f-stack/dpdk/drivers/net/hns3/hns3_intr.c

2930 lines
71 KiB
C

/* SPDX-License-Identifier: BSD-3-Clause
* Copyright(c) 2018-2021 HiSilicon Limited.
*/
#include <rte_alarm.h>
#include <rte_cycles.h>
#include <rte_ethdev.h>
#include <rte_io.h>
#include <rte_malloc.h>
#include "hns3_common.h"
#include "hns3_logs.h"
#include "hns3_intr.h"
#include "hns3_regs.h"
#include "hns3_rxtx.h"
#define SWITCH_CONTEXT_US 10
#define HNS3_CHECK_MERGE_CNT(val) \
do { \
if (val) \
hw->reset.stats.merge_cnt++; \
} while (0)
static const char *reset_string[HNS3_MAX_RESET] = {
"flr", "vf_func", "vf_pf_func", "vf_full", "vf_global",
"pf_func", "global", "IMP", "none",
};
static const struct hns3_hw_error mac_afifo_tnl_int[] = {
{
.int_msk = BIT(0),
.msg = "egu_cge_afifo_ecc_1bit_err",
.reset_level = HNS3_NONE_RESET
}, {
.int_msk = BIT(1),
.msg = "egu_cge_afifo_ecc_mbit_err",
.reset_level = HNS3_GLOBAL_RESET
}, {
.int_msk = BIT(2),
.msg = "egu_lge_afifo_ecc_1bit_err",
.reset_level = HNS3_NONE_RESET
}, {
.int_msk = BIT(3),
.msg = "egu_lge_afifo_ecc_mbit_err",
.reset_level = HNS3_GLOBAL_RESET
}, {
.int_msk = BIT(4),
.msg = "cge_igu_afifo_ecc_1bit_err",
.reset_level = HNS3_NONE_RESET
}, {
.int_msk = BIT(5),
.msg = "cge_igu_afifo_ecc_mbit_err",
.reset_level = HNS3_GLOBAL_RESET
}, {
.int_msk = BIT(6),
.msg = "lge_igu_afifo_ecc_1bit_err",
.reset_level = HNS3_NONE_RESET
}, {
.int_msk = BIT(7),
.msg = "lge_igu_afifo_ecc_mbit_err",
.reset_level = HNS3_GLOBAL_RESET
}, {
.int_msk = BIT(8),
.msg = "cge_igu_afifo_overflow_err",
.reset_level = HNS3_GLOBAL_RESET
}, {
.int_msk = BIT(9),
.msg = "lge_igu_afifo_overflow_err",
.reset_level = HNS3_GLOBAL_RESET
}, {
.int_msk = BIT(10),
.msg = "egu_cge_afifo_underrun_err",
.reset_level = HNS3_GLOBAL_RESET
}, {
.int_msk = BIT(11),
.msg = "egu_lge_afifo_underrun_err",
.reset_level = HNS3_GLOBAL_RESET
}, {
.int_msk = BIT(12),
.msg = "egu_ge_afifo_underrun_err",
.reset_level = HNS3_GLOBAL_RESET
}, {
.int_msk = BIT(13),
.msg = "ge_igu_afifo_overflow_err",
.reset_level = HNS3_GLOBAL_RESET
}, {
.int_msk = 0,
.msg = NULL,
.reset_level = HNS3_NONE_RESET
}
};
static const struct hns3_hw_error ppu_mpf_abnormal_int_st1[] = {
{
.int_msk = 0xFFFFFFFF,
.msg = "rpu_rx_pkt_ecc_mbit_err",
.reset_level = HNS3_GLOBAL_RESET
}, {
.int_msk = 0,
.msg = NULL,
.reset_level = HNS3_NONE_RESET
}
};
static const struct hns3_hw_error ppu_mpf_abnormal_int_st2_ras[] = {
{
.int_msk = BIT(13),
.msg = "rpu_rx_pkt_bit32_ecc_mbit_err",
.reset_level = HNS3_GLOBAL_RESET
}, {
.int_msk = BIT(14),
.msg = "rpu_rx_pkt_bit33_ecc_mbit_err",
.reset_level = HNS3_GLOBAL_RESET
}, {
.int_msk = BIT(15),
.msg = "rpu_rx_pkt_bit34_ecc_mbit_err",
.reset_level = HNS3_GLOBAL_RESET
}, {
.int_msk = BIT(16),
.msg = "rpu_rx_pkt_bit35_ecc_mbit_err",
.reset_level = HNS3_GLOBAL_RESET
}, {
.int_msk = BIT(17),
.msg = "rcb_tx_ring_ecc_mbit_err",
.reset_level = HNS3_GLOBAL_RESET
}, {
.int_msk = BIT(18),
.msg = "rcb_rx_ring_ecc_mbit_err",
.reset_level = HNS3_GLOBAL_RESET
}, {
.int_msk = BIT(19),
.msg = "rcb_tx_fbd_ecc_mbit_err",
.reset_level = HNS3_GLOBAL_RESET
}, {
.int_msk = BIT(20),
.msg = "rcb_rx_ebd_ecc_mbit_err",
.reset_level = HNS3_GLOBAL_RESET
}, {
.int_msk = BIT(21),
.msg = "rcb_tso_info_ecc_mbit_err",
.reset_level = HNS3_GLOBAL_RESET
}, {
.int_msk = BIT(22),
.msg = "rcb_tx_int_info_ecc_mbit_err",
.reset_level = HNS3_GLOBAL_RESET
}, {
.int_msk = BIT(23),
.msg = "rcb_rx_int_info_ecc_mbit_err",
.reset_level = HNS3_GLOBAL_RESET
}, {
.int_msk = BIT(24),
.msg = "tpu_tx_pkt_0_ecc_mbit_err",
.reset_level = HNS3_GLOBAL_RESET
}, {
.int_msk = BIT(25),
.msg = "tpu_tx_pkt_1_ecc_mbit_err",
.reset_level = HNS3_GLOBAL_RESET
}, {
.int_msk = BIT(26),
.msg = "rd_bus_err",
.reset_level = HNS3_GLOBAL_RESET
}, {
.int_msk = BIT(27),
.msg = "wr_bus_err",
.reset_level = HNS3_GLOBAL_RESET
}, {
.int_msk = BIT(30),
.msg = "ooo_ecc_err_detect",
.reset_level = HNS3_NONE_RESET
}, {
.int_msk = BIT(31),
.msg = "ooo_ecc_err_multpl",
.reset_level = HNS3_GLOBAL_RESET
}, {
.int_msk = 0,
.msg = NULL,
.reset_level = HNS3_NONE_RESET
}
};
static const struct hns3_hw_error ppu_mpf_abnormal_int_st2_msix[] = {
{
.int_msk = BIT(29),
.msg = "rx_q_search_miss",
.reset_level = HNS3_NONE_RESET
}, {
.int_msk = 0,
.msg = NULL,
.reset_level = HNS3_NONE_RESET
}
};
static const struct hns3_hw_error ssu_port_based_pf_int[] = {
{
.int_msk = BIT(0),
.msg = "roc_pkt_without_key_port",
.reset_level = HNS3_GLOBAL_RESET
}, {
.int_msk = BIT(9),
.msg = "low_water_line_err_port",
.reset_level = HNS3_NONE_RESET
}, {
.int_msk = 0,
.msg = NULL,
.reset_level = HNS3_NONE_RESET
}
};
static const struct hns3_hw_error ppp_pf_abnormal_int[] = {
{
.int_msk = BIT(0),
.msg = "tx_vlan_tag_err",
.reset_level = HNS3_NONE_RESET
}, {
.int_msk = BIT(1),
.msg = "rss_list_tc_unassigned_queue_err",
.reset_level = HNS3_NONE_RESET
}, {
.int_msk = 0,
.msg = NULL,
.reset_level = HNS3_NONE_RESET
}
};
static const struct hns3_hw_error ppu_pf_abnormal_int_ras[] = {
{
.int_msk = BIT(3),
.msg = "tx_rd_fbd_poison",
.reset_level = HNS3_FUNC_RESET
}, {
.int_msk = BIT(4),
.msg = "rx_rd_ebd_poison",
.reset_level = HNS3_FUNC_RESET
}, {
.int_msk = 0,
.msg = NULL,
.reset_level = HNS3_NONE_RESET
}
};
static const struct hns3_hw_error ppu_pf_abnormal_int_msix[] = {
{
.int_msk = BIT(0),
.msg = "over_8bd_no_fe",
.reset_level = HNS3_FUNC_RESET
}, {
.int_msk = BIT(1),
.msg = "tso_mss_cmp_min_err",
.reset_level = HNS3_NONE_RESET
}, {
.int_msk = BIT(2),
.msg = "tso_mss_cmp_max_err",
.reset_level = HNS3_NONE_RESET
}, {
.int_msk = BIT(5),
.msg = "buf_wait_timeout",
.reset_level = HNS3_NONE_RESET
}, {
.int_msk = 0,
.msg = NULL,
.reset_level = HNS3_NONE_RESET
}
};
static const struct hns3_hw_error imp_tcm_ecc_int[] = {
{
.int_msk = BIT(1),
.msg = "imp_itcm0_ecc_mbit_err",
.reset_level = HNS3_NONE_RESET
}, {
.int_msk = BIT(3),
.msg = "imp_itcm1_ecc_mbit_err",
.reset_level = HNS3_NONE_RESET
}, {
.int_msk = BIT(5),
.msg = "imp_itcm2_ecc_mbit_err",
.reset_level = HNS3_NONE_RESET
}, {
.int_msk = BIT(7),
.msg = "imp_itcm3_ecc_mbit_err",
.reset_level = HNS3_NONE_RESET
}, {
.int_msk = BIT(9),
.msg = "imp_dtcm0_mem0_ecc_mbit_err",
.reset_level = HNS3_NONE_RESET
}, {
.int_msk = BIT(11),
.msg = "imp_dtcm0_mem1_ecc_mbit_err",
.reset_level = HNS3_NONE_RESET
}, {
.int_msk = BIT(13),
.msg = "imp_dtcm1_mem0_ecc_mbit_err",
.reset_level = HNS3_NONE_RESET
}, {
.int_msk = BIT(15),
.msg = "imp_dtcm1_mem1_ecc_mbit_err",
.reset_level = HNS3_NONE_RESET
}, {
.int_msk = BIT(17),
.msg = "imp_itcm4_ecc_mbit_err",
.reset_level = HNS3_NONE_RESET
}, {
.int_msk = 0,
.msg = NULL,
.reset_level = HNS3_NONE_RESET
}
};
static const struct hns3_hw_error cmdq_mem_ecc_int[] = {
{
.int_msk = BIT(1),
.msg = "cmdq_nic_rx_depth_ecc_mbit_err",
.reset_level = HNS3_NONE_RESET
}, {
.int_msk = BIT(3),
.msg = "cmdq_nic_tx_depth_ecc_mbit_err",
.reset_level = HNS3_NONE_RESET
}, {
.int_msk = BIT(5),
.msg = "cmdq_nic_rx_tail_ecc_mbit_err",
.reset_level = HNS3_NONE_RESET
}, {
.int_msk = BIT(7),
.msg = "cmdq_nic_tx_tail_ecc_mbit_err",
.reset_level = HNS3_NONE_RESET
}, {
.int_msk = BIT(9),
.msg = "cmdq_nic_rx_head_ecc_mbit_err",
.reset_level = HNS3_NONE_RESET
}, {
.int_msk = BIT(11),
