lack of PF handling for
* hena = 0.
*/
PMD_INIT_LOG(WARNING, "fail to disable default RSS,"
"lack PF support");
}
}
static int
iavf_dev_init(struct rte_eth_dev *eth_dev)
{
struct iavf_adapter *adapter =
IAVF_DEV_PRIVATE_TO_ADAPTER(eth_dev->data->dev_private);
struct iavf_hw *hw = IAVF_DEV_PRIVATE_TO_HW(adapter);
struct iavf_info *vf = IAVF_DEV_PRIVATE_TO_VF(adapter);
struct rte_pci_device *pci_dev = RTE_ETH_DEV_TO_PCI(eth_dev);
int ret = 0;
PMD_INIT_FUNC_TRACE();
/* assign ops func pointer */
eth_dev->dev_ops = &iavf_eth_dev_ops;
eth_dev->rx_queue_count = iavf_dev_rxq_count;
eth_dev->rx_descriptor_status = iavf_dev_rx_desc_status;
eth_dev->tx_descriptor_status = iavf_dev_tx_desc_status;
eth_dev->rx_pkt_burst = &iavf_recv_pkts;
eth_dev->tx_pkt_burst = &iavf_xmit_pkts;
eth_dev->tx_pkt_prepare = &iavf_prep_pkts;
/* For secondary processes, we don't initialise any further as primary
* has already done this work. Only check if we need a different RX
* and TX function.
*/
if (rte_eal_process_type() != RTE_PROC_PRIMARY) {
iavf_set_rx_function(eth_dev);
iavf_set_tx_function(eth_dev);
return 0;
}
rte_eth_copy_pci_info(eth_dev, pci_dev);
hw->vendor_id = pci_dev->id.vendor_id;
hw->device_id = pci_dev->id.device_id;
hw->subsystem_vendor_id = pci_dev->id.subsystem_vendor_id;
hw->subsystem_device_id = pci_dev->id.subsystem_device_id;
hw->bus.bus_id = pci_dev->addr.bus;
hw->bus.device = pci_dev->addr.devid;
hw->bus.func = pci_dev->addr.function;
hw->hw_addr = (void *)pci_dev->mem_resource[0].addr;
hw->back = IAVF_DEV_PRIVATE_TO_ADAPTER(eth_dev->data->dev_private);
adapter->dev_data = eth_dev->data;
adapter->stopped = 1;
if (iavf_init_vf(eth_dev) != 0) {
PMD_INIT_LOG(ERR, "Init vf failed");
return -1;
}
/* set default ptype table */
iavf_set_default_ptype_table(eth_dev);
/* copy mac addr */
eth_dev->data->mac_addrs = rte_zmalloc(
"iavf_mac", RTE_ETHER_ADDR_LEN * IAVF_NUM_MACADDR_MAX, 0);
if (!eth_dev->data->mac_addrs) {
PMD_INIT_LOG(ERR, "Failed to allocate %d bytes needed to"
" store MAC addresses",
RTE_ETHER_ADDR_LEN * IAVF_NUM_MACADDR_MAX);
ret = -ENOMEM;
goto init_vf_err;
}
/* If the MAC address is not configured by host,
* generate a random one.
*/
if (!rte_is_valid_assigned_ether_addr(
(struct rte_ether_addr *)hw->mac.addr))
rte_eth_random_addr(hw->mac.addr);
rte_ether_addr_copy((struct rte_ether_addr *)hw->mac.addr,
&eth_dev->data->mac_addrs[0]);
if (vf->vf_res->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_WB_ON_ITR) {
/* register callback func to eal lib */
rte_intr_callback_register(pci_dev->intr_handle,
iavf_dev_interrupt_handler,
(void *)eth_dev);
/* enable uio intr after callback register */
rte_intr_enable(pci_dev->intr_handle);
} else {
rte_eal_alarm_set(IAVF_ALARM_INTERVAL,
iavf_dev_alarm_handler, eth_dev);
}
/* configure and enable device interrupt */
iavf_enable_irq0(hw);
ret = iavf_flow_init(adapter);
if (ret) {
PMD_INIT_LOG(ERR, "Failed to initialize flow");
goto flow_init_err;
}
/** Check if the IPsec Crypto offload is supported and create
* security_ctx if it is.
*/
if (iavf_ipsec_crypto_supported(adapter)) {
/* Initialize security_ctx only for primary process*/
ret = iavf_security_ctx_create(adapter);
if (ret) {
PMD_INIT_LOG(ERR, "failed to create ipsec crypto security instance");
return ret;
}
ret = iavf_security_init(adapter);
if (ret) {
PMD_INIT_LOG(ERR, "failed to initialized ipsec crypto resources");
return ret;
}
}
iavf_default_rss_disable(adapter);
/* Start device watchdog */
iavf_dev_watchdog_enable(adapter);
adapter->closed = false;
return 0;
flow_init_err:
rte_free(eth_dev->data->mac_addrs);
eth_dev->data->mac_addrs = NULL;
init_vf_err:
iavf_uninit_vf(eth_dev);
return ret;
}
static int
iavf_dev_close(struct rte_eth_dev *dev)
{
struct iavf_hw *hw = IAVF_DEV_PRIVATE_TO_HW(dev->data->dev_private);
struct rte_pci_device *pci_dev = RTE_ETH_DEV_TO_PCI(dev);
struct rte_intr_handle *intr_handle = pci_dev->intr_handle;
struct iavf_adapter *adapter =
IAVF_DEV_PRIVATE_TO_ADAPTER(dev->data->dev_private);
struct iavf_info *vf = IAVF_DEV_PRIVATE_TO_VF(dev->data->dev_private);
int ret;
if (rte_eal_process_type() != RTE_PROC_PRIMARY)
return 0;
if (adapter->closed) {
ret = 0;
goto out;
}
ret = iavf_dev_stop(dev);
/*
* Release redundant queue resource when close the dev
* so that other vfs can re-use the queues.