.msg = "cmdq_nic_tx_head_ecc_mbit_err",
.reset_level = HNS3_NONE_RESET
}, {
.int_msk = BIT(13),
.msg = "cmdq_nic_rx_addr_ecc_mbit_err",
.reset_level = HNS3_NONE_RESET
}, {
.int_msk = BIT(15),
.msg = "cmdq_nic_tx_addr_ecc_mbit_err",
.reset_level = HNS3_NONE_RESET
}, {
.int_msk = 0,
.msg = NULL,
.reset_level = HNS3_NONE_RESET
}
};
static const struct hns3_hw_error tqp_int_ecc_int[] = {
{
.int_msk = BIT(6),
.msg = "tqp_int_cfg_even_ecc_mbit_err",
.reset_level = HNS3_NONE_RESET
}, {
.int_msk = BIT(7),
.msg = "tqp_int_cfg_odd_ecc_mbit_err",
.reset_level = HNS3_NONE_RESET
}, {
.int_msk = BIT(8),
.msg = "tqp_int_ctrl_even_ecc_mbit_err",
.reset_level = HNS3_NONE_RESET
}, {
.int_msk = BIT(9),
.msg = "tqp_int_ctrl_odd_ecc_mbit_err",
.reset_level = HNS3_NONE_RESET
}, {
.int_msk = BIT(10),
.msg = "tx_queue_scan_int_ecc_mbit_err",
.reset_level = HNS3_NONE_RESET
}, {
.int_msk = BIT(11),
.msg = "rx_queue_scan_int_ecc_mbit_err",
.reset_level = HNS3_NONE_RESET
}, {
.int_msk = 0,
.msg = NULL,
.reset_level = HNS3_NONE_RESET
}
};
static const struct hns3_hw_error imp_rd_poison_int[] = {
{
.int_msk = BIT(0),
.msg = "imp_rd_poison_int",
.reset_level = HNS3_NONE_RESET
}, {
.int_msk = 0,
.msg = NULL,
.reset_level = HNS3_NONE_RESET
}
};
#define HNS3_SSU_MEM_ECC_ERR(x) \
{ \
.int_msk = BIT(x), \
.msg = "ssu_mem" #x "_ecc_mbit_err", \
.reset_level = HNS3_GLOBAL_RESET \
}
static const struct hns3_hw_error ssu_ecc_multi_bit_int_0[] = {
HNS3_SSU_MEM_ECC_ERR(0),
HNS3_SSU_MEM_ECC_ERR(1),
HNS3_SSU_MEM_ECC_ERR(2),
HNS3_SSU_MEM_ECC_ERR(3),
HNS3_SSU_MEM_ECC_ERR(4),
HNS3_SSU_MEM_ECC_ERR(5),
HNS3_SSU_MEM_ECC_ERR(6),
HNS3_SSU_MEM_ECC_ERR(7),
HNS3_SSU_MEM_ECC_ERR(8),
HNS3_SSU_MEM_ECC_ERR(9),
HNS3_SSU_MEM_ECC_ERR(10),
HNS3_SSU_MEM_ECC_ERR(11),
HNS3_SSU_MEM_ECC_ERR(12),
HNS3_SSU_MEM_ECC_ERR(13),
HNS3_SSU_MEM_ECC_ERR(14),
HNS3_SSU_MEM_ECC_ERR(15),
HNS3_SSU_MEM_ECC_ERR(16),
HNS3_SSU_MEM_ECC_ERR(17),
HNS3_SSU_MEM_ECC_ERR(18),
HNS3_SSU_MEM_ECC_ERR(19),
HNS3_SSU_MEM_ECC_ERR(20),
HNS3_SSU_MEM_ECC_ERR(21),
HNS3_SSU_MEM_ECC_ERR(22),
HNS3_SSU_MEM_ECC_ERR(23),
HNS3_SSU_MEM_ECC_ERR(24),
HNS3_SSU_MEM_ECC_ERR(25),
HNS3_SSU_MEM_ECC_ERR(26),
HNS3_SSU_MEM_ECC_ERR(27),
HNS3_SSU_MEM_ECC_ERR(28),
HNS3_SSU_MEM_ECC_ERR(29),
HNS3_SSU_MEM_ECC_ERR(30),
HNS3_SSU_MEM_ECC_ERR(31),
{ .int_msk = 0,
.msg = NULL,
.reset_level = HNS3_NONE_RESET}
};
static const struct hns3_hw_error ssu_ecc_multi_bit_int_1[] = {
{
.int_msk = BIT(0),
.msg = "ssu_mem32_ecc_mbit_err",
.reset_level = HNS3_GLOBAL_RESET
}, {
.int_msk = 0,
.msg = NULL,
.reset_level = HNS3_NONE_RESET
}
};
static const struct hns3_hw_error ssu_common_ecc_int[] = {
{
.int_msk = BIT(0),
.msg = "buf_sum_err",
.reset_level = HNS3_NONE_RESET
}, {
.int_msk = BIT(1),
.msg = "ppp_mb_num_err",
.reset_level = HNS3_NONE_RESET
}, {
.int_msk = BIT(2),
.msg = "ppp_mbid_err",
.reset_level = HNS3_GLOBAL_RESET
}, {
.int_msk = BIT(3),
.msg = "ppp_rlt_mac_err",
.reset_level = HNS3_GLOBAL_RESET
}, {
.int_msk = BIT(4),
.msg = "ppp_rlt_host_err",
.reset_level = HNS3_GLOBAL_RESET
}, {
.int_msk = BIT(5),
.msg = "cks_edit_position_err",
.reset_level = HNS3_GLOBAL_RESET
}, {
.int_msk = BIT(6),
.msg = "cks_edit_condition_err",
.reset_level = HNS3_GLOBAL_RESET
}, {
.int_msk = BIT(7),
.msg = "vlan_edit_condition_err",
.reset_level = HNS3_GLOBAL_RESET
}, {
.int_msk = BIT(8),
.msg = "vlan_num_ot_err",
.reset_level = HNS3_GLOBAL_RESET
}, {
.int_msk = BIT(9),
.msg = "vlan_num_in_err",
.reset_level = HNS3_GLOBAL_RESET
}, {
.int_msk = 0,
.msg = NULL,
.reset_level = HNS3_NONE_RESET
}
};
static const struct hns3_hw_error igu_int[] = {
{
.int_msk = BIT(0),
.msg = "igu_rx_buf0_ecc_mbit_err",
.reset_level = HNS3_GLOBAL_RESET
}, {
.int_msk = BIT(2),
.msg = "igu_rx_buf1_ecc_mbit_err",
.reset_level = HNS3_GLOBAL_RESET
}, {
.int_msk = 0,
.msg = NULL,
.reset_level = HNS3_NONE_RESET
}
};
static const struct hns3_hw_error msix_ecc_int[] = {
{
.int_msk = BIT(1),
.msg = "msix_nic_ecc_mbit_err",
.reset_level = HNS3_NONE_RESET
}, {
.int_msk = 0,
.msg = NULL,
.reset_level = HNS3_NONE_RESET
}
};
static const struct hns3_hw_error ppp_mpf_abnormal_int_st1[] = {
{
.int_msk = BIT(0),
.msg = "vf_vlan_ad_mem_ecc_mbit_err",
.reset_level = HNS3_GLOBAL_RESET
}, {
.int_msk = BIT(1),
.msg = "umv_mcast_group_mem_ecc_mbit_err",
.reset_level = HNS3_GLOBAL_RESET
}, {
.int_msk = BIT(2),
.msg = "umv_key_mem0_ecc_mbit_err",
.reset_level = HNS3_GLOBAL_RESET
}, {
.int_msk = BIT(3),
.msg = "umv_key_mem1_ecc_mbit_err",
.reset_level = HNS3_GLOBAL_RESET
}, {
.int_msk = BIT(4),
.msg = "umv_key_mem2_ecc_mbit_err",
.reset_level = HNS3_GLOBAL_RESET
}, {
.int_msk = BIT(5),
.msg = "umv_key_mem3_ecc_mbit_err",
.reset_level = HNS3_GLOBAL_RESET
}, {
.int_msk = BIT(6),
.msg = "umv_ad_mem_ecc_mbit_err",
.reset_level = HNS3_GLOBAL_RESET
}, {
.int_msk = BIT(7),
.msg = "rss_tc_mode_mem_ecc_mbit_err",
.reset_level = HNS3_GLOBAL_RESET
}, {
.int_msk = BIT(8),
.msg = "rss_idt_mem0_ecc_mbit_err",
.reset_level = HNS3_GLOBAL_RESET
}, {
.int_msk = BIT(9),
.msg = "rss_idt_mem1_ecc_mbit_err",
.reset_level = HNS3_GLOBAL_RESET
}, {
.int_msk = BIT(10),
.msg = "rss_idt_mem2_ecc_mbit_err",
.reset_level = HNS3_GLOBAL_RESET
}, {
.int_msk = BIT(11),
.msg = "rss_idt_mem3_ecc_mbit_err",
.reset_level = HNS3_GLOBAL_RESET
}, {
.int_msk = BIT(12),
.msg = "rss_idt_mem4_ecc_mbit_err",
.reset_level = HNS3_GLOBAL_RESET
}, {
.int_msk = BIT(13),
.msg = "rss_idt_mem5_ecc_mbit_err",
.reset_level = HNS3_GLOBAL_RESET
}, {
.int_msk = BIT(14),
.msg = "rss_idt_mem6_ecc_mbit_err",
.reset_level = HNS3_GLOBAL_RESET
}, {
.int_msk = BIT(15),
.msg = "rss_idt_mem7_ecc_mbit_err",
.reset_level = HNS3_GLOBAL_RESET
}, {
.int_msk = BIT(16),
.msg = "rss_idt_mem8_ecc_mbit_err",
.reset_level = HNS3_GLOBAL_RESET
}, {
.int_msk = BIT(17),
.msg = "rss_idt_mem9_ecc_mbit_err",
.reset_level = HNS3_GLOBAL_RESET
}, {
.int_msk = BIT(18),
.msg = "rss_idt_mem10_ecc_m1bit_err",
.reset_level = HNS3_GLOBAL_RESET
}, {
.int_msk = BIT(19),
.msg = "rss_idt_mem11_ecc_mbit_err",
.reset_level = HNS3_GLOBAL_RESET
}, {
.int_msk = BIT(20),
.msg = "rss_idt_mem12_ecc_mbit_err",
.reset_level = HNS3_GLOBAL_RESET
}, {
.int_msk = BIT(21),
.msg = "rss_idt_mem13_ecc_mbit_err",
.reset_level = HNS3_GLOBAL_RESET
}, {
.int_msk = BIT(22),
.msg = "rss_idt_mem14_ecc_mbit_err",
.reset_level = HNS3_GLOBAL_RESET
}, {
.int_msk = BIT(23),
.msg = "rss_idt_mem15_ecc_mbit_err",
.reset_level = HNS3_GLOBAL_RESET
}, {
.int_msk = BIT(24),
.msg = "port_vlan_mem_ecc_mbit_err",
.reset_level = HNS3_GLOBAL_RESET
}, {
.int_msk = BIT(25),
.msg = "mcast_linear_table_mem_ecc_mbit_err",
.reset_level = HNS3_GLOBAL_RESET
}, {
.int_msk = BIT(26),
.msg = "mcast_result_mem_ecc_mbit_err",
.reset_level = HNS3_GLOBAL_RESET
}, {
.int_msk = BIT(27),
.msg = "flow_director_ad_mem0_ecc_mbit_err",
.reset_level = HNS3_GLOBAL_RESET
}, {
.int_msk = BIT(28),
.msg = "flow_director_ad_mem1_ecc_mbit_err",
.reset_level = HNS3_GLOBAL_RESET
}, {
.int_msk = BIT(29),
.msg = "rx_vlan_tag_memory_ecc_mbit_err",
.reset_level = HNS3_GLOBAL_RESET
}, {
.int_msk = BIT(30),
.msg = "Tx_UP_mapping_config_mem_ecc_mbit_err",
.reset_level = HNS3_GLOBAL_RESET
}, {
.int_msk = 0,
.msg = NULL,
.reset_level = HNS3_NONE_RESET
}
};
static const struct hns3_hw_error ppp_mpf_abnormal_int_st3[] = {
{
.int_msk = BIT(0),
.msg = "hfs_fifo_mem_ecc_mbit_err",
.reset_level = HNS3_GLOBAL_RESET
}, {
.int_msk = BIT(1),
.msg = "rslt_descr_fifo_mem_ecc_mbit_err",
.reset_level = HNS3_GLOBAL_RESET
}, {
.int_msk = BIT(2),
.msg = "tx_vlan_tag_mem_ecc_mbit_err",
.reset_level = HNS3_GLOBAL_RESET
}, {
.int_msk = BIT(3),
.msg = "FD_CN0_memory_ecc_mbit_err",
.reset_level = HNS3_GLOBAL_RESET
}, {
.int_msk = BIT(4),
.msg = "FD_CN1_memory_ecc_mbit_err",
.reset_level = HNS3_GLOBAL_RESET
}, {
.int_msk = BIT(5),
.msg = "GRO_AD_memory_ecc_mbit_err",
.reset_level = HNS3_GLOBAL_RESET
}, {
.int_msk = 0,
.msg = NULL,
.reset_level = HNS3_NONE_RESET
}
};
static const struct hns3_hw_error ppu_mpf_abnormal_int_st3[] = {
{
.int_msk = BIT(4),
.msg = "gro_bd_ecc_mbit_err",
.reset_level = HNS3_GLOBAL_RESET
}, {
.int_msk = BIT(5),
.msg = "gro_context_ecc_mbit_err",
.reset_level = HNS3_GLOBAL_RESET
}, {
.int_msk = BIT(6),
.msg = "rx_stash_cfg_ecc_mbit_err",
.reset_level = HNS3_GLOBAL_RESET
}, {
.int_msk = BIT(7),
.msg = "axi_rd_fbd_ecc_mbit_err",
.reset_level = HNS3_GLOBAL_RESET
}, {
.int_msk = 0,
.msg = NULL,
.reset_level = HNS3_NONE_RESET
}
};
static const struct hns3_hw_error tm_sch_int[] = {
{
.int_msk = BIT(1),
.msg = "tm_sch_ecc_mbit_err",
.reset_level = HNS3_GLOBAL_RESET
}, {
.int_msk = BIT(2),
.msg = "tm_sch_port_shap_sub_fifo_wr_err",
.reset_level = HNS3_GLOBAL_RESET
}, {
.int_msk = BIT(3),
.msg = "tm_sch_port_shap_sub_fifo_rd_err",
.reset_level = HNS3_GLOBAL_RESET
}, {
.int_msk = BIT(4),
.msg = "tm_sch_pg_pshap_sub_fifo_wr_err",
.reset_level = HNS3_GLOBAL_RESET
}, {
.int_msk = BIT(5),
.msg = "tm_sch_pg_pshap_sub_fifo_rd_err",
.reset_level = HNS3_GLOBAL_RESET
}, {
.int_msk = BIT(6),
.msg = "tm_sch_pg_cshap_sub_fifo_wr_err",
.reset_level = HNS3_GLOBAL_RESET
}, {
.int_msk = BIT(7),
.msg = "tm_sch_pg_cshap_sub_fifo_rd_err",
.reset_level = HNS3_GLOBAL_RESET
}, {
.int_msk = BIT(8),
.msg = "tm_sch_pri_pshap_sub_fifo_wr_err",
.reset_level = HNS3_GLOBAL_RESET
}, {
.int_msk = BIT(9),
.msg = "tm_sch_pri_pshap_sub_fifo_rd_err",
.reset_level = HNS3_GLOBAL_RESET
}, {
.int_msk = BIT(10),
.msg = "tm_sch_pri_cshap_sub_fifo_wr_err",
.reset_level = HNS3_GLOBAL_RESET
}, {
.int_msk = BIT(11),
.msg = "tm_sch_pri_cshap_sub_fifo_rd_err",
.reset_level = HNS3_GLOBAL_RESET
}, {
.int_msk = BIT(12),
.msg = "tm_sch_port_shap_offset_fifo_wr_err",
.reset_level = HNS3_GLOBAL_RESET
}, {
.int_msk = BIT(13),
.msg = "tm_sch_port_shap_offset_fifo_rd_err",
.reset_level = HNS3_GLOBAL_RESET
}, {
.int_msk = BIT(14),
.msg = "tm_sch_pg_pshap_offset_fifo_wr_err",
.reset_level = HNS3_GLOBAL_RESET
}, {
.int_msk = BIT(15),
.msg = "tm_sch_pg_pshap_offset_fifo_rd_err",
.reset_level = HNS3_GLOBAL_RESET
}, {
.int_msk = BIT(16),
.msg = "tm_sch_pg_cshap_offset_fifo_wr_err",
.reset_level = HNS3_GLOBAL_RESET
}, {
.int_msk = BIT(17),
.msg = "tm_sch_pg_cshap_offset_fifo_rd_err",
.reset_level = HNS3_GLOBAL_RESET
}, {
.int_msk = BIT(18),
.msg = "tm_sch_pri_pshap_offset_fifo_wr_err",
.reset_level = HNS3_GLOBAL_RESET
}, {
.int_msk = BIT(19),
.msg = "tm_sch_pri_pshap_offset_fifo_rd_err",
.reset_level = HNS3_GLOBAL_RESET
}, {
.int_msk = BIT(20),
.msg = "tm_sch_pri_cshap_offset_fifo_wr_err",
.reset_level = HNS3_GLOBAL_RESET
}, {
.int_msk = BIT(21),
.msg = "tm_sch_pri_cshap_offset_fifo_rd_err",
.reset_level = HNS3_GLOBAL_RESET
}, {
.int_msk = BIT(22),
.msg = "tm_sch_rq_fifo_wr_err",
.reset_level = HNS3_GLOBAL_RESET
}, {
.int_msk = BIT(23),
.msg = "tm_sch_rq_fifo_rd_err",
.reset_level = HNS3_GLOBAL_RESET
}, {
.int_msk = BIT(24),
.msg = "tm_sch_nq_fifo_wr_err",
.reset_level = HNS3_GLOBAL_RESET
}, {
.int_msk = BIT(25),
.msg = "tm_sch_nq_fifo_rd_err",
.reset_level = HNS3_GLOBAL_RESET
}, {
.int_msk = BIT(26),
.msg = "tm_sch_roce_up_fifo_wr_err",
.reset_level = HNS3_GLOBAL_RESET
}, {
.int_msk = BIT(27),
.msg = "tm_sch_roce_up_fifo_rd_err",
.reset_level = HNS3_GLOBAL_RESET
}, {
.int_msk = BIT(28),
.msg = "tm_sch_rcb_byte_fifo_wr_err",
.reset_level = HNS3_GLOBAL_RESET
}, {
.int_msk = BIT(29),
.msg = "tm_sch_rcb_byte_fifo_rd_err",
.reset_level = HNS3_GLOBAL_RESET
}, {
.int_msk = BIT(30),
.msg = "tm_sch_ssu_byte_fifo_wr_err",
.reset_level = HNS3_GLOBAL_RESET
}, {
.int_msk = BIT(31),
.msg = "tm_sch_ssu_byte_fifo_rd_err",
.reset_level = HNS3_GLOBAL_RESET
}, {
.int_msk = 0,
.msg = NULL,
.reset_level = HNS3_NONE_RESET
}
};
static const struct hns3_hw_error qcn_fifo_int[] = {
{
.int_msk = BIT(0),
.msg = "qcn_shap_gp0_sch_fifo_rd_err",
.reset_level = HNS3_GLOBAL_RESET
}, {
.int_msk = BIT(1),
.msg = "qcn_shap_gp0_sch_fifo_wr_err",
.reset_level = HNS3_GLOBAL_RESET
}, {
.int_msk = BIT(2),
.msg = "qcn_shap_gp1_sch_fifo_rd_err",
.reset_level = HNS3_GLOBAL_RESET
}, {
.int_msk = BIT(3),
.msg = "qcn_shap_gp1_sch_fifo_wr_err",
.reset_level = HNS3_GLOBAL_RESET
}, {
.int_msk = BIT(4),
.msg = "qcn_shap_gp2_sch_fifo_rd_err",
.reset_level = HNS3_GLOBAL_RESET
}, {
.int_msk = BIT(5),
.msg = "qcn_shap_gp2_sch_fifo_wr_err",
.reset_level = HNS3_GLOBAL_RESET
}, {
.int_msk = BIT(6),
.msg = "qcn_shap_gp3_sch_fifo_rd_err",
.reset_level = HNS3_GLOBAL_RESET
}, {
.int_msk = BIT(7),
.msg = "qcn_shap_gp3_sch_fifo_wr_err",
.reset_level = HNS3_GLOBAL_RESET
}, {
.int_msk = BIT(8),
.msg = "qcn_shap_gp0_offset_fifo_rd_err",
.reset_level = HNS3_GLOBAL_RESET
}, {
.int_msk = BIT(9),
.msg = "qcn_shap_gp0_offset_fifo_wr_err",
.reset_level = HNS3_GLOBAL_RESET
}, {
.int_msk = BIT(10),
.msg = "qcn_shap_gp1_offset_fifo_rd_err",
.reset_level = HNS3_GLOBAL_RESET
}, {
.int_msk = BIT(11),
.msg = "qcn_shap_gp1_offset_fifo_wr_err",
.reset_level = HNS3_GLOBAL_RESET
}, {
.int_msk = BIT(12),
.msg = "qcn_shap_gp2_offset_fifo_rd_err",
.reset_level = HNS3_GLOBAL_RESET
}, {
.int_msk = BIT(13),
.msg = "qcn_shap_gp2_offset_fifo_wr_err",
.reset_level = HNS3_GLOBAL_RESET
}, {
.int_msk = BIT(14),
.msg = "qcn_shap_gp3_offset_fifo_rd_err",
.reset_level = HNS3_GLOBAL_RESET
}, {
.int_msk = BIT(15),
.msg = "qcn_shap_gp3_offset_fifo_wr_err",
.reset_level = HNS3_GLOBAL_RESET
}, {
.int_msk = BIT(16),
.msg = "qcn_byte_info_fifo_rd_err",
.reset_level = HNS3_GLOBAL_RESET
}, {
.int_msk = BIT(17),
.msg = "qcn_byte_info_fifo_wr_err",
.reset_level = HNS3_GLOBAL_RESET
}, {
.int_msk = 0,
.msg = NULL,
.reset_level = HNS3_NONE_RESET
}
};
static const struct hns3_hw_error qcn_ecc_int[] = {
{
.int_msk = BIT(1),
.msg = "qcn_byte_mem_ecc_mbit_err",
.reset_level = HNS3_GLOBAL_RESET
}, {
.int_msk = BIT(3),
.msg = "qcn_time_mem_ecc_mbit_err",
.reset_level = HNS3_GLOBAL_RESET
}, {
.int_msk = BIT(5),
.msg = "qcn_fb_mem_ecc_mbit_err",
.reset_level = HNS3_GLOBAL_RESET
}, {
.int_msk = BIT(7),
.msg = "qcn_link_mem_ecc_mbit_err",
.reset_level = HNS3_GLOBAL_RESET
}, {
.int_msk = BIT(9),
.msg = "qcn_rate_mem_ecc_mbit_err",
.reset_level = HNS3_GLOBAL_RESET
}, {
.int_msk = BIT(11),
.msg = "qcn_tmplt_mem_ecc_mbit_err",
.reset_level = HNS3_GLOBAL_RESET
}, {
.int_msk = BIT(13),
.msg = "qcn_shap_cfg_mem_ecc_mbit_err",
.reset_level = HNS3_GLOBAL_RESET
}, {
.int_msk = BIT(15),
.msg = "qcn_gp0_barrel_mem_ecc_mbit_err",
.reset_level = HNS3_GLOBAL_RESET
}, {
.int_msk = BIT(17),
.msg = "qcn_gp1_barrel_mem_ecc_mbit_err",
.reset_level = HNS3_GLOBAL_RESET