*/
if (vf->lv_enabled) {
ret = iavf_request_queues(dev, IAVF_MAX_NUM_QUEUES_DFLT);
if (ret)
PMD_DRV_LOG(ERR, "Reset the num of queues failed");
vf->max_rss_qregion = IAVF_MAX_NUM_QUEUES_DFLT;
}
adapter->closed = true;
/* free iAVF security device context all related resources */
iavf_security_ctx_destroy(adapter);
iavf_flow_flush(dev, NULL);
iavf_flow_uninit(adapter);
/*
* disable promiscuous mode before reset vf
* it is a workaround solution when work with kernel driver
* and it is not the normal way
*/
if (vf->promisc_unicast_enabled || vf->promisc_multicast_enabled)
iavf_config_promisc(adapter, false, false);
iavf_shutdown_adminq(hw);
if (vf->vf_res->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_WB_ON_ITR) {
/* disable uio intr before callback unregister */
rte_intr_disable(intr_handle);
/* unregister callback func from eal lib */
rte_intr_callback_unregister(intr_handle,
iavf_dev_interrupt_handler, dev);
} else {
rte_eal_alarm_cancel(iavf_dev_alarm_handler, dev);
}
iavf_disable_irq0(hw);
if (vf->vf_res->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_QOS)
iavf_tm_conf_uninit(dev);
if (vf->vf_res->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_RSS_PF) {
if (vf->rss_lut) {
rte_free(vf->rss_lut);
vf->rss_lut = NULL;
}
if (vf->rss_key) {
rte_free(vf->rss_key);
vf->rss_key = NULL;
}
}
rte_free(vf->vf_res);
vf->vsi_res = NULL;
vf->vf_res = NULL;
rte_free(vf->aq_resp);
vf->aq_resp = NULL;
/*
* If the VF is reset via VFLR, the device will be knocked out of bus
* master mode, and the driver will fail to recover from the reset. Fix
* this by enabling bus mastering after every reset. In a non-VFLR case,
* the bus master bit will not be disabled, and this call will have no
* effect.
*/
out:
if (vf->vf_reset && !rte_pci_set_bus_master(pci_dev, true))
vf->vf_reset = false;
/* disable watchdog */
iavf_dev_watchdog_disable(adapter);
return ret;
}
static int
iavf_dev_uninit(struct rte_eth_dev *dev)
{
if (rte_eal_process_type() != RTE_PROC_PRIMARY)
return -EPERM;
iavf_dev_close(dev);
return 0;
}
/*
* Reset VF device only to re-initialize resources in PMD layer
*/
static int
iavf_dev_reset(struct rte_eth_dev *dev)
{
int ret;
ret = iavf_dev_uninit(dev);
if (ret)
return ret;
return iavf_dev_init(dev);
}
static int
iavf_dcf_cap_check_handler(__rte_unused const char *key,
const char *value, __rte_unused void *opaque)
{
if (strcmp(value, "dcf"))
return -1;
return 0;
}
static int
iavf_dcf_cap_selected(struct rte_devargs *devargs)
{
struct rte_kvargs *kvlist;
const char *key = "cap";
int ret = 0;
if (devargs == NULL)
return 0;
kvlist = rte_kvargs_parse(devargs->args, NULL);
if (kvlist == NULL)
return 0;
if (!rte_kvargs_count(kvlist, key))
goto exit;
/* dcf capability selected when there's a key-value pair: cap=dcf */
if (rte_kvargs_process(kvlist, key,
iavf_dcf_cap_check_handler, NULL) < 0)
goto exit;
ret = 1;
exit:
rte_kvargs_free(kvlist);
return ret;
}
static int eth_iavf_pci_probe(struct rte_pci_driver *pci_drv __rte_unused,
struct rte_pci_device *pci_dev)
{
if (iavf_dcf_cap_selected(pci_dev->device.devargs))
return 1;
return rte_eth_dev_pci_generic_probe(pci_dev,
sizeof(struct iavf_adapter), iavf_dev_init);
}
static int eth_iavf_pci_remove(struct rte_pci_device *pci_dev)
{
return rte_eth_dev_pci_generic_remove(pci_dev, iavf_dev_uninit);
}
/* Adaptive virtual function driver struct */
static struct rte_pci_driver rte_iavf_pmd = {
.id_table = pci_id_iavf_map,
.drv_flags = RTE_PCI_DRV_NEED_MAPPING | RTE_PCI_DRV_INTR_LSC,
.probe = eth_iavf_pci_probe,
.remove = eth_iavf_pci_remove,
};
RTE_PMD_REGISTER_PCI(net_iavf, rte_iavf_pmd);
RTE_PMD_REGISTER_PCI_TABLE(net_iavf, pci_id_iavf_map);
RTE_PMD_REGISTER_KMOD_DEP(net_iavf, "* igb_uio | vfio-pci");
RTE_PMD_REGISTER_PARAM_STRING(net_iavf, "cap=dcf");
RTE_LOG_REGISTER_SUFFIX(iavf_logtype_init, init, NOTICE);
RTE_LOG_REGISTER_SUFFIX(iavf_logtype_driver, driver, NOTICE);
#ifdef RTE_ETHDEV_DEBUG_RX
RTE_LOG_REGISTER_SUFFIX(iavf_logtype_rx, rx, DEBUG);
#endif
#ifdef RTE_ETHDEV_DEBUG_TX
RTE_LOG_REGISTER_SUFFIX(iavf_logtype_tx, tx, DEBUG);
#endif