}, {
.int_msk = BIT(19),
.msg = "qcn_gp2_barrel_mem_ecc_mbit_err",
.reset_level = HNS3_GLOBAL_RESET
}, {
.int_msk = BIT(21),
.msg = "qcn_gp3_barral_mem_ecc_mbit_err",
.reset_level = HNS3_GLOBAL_RESET
}, {
.int_msk = 0,
.msg = NULL,
.reset_level = HNS3_NONE_RESET
}
};
static const struct hns3_hw_error ncsi_ecc_int[] = {
{
.int_msk = BIT(1),
.msg = "ncsi_tx_ecc_mbit_err",
.reset_level = HNS3_NONE_RESET
}, {
.int_msk = 0,
.msg = NULL,
.reset_level = HNS3_NONE_RESET
}
};
static const struct hns3_hw_error ssu_fifo_overflow_int[] = {
{
.int_msk = BIT(0),
.msg = "ig_mac_inf_int",
.reset_level = HNS3_GLOBAL_RESET
}, {
.int_msk = BIT(1),
.msg = "ig_host_inf_int",
.reset_level = HNS3_GLOBAL_RESET
}, {
.int_msk = BIT(2),
.msg = "ig_roc_buf_int",
.reset_level = HNS3_GLOBAL_RESET
}, {
.int_msk = BIT(3),
.msg = "ig_host_data_fifo_int",
.reset_level = HNS3_GLOBAL_RESET
}, {
.int_msk = BIT(4),
.msg = "ig_host_key_fifo_int",
.reset_level = HNS3_GLOBAL_RESET
}, {
.int_msk = BIT(5),
.msg = "tx_qcn_fifo_int",
.reset_level = HNS3_GLOBAL_RESET
}, {
.int_msk = BIT(6),
.msg = "rx_qcn_fifo_int",
.reset_level = HNS3_GLOBAL_RESET
}, {
.int_msk = BIT(7),
.msg = "tx_pf_rd_fifo_int",
.reset_level = HNS3_GLOBAL_RESET
}, {
.int_msk = BIT(8),
.msg = "rx_pf_rd_fifo_int",
.reset_level = HNS3_GLOBAL_RESET
}, {
.int_msk = BIT(9),
.msg = "qm_eof_fifo_int",
.reset_level = HNS3_GLOBAL_RESET
}, {
.int_msk = BIT(10),
.msg = "mb_rlt_fifo_int",
.reset_level = HNS3_GLOBAL_RESET
}, {
.int_msk = BIT(11),
.msg = "dup_uncopy_fifo_int",
.reset_level = HNS3_GLOBAL_RESET
}, {
.int_msk = BIT(12),
.msg = "dup_cnt_rd_fifo_int",
.reset_level = HNS3_GLOBAL_RESET
}, {
.int_msk = BIT(13),
.msg = "dup_cnt_drop_fifo_int",
.reset_level = HNS3_GLOBAL_RESET
}, {
.int_msk = BIT(14),
.msg = "dup_cnt_wrb_fifo_int",
.reset_level = HNS3_GLOBAL_RESET
}, {
.int_msk = BIT(15),
.msg = "host_cmd_fifo_int",
.reset_level = HNS3_GLOBAL_RESET
}, {
.int_msk = BIT(16),
.msg = "mac_cmd_fifo_int",
.reset_level = HNS3_GLOBAL_RESET
}, {
.int_msk = BIT(17),
.msg = "host_cmd_bitmap_empty_int",
.reset_level = HNS3_GLOBAL_RESET
}, {
.int_msk = BIT(18),
.msg = "mac_cmd_bitmap_empty_int",
.reset_level = HNS3_GLOBAL_RESET
}, {
.int_msk = BIT(19),
.msg = "dup_bitmap_empty_int",
.reset_level = HNS3_GLOBAL_RESET
}, {
.int_msk = BIT(20),
.msg = "out_queue_bitmap_empty_int",
.reset_level = HNS3_GLOBAL_RESET
}, {
.int_msk = BIT(21),
.msg = "bank2_bitmap_empty_int",
.reset_level = HNS3_GLOBAL_RESET
}, {
.int_msk = BIT(22),
.msg = "bank1_bitmap_empty_int",
.reset_level = HNS3_GLOBAL_RESET
}, {
.int_msk = BIT(23),
.msg = "bank0_bitmap_empty_int",
.reset_level = HNS3_GLOBAL_RESET
}, {
.int_msk = 0,
.msg = NULL,
.reset_level = HNS3_NONE_RESET
}
};
static const struct hns3_hw_error ssu_ets_tcg_int[] = {
{
.int_msk = BIT(0),
.msg = "ets_rd_int_rx_tcg",
.reset_level = HNS3_GLOBAL_RESET
}, {
.int_msk = BIT(1),
.msg = "ets_wr_int_rx_tcg",
.reset_level = HNS3_GLOBAL_RESET
}, {
.int_msk = BIT(2),
.msg = "ets_rd_int_tx_tcg",
.reset_level = HNS3_GLOBAL_RESET
}, {
.int_msk = BIT(3),
.msg = "ets_wr_int_tx_tcg",
.reset_level = HNS3_GLOBAL_RESET
}, {
.int_msk = 0,
.msg = NULL,
.reset_level = HNS3_NONE_RESET
}
};
static const struct hns3_hw_error igu_egu_tnl_int[] = {
{
.int_msk = BIT(0),
.msg = "rx_buf_overflow",
.reset_level = HNS3_GLOBAL_RESET
}, {
.int_msk = BIT(1),
.msg = "rx_stp_fifo_overflow",
.reset_level = HNS3_GLOBAL_RESET
}, {
.int_msk = BIT(2),
.msg = "rx_stp_fifo_underflow",
.reset_level = HNS3_GLOBAL_RESET
}, {
.int_msk = BIT(3),
.msg = "tx_buf_overflow",
.reset_level = HNS3_GLOBAL_RESET
}, {
.int_msk = BIT(4),
.msg = "tx_buf_underrun",
.reset_level = HNS3_GLOBAL_RESET
}, {
.int_msk = BIT(5),
.msg = "rx_stp_buf_overflow",
.reset_level = HNS3_GLOBAL_RESET
}, {
.int_msk = 0,
.msg = NULL,
.reset_level = HNS3_NONE_RESET
}
};
static const struct hns3_hw_error ssu_port_based_err_int[] = {
{
.int_msk = BIT(0),
.msg = "roc_pkt_without_key_port",
.reset_level = HNS3_FUNC_RESET
}, {
.int_msk = BIT(1),
.msg = "tpu_pkt_without_key_port",
.reset_level = HNS3_GLOBAL_RESET
}, {
.int_msk = BIT(2),
.msg = "igu_pkt_without_key_port",
.reset_level = HNS3_GLOBAL_RESET
}, {
.int_msk = BIT(3),
.msg = "roc_eof_mis_match_port",
.reset_level = HNS3_GLOBAL_RESET
}, {
.int_msk = BIT(4),
.msg = "tpu_eof_mis_match_port",
.reset_level = HNS3_GLOBAL_RESET
}, {
.int_msk = BIT(5),
.msg = "igu_eof_mis_match_port",
.reset_level = HNS3_GLOBAL_RESET
}, {
.int_msk = BIT(6),
.msg = "roc_sof_mis_match_port",
.reset_level = HNS3_GLOBAL_RESET
}, {
.int_msk = BIT(7),
.msg = "tpu_sof_mis_match_port",
.reset_level = HNS3_GLOBAL_RESET
}, {
.int_msk = BIT(8),
.msg = "igu_sof_mis_match_port",
.reset_level = HNS3_GLOBAL_RESET
}, {
.int_msk = BIT(11),
.msg = "ets_rd_int_rx_port",
.reset_level = HNS3_GLOBAL_RESET
}, {
.int_msk = BIT(12),
.msg = "ets_wr_int_rx_port",
.reset_level = HNS3_GLOBAL_RESET
}, {
.int_msk = BIT(13),
.msg = "ets_rd_int_tx_port",
.reset_level = HNS3_GLOBAL_RESET
}, {
.int_msk = BIT(14),
.msg = "ets_wr_int_tx_port",
.reset_level = HNS3_GLOBAL_RESET
}, {
.int_msk = 0,
.msg = NULL,
.reset_level = HNS3_NONE_RESET
}
};
static const struct hns3_hw_error_desc mpf_ras_err_tbl[] = {
{
.desc_offset = 0,
.data_offset = 0,
.msg = "IMP_TCM_ECC_INT_STS",
.hw_err = imp_tcm_ecc_int
}, {
.desc_offset = 0,
.data_offset = 1,
.msg = "CMDQ_MEM_ECC_INT_STS",
.hw_err = cmdq_mem_ecc_int
}, {
.desc_offset = 0,
.data_offset = 2,
.msg = "IMP_RD_POISON_INT_STS",
.hw_err = imp_rd_poison_int
}, {
.desc_offset = 0,
.data_offset = 3,
.msg = "TQP_INT_ECC_INT_STS",
.hw_err = tqp_int_ecc_int
}, {
.desc_offset = 0,
.data_offset = 4,
.msg = "MSIX_ECC_INT_STS",
.hw_err = msix_ecc_int
}, {
.desc_offset = 2,
.data_offset = 2,
.msg = "SSU_ECC_MULTI_BIT_INT_0",
.hw_err = ssu_ecc_multi_bit_int_0
}, {
.desc_offset = 2,
.data_offset = 3,
.msg = "SSU_ECC_MULTI_BIT_INT_1",
.hw_err = ssu_ecc_multi_bit_int_1
}, {
.desc_offset = 2,
.data_offset = 4,
.msg = "SSU_COMMON_ERR_INT",
.hw_err = ssu_common_ecc_int
}, {
.desc_offset = 3,
.data_offset = 0,
.msg = "IGU_INT_STS",
.hw_err = igu_int
}, {
.desc_offset = 4,
.data_offset = 1,
.msg = "PPP_MPF_ABNORMAL_INT_ST1",
.hw_err = ppp_mpf_abnormal_int_st1
}, {
.desc_offset = 4,
.data_offset = 3,
.msg = "PPP_MPF_ABNORMAL_INT_ST3",
.hw_err = ppp_mpf_abnormal_int_st3
}, {
.desc_offset = 5,
.data_offset = 1,
.msg = "PPU_MPF_ABNORMAL_INT_ST1",
.hw_err = ppu_mpf_abnormal_int_st1
}, {
.desc_offset = 5,
.data_offset = 2,
.msg = "PPU_MPF_ABNORMAL_INT_ST2_RAS",
.hw_err = ppu_mpf_abnormal_int_st2_ras
}, {
.desc_offset = 5,
.data_offset = 3,
.msg = "PPU_MPF_ABNORMAL_INT_ST3",
.hw_err = ppu_mpf_abnormal_int_st3
}, {
.desc_offset = 6,
.data_offset = 0,
.msg = "TM_SCH_RINT",
.hw_err = tm_sch_int
}, {
.desc_offset = 7,
.data_offset = 0,
.msg = "QCN_FIFO_RINT",
.hw_err = qcn_fifo_int
}, {
.desc_offset = 7,
.data_offset = 1,
.msg = "QCN_ECC_RINT",
.hw_err = qcn_ecc_int
}, {
.desc_offset = 9,
.data_offset = 0,
.msg = "NCSI_ECC_INT_RPT",
.hw_err = ncsi_ecc_int
}, {
.desc_offset = 0,
.data_offset = 0,
.msg = NULL,
.hw_err = NULL
}
};
static const struct hns3_hw_error_desc pf_ras_err_tbl[] = {
{
.desc_offset = 0,
.data_offset = 0,
.msg = "SSU_PORT_BASED_ERR_INT_RAS",
.hw_err = ssu_port_based_err_int
}, {
.desc_offset = 0,
.data_offset = 1,
.msg = "SSU_FIFO_OVERFLOW_INT",
.hw_err = ssu_fifo_overflow_int
}, {
.desc_offset = 0,
.data_offset = 2,
.msg = "SSU_ETS_TCG_INT",
.hw_err = ssu_ets_tcg_int
}, {
.desc_offset = 1,
.data_offset = 0,
.msg = "IGU_EGU_TNL_INT_STS",
.hw_err = igu_egu_tnl_int
}, {
.desc_offset = 3,
.data_offset = 0,
.msg = "PPU_PF_ABNORMAL_INT_ST_RAS",
.hw_err = ppu_pf_abnormal_int_ras
}, {
.desc_offset = 0,
.data_offset = 0,
.msg = NULL,
.hw_err = NULL
}
};
static const struct hns3_hw_error_desc mpf_msix_err_tbl[] = {
{
.desc_offset = 1,
.data_offset = 0,
.msg = "MAC_AFIFO_TNL_INT_R",
.hw_err = mac_afifo_tnl_int
}, {
.desc_offset = 5,
.data_offset = 2,
.msg = "PPU_MPF_ABNORMAL_INT_ST2_MSIX",
.hw_err = ppu_mpf_abnormal_int_st2_msix
}, {
.desc_offset = 0,
.data_offset = 0,
.msg = NULL,
.hw_err = NULL
}
};
static const struct hns3_hw_error_desc pf_msix_err_tbl[] = {
{
.desc_offset = 0,
.data_offset = 0,
.msg = "SSU_PORT_BASED_ERR_INT_MSIX",
.hw_err = ssu_port_based_pf_int
}, {
.desc_offset = 2,
.data_offset = 0,
.msg = "PPP_PF_ABNORMAL_INT_ST0",
.hw_err = ppp_pf_abnormal_int
}, {
.desc_offset = 3,
.data_offset = 0,
.msg = "PPU_PF_ABNORMAL_INT_ST_MSIX",
.hw_err = ppu_pf_abnormal_int_msix
}, {
.desc_offset = 0,
.data_offset = 0,
.msg = NULL,
.hw_err = NULL
}
};
enum hns3_hw_err_report_type {
MPF_MSIX_ERR,
PF_MSIX_ERR,
MPF_RAS_ERR,
PF_RAS_ERR,
};
static const struct hns3_hw_mod_name hns3_hw_module_name[] = {
{
.module_name = MODULE_NONE,
.msg = "MODULE_NONE"
}, {
.module_name = MODULE_BIOS_COMMON,
.msg = "MODULE_BIOS_COMMON"
}, {
.module_name = MODULE_GE,
.msg = "MODULE_GE"
}, {
.module_name = MODULE_IGU_EGU,
.msg = "MODULE_IGU_EGU"
}, {
.module_name = MODULE_LGE,
.msg = "MODULE_LGE"
}, {
.module_name = MODULE_NCSI,
.msg = "MODULE_NCSI"
}, {
.module_name = MODULE_PPP,
.msg = "MODULE_PPP"
}, {
.module_name = MODULE_QCN,
.msg = "MODULE_QCN"
}, {
.module_name = MODULE_RCB_RX,
.msg = "MODULE_RCB_RX"
}, {
.module_name = MODULE_RTC,
.msg = "MODULE_RTC"
}, {
.module_name = MODULE_SSU,
.msg = "MODULE_SSU"
}, {
.module_name = MODULE_TM,
.msg = "MODULE_TM"
}, {
.module_name = MODULE_RCB_TX,
.msg = "MODULE_RCB_TX"
}, {
.module_name = MODULE_TXDMA,
.msg = "MODULE_TXDMA"
}, {
.module_name = MODULE_MASTER,
.msg = "MODULE_MASTER"
}, {
.module_name = MODULE_ROH_MAC,
.msg = "MODULE_ROH_MAC"
}
};
static const struct hns3_hw_err_type hns3_hw_error_type[] = {
{
.error_type = NONE_ERROR,
.msg = "none_error"
}, {
.error_type = FIFO_ERROR,
.msg = "fifo_error"
}, {
.error_type = MEMORY_ERROR,
.msg = "memory_error"
}, {
.error_type = POISION_ERROR,
.msg = "poision_error"
}, {
.error_type = MSIX_ECC_ERROR,
.msg = "msix_ecc_error"
}, {
.error_type = TQP_INT_ECC_ERROR,
.msg = "tqp_int_ecc_error"
}, {
.error_type = PF_ABNORMAL_INT_ERROR,
.msg = "pf_abnormal_int_error"
}, {
.error_type = MPF_ABNORMAL_INT_ERROR,
.msg = "mpf_abnormal_int_error"
}, {
.error_type = COMMON_ERROR,
.msg = "common_error"
}, {
.error_type = PORT_ERROR,
.msg = "port_error"
}, {
.error_type = ETS_ERROR,
.msg = "ets_error"
}, {
.error_type = NCSI_ERROR,
.msg = "ncsi_error"
}, {
.error_type = GLB_ERROR,
.msg = "glb_error"
}
};
static int
hns3_config_ncsi_hw_err_int(struct hns3_adapter *hns, bool en)
{
struct hns3_hw *hw = &hns->hw;
struct hns3_cmd_desc desc;
int ret;
/* configure NCSI error interrupts */
hns3_cmd_setup_basic_desc(&desc, HNS3_OPC_NCSI_INT_EN, false);
if (en)
desc.data[0] = rte_cpu_to_le_32(HNS3_NCSI_ERR_INT_EN);
ret = hns3_cmd_send(hw, &desc, 1);
if (ret)
hns3_err(hw, "fail to %s NCSI error interrupts, ret = %d",
en ? "enable" : "disable", ret);
return ret;
}
static int
enable_igu_egu_err_intr(struct hns3_adapter *hns, bool en)
{
struct hns3_hw *hw = &hns->hw;
struct hns3_cmd_desc desc;
int ret;
/* configure IGU,EGU error interrupts */
hns3_cmd_setup_basic_desc(&desc, HNS3_OPC_IGU_COMMON_INT_EN, false);
if (en)
desc.data[0] = rte_cpu_to_le_32(HNS3_IGU_ERR_INT_ENABLE);
else
desc.data[0] = rte_cpu_to_le_32(HNS3_IGU_ERR_INT_DISABLE);
desc.data[1] = rte_cpu_to_le_32(HNS3_IGU_ERR_INT_EN_MASK);
ret = hns3_cmd_send(hw, &desc, 1);
if (ret) {
hns3_err(hw, "fail to %s IGU common interrupts, ret = %d",
en ? "enable" : "disable", ret);
return ret;
}
hns3_cmd_setup_basic_desc(&desc, HNS3_OPC_IGU_EGU_TNL_INT_EN, false);
if (en)
desc.data[0] = rte_cpu_to_le_32(HNS3_IGU_TNL_ERR_INT_EN);
desc.data[1] = rte_cpu_to_le_32(HNS3_IGU_TNL_ERR_INT_EN_MASK);
ret = hns3_cmd_send(hw, &desc, 1);
if (ret) {
hns3_err(hw, "fail to %s IGU-EGU TNL interrupts, ret = %d",
en ? "enable" : "disable", ret);
return ret;
}
return hns3_config_ncsi_hw_err_int(hns, en);
}
static int
config_ppp_err_intr(struct hns3_adapter *hns, uint32_t cmd, bool en)
{
struct hns3_hw *hw = &hns->hw;
struct hns3_cmd_desc desc[2];
int ret;
/* configure PPP error interrupts */
hns3_cmd_setup_basic_desc(&desc[0], cmd, false);
desc[0].flag |= rte_cpu_to_le_16(HNS3_CMD_FLAG_NEXT);
hns3_cmd_setup_basic_desc(&desc[1], cmd, false);
if (cmd == HNS3_OPC_PPP_CMD0_INT_CMD) {
if (en) {
desc[0].data[0] =
rte_cpu_to_le_32(HNS3_PPP_MPF_ECC_ERR_INT0_EN);
desc[0].data[1] =
rte_cpu_to_le_32(HNS3_PPP_MPF_ECC_ERR_INT1_EN);
desc[0].data[4] =
rte_cpu_to_le_32(HNS3_PPP_PF_ERR_INT_EN);
}
desc[1].data[0] =
rte_cpu_to_le_32(HNS3_PPP_MPF_ECC_ERR_INT0_EN_MASK);
desc[1].data[1] =
rte_cpu_to_le_32(HNS3_PPP_MPF_ECC_ERR_INT1_EN_MASK);
desc[1].data[2] =
rte_cpu_to_le_32(HNS3_PPP_PF_ERR_INT_EN_MASK);
} else if (cmd == HNS3_OPC_PPP_CMD1_INT_CMD) {
if (en) {
desc[0].data[0] =
rte_cpu_to_le_32(HNS3_PPP_MPF_ECC_ERR_INT2_EN);
desc[0].data[1] =
rte_cpu_to_le_32(HNS3_PPP_MPF_ECC_ERR_INT3_EN);
}
desc[1].data[0] =
rte_cpu_to_le_32(HNS3_PPP_MPF_ECC_ERR_INT2_EN_MASK);
desc[1].data[1] =
rte_cpu_to_le_32(HNS3_PPP_MPF_ECC_ERR_INT3_EN_MASK);
}
ret = hns3_cmd_send(hw, &desc[0], 2);
if (ret)
hns3_err(hw, "fail to %s PPP error int, ret = %d",
en ? "enable" : "disable", ret);
return ret;
}
static int
enable_ppp_err_intr(struct hns3_adapter *hns, bool en)
{
int ret;
ret = config_ppp_err_intr(hns, HNS3_OPC_PPP_CMD0_INT_CMD, en);
if (ret)
return ret;
return config_ppp_err_intr(hns, HNS3_OPC_PPP_CMD1_INT_CMD, en);
}
static int
enable_ssu_err_intr(struct hns3_adapter *hns, bool en)
{
struct hns3_hw *hw = &hns->hw;
struct hns3_cmd_desc desc[2];
int ret;
/* configure SSU ecc error interrupts */
hns3_cmd_setup_basic_desc(&desc[0], HNS3_OPC_SSU_ECC_INT_CMD, false);
desc[0].flag |= rte_cpu_to_le_16(HNS3_CMD_FLAG_NEXT);
hns3_cmd_setup_basic_desc(&desc[1], HNS3_OPC_SSU_ECC_INT_CMD, false);
if (en) {
desc[0].data[0] =
rte_cpu_to_le_32(HNS3_SSU_1BIT_ECC_ERR_INT_EN);
desc[0].data[1] =
rte_cpu_to_le_32(HNS3_SSU_MULTI_BIT_ECC_ERR_INT_EN);
desc[0].data[4] =
rte_cpu_to_le_32(HNS3_SSU_BIT32_ECC_ERR_INT_EN);
}
desc[1].data[0] = rte_cpu_to_le_32(HNS3_SSU_1BIT_ECC_ERR_INT_EN_MASK);
desc[1].data[1] =
rte_cpu_to_le_32(HNS3_SSU_MULTI_BIT_ECC_ERR_INT_EN_MASK);
desc[1].data[2] = rte_cpu_to_le_32(HNS3_SSU_BIT32_ECC_ERR_INT_EN_MASK);
ret = hns3_cmd_send(hw, &desc[0], 2);
if (ret) {
hns3_err(hw, "fail to %s SSU ECC error interrupt, ret = %d",
en ? "enable" : "disable", ret);
return ret;
}
/* configure SSU common error interrupts */
hns3_cmd_setup_basic_desc(&desc[0], HNS3_OPC_SSU_COMMON_INT_CMD, false);
desc[0].flag |= rte_cpu_to_le_16(HNS3_CMD_FLAG_NEXT);
hns3_cmd_setup_basic_desc(&desc[1], HNS3_OPC_SSU_COMMON_INT_CMD, false);
if (en) {
desc[0].data[0] = rte_cpu_to_le_32(HNS3_SSU_COMMON_INT_EN);
desc[0].data[1] =
rte_cpu_to_le_32(HNS3_SSU_PORT_BASED_ERR_INT_EN);
desc[0].data[2] =
rte_cpu_to_le_32(HNS3_SSU_FIFO_OVERFLOW_ERR_INT_EN);
}
desc[1].data[0] = rte_cpu_to_le_32(HNS3_SSU_COMMON_INT_EN_MASK |
HNS3_SSU_PORT_BASED_ERR_INT_EN_MASK);
desc[1].data[1] =
rte_cpu_to_le_32(HNS3_SSU_FIFO_OVERFLOW_ERR_INT_EN_MASK);
ret = hns3_cmd_send(hw, &desc[0], 2);
if (ret)
hns3_err(hw, "fail to %s SSU COMMON error intr, ret = %d",
en ? "enable" : "disable", ret);
return ret;
}
void
hns3_config_mac_tnl_int(struct hns3_hw *hw, bool en)
{
struct hns3_cmd_desc desc;
int ret;
hns3_cmd_setup_basic_desc(&desc, HNS3_OPC_MAC_TNL_INT_EN, false);
if (en)
desc.data[0] = rte_cpu_to_le_32(HNS3_MAC_TNL_INT_EN);
else
desc.data[0] = 0;
desc.data[1] = rte_cpu_to_le_32(HNS3_MAC_TNL_INT_EN_MASK);
ret = hns3_cmd_send(hw, &desc, 1);
if (ret)
hns3_err(hw, "fail to %s mac tnl intr, ret = %d",
en ? "enable" : "disable", ret);
}
static int
config_ppu_err_intrs(struct hns3_adapter *hns, uint32_t cmd, bool en)
{
struct hns3_hw *hw = &hns->hw;
struct hns3_cmd_desc desc[2];
int num = 1;
/* configure PPU error interrupts */
switch (cmd) {
case HNS3_OPC_PPU_MPF_ECC_INT_CMD:
hns3_cmd_setup_basic_desc(&desc[0], cmd, false);
desc[0].flag |= HNS3_CMD_FLAG_NEXT;
hns3_cmd_setup_basic_desc(&desc[1], cmd, false);
if (en) {
desc[0].data[0] = HNS3_PPU_MPF_ABNORMAL_INT0_EN;
desc[0].data[1] = HNS3_PPU_MPF_ABNORMAL_INT1_EN;
desc[1].data[3] = HNS3_PPU_MPF_ABNORMAL_INT3_EN;
desc[1].data[4] = HNS3_PPU_MPF_ABNORMAL_INT2_EN;
}
desc[1].data[0] = HNS3_PPU_MPF_ABNORMAL_INT0_EN_MASK;
desc[1].data[1] = HNS3_PPU_MPF_ABNORMAL_INT1_EN_MASK;
desc[1].data[2] = HNS3_PPU_MPF_ABNORMAL_INT2_EN_MASK;
desc[1].data[3] |= HNS3_PPU_MPF_ABNORMAL_INT3_EN_MASK;
num = 2;
break;
case HNS3_OPC_PPU_MPF_OTHER_INT_CMD:
hns3_cmd_setup_basic_desc(&desc[0], cmd, false);
if (en)
desc[0].data[0] = HNS3_PPU_MPF_ABNORMAL_INT2_EN2;
desc[0].data[2] = HNS3_PPU_MPF_ABNORMAL_INT2_EN2_MASK;
break;
case HNS3_OPC_PPU_PF_OTHER_INT_CMD:
hns3_cmd_setup_basic_desc(&desc[0], cmd, false);
if (en)
desc[0].data[0] = HNS3_PPU_PF_ABNORMAL_INT_EN;
desc[0].data[2] = HNS3_PPU_PF_ABNORMAL_INT_EN_MASK;
break;
default:
hns3_err(hw,
"Invalid cmd(%u) to configure PPU error interrupts.",
cmd);
return -EINVAL;
}
return hns3_cmd_send(hw, &desc[0], num);
}
static int
enable_ppu_err_intr(struct hns3_adapter *hns, bool en)
{
struct hns3_hw *hw = &hns->hw;
int ret;
ret = config_ppu_err_intrs(hns, HNS3_OPC_PPU_MPF_ECC_INT_CMD, en);
if (ret) {
hns3_err(hw, "fail to %s PPU MPF ECC error intr, ret = %d",
en ? "enable" : "disable", ret);
return ret;
}
ret = config_ppu_err_intrs(hns, HNS3_OPC_PPU_MPF_OTHER_INT_CMD, en);
if (ret) {
hns3_err(hw, "fail to %s PPU MPF other intr, ret = %d",
en ? "enable" : "disable", ret);
return ret;
}
ret = config_ppu_err_intrs(hns, HNS3_OPC_PPU_PF_OTHER_INT_CMD, en);
if (ret)
hns3_err(hw, "fail to %s PPU PF error interrupts, ret = %d",
en ? "enable" : "disable", ret);
return ret;
}
static int
enable_tm_err_intr(struct hns3_adapter *hns, bool en)
{
struct hns3_hw *hw = &hns->hw;
struct hns3_cmd_desc desc;
int ret;
/* configure TM SCH error interrupts */
hns3_cmd_setup_basic_desc(&desc, HNS3_OPC_TM_SCH_ECC_INT_EN, false);
if (en)
desc.data[0] = rte_cpu_to_le_32(HNS3_TM_SCH_ECC_ERR_INT_EN);
ret = hns3_cmd_send(hw, &desc, 1);
if (ret) {
hns3_err(hw, "fail to %s TM SCH interrupts, ret = %d",
en ? "enable" : "disable", ret);
return ret;
}
/* configure TM QCN hw errors */
hns3_cmd_setup_basic_desc(&desc, HNS3_OPC_TM_QCN_MEM_INT_CFG, false);
desc.data[0] = rte_cpu_to_le_32(HNS3_TM_QCN_ERR_INT_TYPE);
if (en) {
desc.data[0] |= rte_cpu_to_le_32(HNS3_TM_QCN_FIFO_INT_EN);
desc.data[1] = rte_cpu_to_le_32(HNS3_TM_QCN_MEM_ERR_INT_EN);
}
ret = hns3_cmd_send(hw, &desc, 1);
if (ret)
hns3_err(hw, "fail to %s TM QCN mem errors, ret = %d\n",
en ? "enable" : "disable", ret);
return ret;
}
static int
enable_common_err_intr(struct hns3_adapter *hns, bool en)
{
struct hns3_hw *hw = &hns->hw;
struct hns3_cmd_desc desc[2];
int ret;
/* configure common error interrupts */
hns3_cmd_setup_basic_desc(&desc[0], HNS3_OPC_COMMON_ECC_INT_CFG, false);
desc[0].flag |= rte_cpu_to_le_16(HNS3_CMD_FLAG_NEXT);
hns3_cmd_setup_basic_desc(&desc[1], HNS3_OPC_COMMON_ECC_INT_CFG, false);
if (en) {
desc[0].data[0] =
rte_cpu_to_le_32(HNS3_IMP_TCM_ECC_ERR_INT_EN);
desc[0].data[2] =
rte_cpu_to_le_32(HNS3_CMDQ_NIC_ECC_ERR_INT_EN);
desc[0].data[3] =
rte_cpu_to_le_32(HNS3_IMP_RD_POISON_ERR_INT_EN);
desc[0].data[4] =
rte_cpu_to_le_32(HNS3_TQP_ECC_ERR_INT_EN |
HNS3_MSIX_SRAM_ECC_ERR_INT_EN);
desc[0].data[5] =
rte_cpu_to_le_32(HNS3_IMP_ITCM4_ECC_ERR_INT_EN);
}
desc[1].data[0] = rte_cpu_to_le_32(HNS3_IMP_TCM_ECC_ERR_INT_EN_MASK);
desc[1].data[2] = rte_cpu_to_le_32(HNS3_CMDQ_NIC_ECC_ERR_INT_EN_MASK);
desc[1].data[3] = rte_cpu_to_le_32(HNS3_IMP_RD_POISON_ERR_INT_EN_MASK);
desc[1].data[4] = rte_cpu_to_le_32(HNS3_TQP_ECC_ERR_INT_EN_MASK |
HNS3_MSIX_SRAM_ECC_ERR_INT_EN_MASK);
desc[1].data[5] = rte_cpu_to_le_32(HNS3_IMP_ITCM4_ECC_ERR_INT_EN_MASK);
ret = hns3_cmd_send(hw, &desc[0], RTE_DIM(desc));
if (ret)
hns3_err(hw, "fail to %s common err interrupts, ret = %d\n",
en ? "enable" : "disable", ret);
return ret;
}
static int
enable_mac_err_intr(struct hns3_adapter *hns, bool en)
{
struct hns3_hw *hw = &hns->hw;
struct hns3_cmd_desc desc;
int ret;
/* configure MAC common error interrupts */
hns3_cmd_setup_basic_desc(&desc, HNS3_OPC_MAC_COMMON_INT_EN, false);
if (en)
desc.data[0] = rte_cpu_to_le_32(HNS3_MAC_COMMON_ERR_INT_EN);
desc.data[1] = rte_cpu_to_le_32(HNS3_MAC_COMMON_ERR_INT_EN_MASK);
ret = hns3_cmd_send(hw, &desc, 1);
if (ret)
hns3_err(hw, "fail to %s MAC COMMON error intr: %d",
en ? "enable" : "disable", ret);
return ret;
}
static const struct hns3_hw_blk hw_blk[] = {
{
.name = "IGU_EGU",
.enable_err_intr = enable_igu_egu_err_intr,
},
{
.name = "PPP",
.enable_err_intr = enable_ppp_err_intr,
},
{
.name = "SSU",
.enable_err_intr = enable_ssu_err_intr,
},
{
.name = "PPU",
.enable_err_intr = enable_ppu_err_intr,
},
{
.name = "TM",
.enable_err_intr = enable_tm_err_intr,
},
{
.name = "COMMON",
.enable_err_intr = enable_common_err_intr,
},
{
.name = "MAC",
.enable_err_intr = enable_mac_err_intr,
},
{
.name = NULL,
.enable_err_intr = NULL,
}
};
int
hns3_enable_hw_error_intr(struct hns3_adapter *hns, bool en)
{
const struct hns3_hw_blk *module = hw_blk;
int ret = 0;
while (module->enable_err_intr) {
ret = module->enable_err_intr(hns, en);
if (ret)
return ret;
module++;
}
return ret;
}
static enum hns3_reset_level
hns3_find_highest_level(struct hns3_adapter *hns, const char *reg,
const struct hns3_hw_error *err, uint32_t err_sts)
{
enum hns3_reset_level reset_level = HNS3_FUNC_RESET;
struct hns3_hw *hw = &hns->hw;
bool need_reset = false;
while (err->msg) {
if (err->int_msk & err_sts) {
hns3_warn(hw, "%s %s found [error status=0x%x]",
reg, err->msg, err_sts);
if (err->reset_level != HNS3_NONE_RESET &&
err->reset_level >= reset_level) {
reset_level = err->reset_level;
need_reset = true;
}
}
err++;
}
if (need_reset)
return reset_level;
else
return HNS3_NONE_RESET;
}
static int
query_num_bds(struct hns3_hw *hw, bool is_ras, uint32_t *mpf_bd_num,
uint32_t *pf_bd_num)
{
uint32_t mpf_min_bd_num, pf_min_bd_num;
uint32_t mpf_bd_num_val, pf_bd_num_val;
enum hns3_opcode_type opcode;
struct hns3_cmd_desc desc;
int ret;
if (is_ras) {
opcode = HNS3_OPC_QUERY_RAS_INT_STS_BD_NUM;
mpf_min_bd_num = HNS3_MPF_RAS_INT_MIN_BD_NUM;
pf_min_bd_num = HNS3_PF_RAS_INT_MIN_BD_NUM;
} else {
opcode = HNS3_OPC_QUERY_MSIX_INT_STS_BD_NUM;
mpf_min_bd_num = HNS3_MPF_MSIX_INT_MIN_BD_NUM;
pf_min_bd_num = HNS3_PF_MSIX_INT_MIN_BD_NUM;
}
hns3_cmd_setup_basic_desc(&desc, opcode, true);
ret = hns3_cmd_send(hw, &desc, 1);
if (ret) {
hns3_err(hw, "query num bds in msix failed, ret = %d", ret);
return ret;
}
mpf_bd_num_val = rte_le_to_cpu_32(desc.data[0]);
pf_bd_num_val = rte_le_to_cpu_32(desc.data[1]);
if (mpf_bd_num_val < mpf_min_bd_num || pf_bd_num_val < pf_min_bd_num) {
hns3_err(hw, "error bd num: mpf(%u), min_mpf(%u), "
"pf(%u), min_pf(%u)\n", mpf_bd_num_val, mpf_min_bd_num,
pf_bd_num_val, pf_min_bd_num);
return -EINVAL;
}
*mpf_bd_num = mpf_bd_num_val;
*pf_bd_num = pf_bd_num_val;
return 0;
}
void
hns3_intr_unregister(const struct rte_intr_handle *hdl,
rte_intr_callback_fn cb_fn, void *cb_arg)
{
int retry_cnt = 0;
int ret;
do {
ret = rte_intr_callback_unregister(hdl, cb_fn, cb_arg);
if (ret >= 0) {
break;
} else if (ret != -EAGAIN) {
PMD_INIT_LOG(ERR, "Failed to unregister intr: %d", ret);
break;
}
rte_delay_ms(HNS3_INTR_UNREG_FAIL_DELAY_MS);
} while (retry_cnt++ < HNS3_INTR_UNREG_FAIL_RETRY_CNT);
}
static uint32_t
hns3_get_hw_error_status(struct hns3_cmd_desc *desc, uint8_t desc_offset,
uint8_t data_offset)
{
uint32_t status;
uint32_t *desc_data;
if (desc_offset == 0)
status = rte_le_to_cpu_32(desc[desc_offset].data[data_offset]);
else {
desc_data = (uint32_t *)&desc[desc_offset];
status = rte_le_to_cpu_32(*(desc_data + data_offset));
}
return status;
}
static int
hns3_handle_hw_error(struct hns3_adapter *hns, struct hns3_cmd_desc *desc,
int num, uint64_t *levels,
enum hns3_hw_err_report_type err_type)
{
const struct hns3_hw_error_desc *err = pf_ras_err_tbl;
enum hns3_opcode_type opcode;
enum hns3_reset_level req_level;
struct hns3_hw *hw = &hns->hw;
uint32_t status;
int ret;
switch (err_type) {
case MPF_MSIX_ERR:
err = mpf_msix_err_tbl;
opcode = HNS3_OPC_QUERY_CLEAR_ALL_MPF_MSIX_INT;
break;
case PF_MSIX_ERR:
err = pf_msix_err_tbl;
opcode = HNS3_OPC_QUERY_CLEAR_ALL_PF_MSIX_INT;
break;
case MPF_RAS_ERR:
err = mpf_ras_err_tbl;
opcode = HNS3_OPC_QUERY_CLEAR_MPF_RAS_INT;
break;
case PF_RAS_ERR:
err = pf_ras_err_tbl;
opcode = HNS3_OPC_QUERY_CLEAR_PF_RAS_INT;
break;
default:
hns3_err(hw, "error hardware err_type = %d\n", err_type);
return -EINVAL;
}
/* query all hardware errors */
hns3_cmd_setup_basic_desc(&desc[0], opcode, true);
ret = hns3_cmd_send(hw, &desc[0], num);
if (ret) {
hns3_err(hw, "query hw err int 0x%x cmd failed, ret = %d\n",
opcode, ret);
return ret;
}
/* traverses the error table and process based on the error type */
while (err->msg) {
status = hns3_get_hw_error_status(desc, err->desc_offset,
err->data_offset);
if (status) {
/*
* set the reset_level or non_reset flag based on
* the error type and add error statistics. here just
* set the flag, the actual reset action is in
* hns3_msix_process.
*/
req_level = hns3_find_highest_level(hns, err->msg,
err->hw_err,
status);
hns3_atomic_set_bit(req_level, levels);
}
err++;
}
/* clear all hardware errors */
hns3_cmd_reuse_desc(&desc[0], false);
ret = hns3_cmd_send(hw, &desc[0], num);
if (ret)
hns3_err(hw, "clear all hw err int cmd failed, ret = %d\n",
ret);
return ret;
}
void
hns3_handle_msix_error(struct hns3_adapter *hns, uint64_t *levels)
{
uint32_t mpf_bd_num, pf_bd_num, bd_num;
struct hns3_hw *hw = &hns->hw;
struct hns3_cmd_desc *desc;
int ret;
/* query the number of bds for the MSIx int status */
ret = query_num_bds(hw, false, &mpf_bd_num, &pf_bd_num);
if (ret) {
hns3_err(hw, "fail to query msix int status bd num: ret = %d",
ret);
return;
}
bd_num = RTE_MAX(mpf_bd_num, pf_bd_num);
desc = rte_zmalloc(NULL, bd_num * sizeof(struct hns3_cmd_desc), 0);
if (desc == NULL) {
hns3_err(hw,
"fail to zmalloc desc for handling msix error, size = %zu",
bd_num * sizeof(struct hns3_cmd_desc));
return;
}
/* handle all main PF MSIx errors */
ret = hns3_handle_hw_error(hns, desc, mpf_bd_num, levels, MPF_MSIX_ERR);
if (ret) {
hns3_err(hw, "fail to handle all main pf msix errors, ret = %d",
ret);
goto out;
}
memset(desc, 0, bd_num * sizeof(struct hns3_cmd_desc));
/* handle all PF MSIx errors */
ret = hns3_handle_hw_error(hns, desc, pf_bd_num, levels, PF_MSIX_ERR);
if (ret) {
hns3_err(hw, "fail to handle all pf msix errors, ret = %d",
ret);
goto out;
}
out:
rte_free(desc);
}
void
hns3_handle_ras_error(struct hns3_adapter *hns, uint64_t *levels)
{
uint32_t mpf_bd_num, pf_bd_num, bd_num;
struct hns3_hw *hw = &hns->hw;
struct hns3_cmd_desc *desc;
uint32_t status;
int ret;
status = hns3_read_dev(hw, HNS3_RAS_PF_OTHER_INT_STS_REG);
if ((status & HNS3_RAS_REG_NFE_MASK) == 0)
return;
/* query the number of bds for the RAS int status */
ret = query_num_bds(hw, true, &mpf_bd_num, &pf_bd_num);
if (ret) {
hns3_err(hw, "fail to query ras int status bd num: ret = %d",
ret);
return;
}
bd_num = RTE_MAX(mpf_bd_num, pf_bd_num);
desc = rte_zmalloc(NULL, bd_num * sizeof(struct hns3_cmd_desc), 0);
if (desc == NULL) {
hns3_err(hw,
"fail to zmalloc desc for handing ras error, size = %zu",
bd_num * sizeof(struct hns3_cmd_desc));
return;
}
/* handle all main PF RAS errors */
ret = hns3_handle_hw_error(hns, desc, mpf_bd_num, levels, MPF_RAS_ERR);
if (ret) {
hns3_err(hw, "fail to handle all main pf ras errors, ret = %d",
ret);
goto out;
}
memset(desc, 0, bd_num * sizeof(struct hns3_cmd_desc));
/* handle all PF RAS errors */
ret = hns3_handle_hw_error(hns, desc, pf_bd_num, levels, PF_RAS_ERR);
if (ret) {
hns3_err(hw, "fail to handle all pf ras errors, ret = %d", ret);
goto out;
}
out:
rte_free(desc);
}
static void
hns3_handle_type_reg_error_data(struct hns3_hw *hw,
struct hns3_mod_err_info *mod_err_info,
struct hns3_type_reg_err_info *err_info)
{
#define HNS3_ERR_TYPE_MASK 0x7F
#define HNS3_ERR_TYPE_IS_RAS_OFFSET 7
uint8_t mod_id, total_module, type_id, total_type;
uint8_t is_ras;
uint8_t i;
mod_id = mod_err_info->mod_id;
type_id = err_info->type_id & HNS3_ERR_TYPE_MASK;
is_ras = err_info->type_id >> HNS3_ERR_TYPE_IS_RAS_OFFSET;
total_module = RTE_DIM(hns3_hw_module_name);
total_type = RTE_DIM(hns3_hw_error_type);
hns3_err(hw, "total_module:%u, total_type:%u",
total_module, total_type);
if (mod_id < total_module && type_id < total_type)
hns3_err(hw, "found %s %s, is %s error.",
hns3_hw_module_name[mod_id].msg,
hns3_hw_error_type[type_id].msg,
is_ras ? "ras" : "msix");
else
hns3_err(hw, "unknown module[%u] or type[%u].",
mod_id, type_id);
hns3_err(hw, "reg_value:");
for (i = 0; i < err_info->reg_num; i++)
hns3_err(hw, "0x%08x", err_info->reg[i]);
}
static void
hns3_handle_module_error_data(struct hns3_hw *hw, uint32_t *buf,
uint32_t buf_size)
{
struct hns3_type_reg_err_info *type_reg_err_info;
struct hns3_mod_err_info *mod_err_info;
struct hns3_sum_err_info *sum_err_info;
uint8_t mod_num, reset_type;
uint32_t offset = 0;
uint8_t err_num;
uint8_t i;
sum_err_info = (struct hns3_sum_err_info *)&buf[offset++];
mod_num = sum_err_info->mod_num;
reset_type = sum_err_info->reset_type;
if (reset_type && reset_type != HNS3_NONE_RESET)
hns3_atomic_set_bit(reset_type, &hw->reset.request);
hns3_err(hw, "reset_type = %s, mod_num = %u.",
reset_string[reset_type], mod_num);
while (mod_num--) {
if (offset >= buf_size) {
hns3_err(hw, "offset(%u) exceeds buf's size(%u).",
offset, buf_size);
return;
}
mod_err_info = (struct hns3_mod_err_info *)&buf[offset++];
err_num = mod_err_info->err_num;
for (i = 0; i < err_num; i++) {
if (offset >= buf_size) {
hns3_err(hw,
"offset(%u) exceeds buf size(%u).",
offset, buf_size);
return;
}
type_reg_err_info = (struct hns3_type_reg_err_info *)
&buf[offset++];
hns3_handle_type_reg_error_data(hw, mod_err_info,
type_reg_err_info);
offset += type_reg_err_info->reg_num;
}
}
}
static int
hns3_query_all_err_bd_num(struct hns3_hw *hw, uint32_t *bd_num)
{
struct hns3_cmd_desc desc;
uint32_t bd_num_data;
int ret;
hns3_cmd_setup_basic_desc(&desc, HNS3_OPC_QUERY_ALL_ERR_BD_NUM, true);
ret = hns3_cmd_send(hw, &desc, 1);
if (ret) {
hns3_err(hw, "failed to query error bd_num, ret = %d.", ret);
return ret;
}
bd_num_data = rte_le_to_cpu_32(desc.data[0]);
*bd_num = bd_num_data;
if (bd_num_data == 0) {
hns3_err(hw, "the value of bd_num is 0!");
return -EINVAL;
}
return 0;
}
static int
hns3_query_all_err_info(struct hns3_hw *hw, struct hns3_cmd_desc *desc,
uint32_t bd_num)
{
int ret;
hns3_cmd_setup_basic_desc(desc, HNS3_OPC_QUERY_ALL_ERR_INFO, true);
ret = hns3_cmd_send(hw, desc, bd_num);
if (ret) {
hns3_err(hw, "failed to query error info, ret = %d.", ret);
return ret;
}
return ret;
}
static void
hns3_handle_hw_error_v2(struct hns3_hw *hw)
{
uint32_t bd_num, buf_len, i, buf_size;
struct hns3_cmd_desc *desc;
uint32_t *desc_data;
uint32_t *buf;
int ret;
ret = hns3_query_all_err_bd_num(hw, &bd_num);
if (ret)
goto out;
desc = rte_zmalloc("hns3_ras", bd_num * sizeof(struct hns3_cmd_desc),
0);
if (desc == NULL) {
hns3_err(hw, "failed to malloc hns3 ras cmd desc.");
goto out;
}
ret = hns3_query_all_err_info(hw, desc, bd_num);
if (ret)
goto err_desc;
buf_len = bd_num * sizeof(struct hns3_cmd_desc) - HNS3_DESC_NO_DATA_LEN;
buf_size = buf_len / HNS3_DESC_DATA_UNIT_SIZE;
desc_data = rte_zmalloc("hns3_ras", buf_len, 0);
if (desc_data == NULL) {
hns3_err(hw, "failed to malloc hns3 ras desc data.");
goto err_desc;
}
buf = rte_zmalloc("hns3_ras", buf_len, 0);
if (buf == NULL) {
hns3_err(hw, "failed to malloc hns3 ras buf data.");
goto err_buf_alloc;
}
memcpy(desc_data, &desc[0].data[0], buf_len);
for (i = 0; i < buf_size; i++)
buf[i] = rte_le_to_cpu_32(desc_data[i]);
hns3_handle_module_error_data(hw, buf, buf_size);
rte_free(buf);
err_buf_alloc:
rte_free(desc_data);
err_desc:
rte_free(desc);
out:
return;
}
void
hns3_handle_error(struct hns3_adapter *hns)
{
struct hns3_hw *hw = &hns->hw;
if (hns3_dev_get_support(hw, RAS_IMP)) {
hns3_handle_hw_error_v2(hw);
hns3_schedule_reset(hns);
} else {
hns3_handle_msix_error(hns, &hw->reset.request);
hns3_handle_ras_error(hns, &hw->reset.request);
hns3_schedule_reset(hns);
}
}
int
hns3_reset_init(struct hns3_hw *hw)
{
rte_spinlock_init(&hw->lock);
hw->reset.level = HNS3_NONE_RESET;
hw->reset.stage = RESET_STAGE_NONE;
hw->reset.request = 0;
hw->reset.pending = 0;
hw->reset.resetting = 0;
__atomic_store_n(&hw->reset.disable_cmd, 0, __ATOMIC_RELAXED);
hw->reset.wait_data = rte_zmalloc("wait_data",
sizeof(struct hns3_wait_data), 0);
if (!hw->reset.wait_data) {
PMD_INIT_LOG(ERR, "Failed to allocate memory for wait_data");
return -ENOMEM;
}
return 0;
}
void
hns3_schedule_reset(struct hns3_adapter *hns)
{
struct hns3_hw *hw = &hns->hw;
/* Reschedule the reset process after successful initialization */
if (hw->adapter_state == HNS3_NIC_UNINITIALIZED) {
__atomic_store_n(&hw->reset.schedule, SCHEDULE_PENDING,
__ATOMIC_RELAXED);
return;
}
if (hw->adapter_state >= HNS3_NIC_CLOSED)
return;
/* Schedule restart alarm if it is not scheduled yet */
if (__atomic_load_n(&hw->reset.schedule, __ATOMIC_RELAXED) ==
SCHEDULE_REQUESTED)
return;
if (__atomic_load_n(&hw->reset.schedule, __ATOMIC_RELAXED) ==
SCHEDULE_DEFERRED)
rte_eal_alarm_cancel(hw->reset.ops->reset_service, hns);
else
__atomic_store_n(&hw->reset.schedule, SCHEDULE_REQUESTED,
__ATOMIC_RELAXED);
rte_eal_alarm_set(SWITCH_CONTEXT_US, hw->reset.ops->reset_service, hns);
}
void
hns3_schedule_delayed_reset(struct hns3_adapter *hns)
{
#define DEFERRED_SCHED_US (3 * MSEC_PER_SEC * USEC_PER_MSEC)
struct hns3_hw *hw = &hns->hw;
/* Do nothing if it is uninited or closed */
if (hw->adapter_state == HNS3_NIC_UNINITIALIZED ||
hw->adapter_state >= HNS3_NIC_CLOSED) {
return;
}
if (__atomic_load_n(&hw->reset.schedule, __ATOMIC_RELAXED) !=
SCHEDULE_NONE)
return;
__atomic_store_n(&hw->reset.schedule, SCHEDULE_DEFERRED,
__ATOMIC_RELAXED);
rte_eal_alarm_set(DEFERRED_SCHED_US, hw->reset.ops->reset_service, hns);
}
void
hns3_wait_callback(void *param)
{
struct hns3_wait_data *data = (struct hns3_wait_data *)param;
struct hns3_adapter *hns = data->hns;
struct hns3_hw *hw = &hns->hw;
uint64_t msec;
bool done;
data->count--;
if (data->check_completion) {
/*
* Check if the current time exceeds the deadline
* or a pending reset coming, or reset during close.
*/
msec = hns3_clock_gettime_ms();
if (msec > data->end_ms || is_reset_pending(hns) ||
hw->adapter_state == HNS3_NIC_CLOSING) {
done = false;
data->count = 0;
} else
done = data->check_completion(hw);
} else
done = true;
if (!done && data->count > 0) {
rte_eal_alarm_set(data->interval, hns3_wait_callback, data);
return;
}
if (done)
data->result = HNS3_WAIT_SUCCESS;
else {
hns3_err(hw, "%s wait timeout at stage %d",
reset_string[hw->reset.level], hw->reset.stage);
data->result = HNS3_WAIT_TIMEOUT;
}
hns3_schedule_reset(hns);
}
void
hns3_notify_reset_ready(struct hns3_hw *hw, bool enable)
{
uint32_t reg_val;
reg_val = hns3_read_dev(hw, HNS3_CMDQ_TX_DEPTH_REG);
if (enable)
reg_val |= HNS3_NIC_SW_RST_RDY;
else
reg_val &= ~HNS3_NIC_SW_RST_RDY;
hns3_write_dev(hw, HNS3_CMDQ_TX_DEPTH_REG, reg_val);
}
int
hns3_reset_req_hw_reset(struct hns3_adapter *hns)
{
struct hns3_hw *hw = &hns->hw;
if (hw->reset.wait_data->result == HNS3_WAIT_UNKNOWN) {
hw->reset.wait_data->hns = hns;
hw->reset.wait_data->check_completion = NULL;
hw->reset.wait_data->interval = HNS3_RESET_SYNC_US;
hw->reset.wait_data->count = 1;
hw->reset.wait_data->result = HNS3_WAIT_REQUEST;
rte_eal_alarm_set(hw->reset.wait_data->interval,
hns3_wait_callback, hw->reset.wait_data);
return -EAGAIN;
} else if (hw->reset.wait_data->result == HNS3_WAIT_REQUEST)
return -EAGAIN;
/* inform hardware that preparatory work is done */
hns3_notify_reset_ready(hw, true);
return 0;
}
static void
hns3_clear_reset_level(struct hns3_hw *hw, uint64_t *levels)
{
uint64_t merge_cnt = hw->reset.stats.merge_cnt;
int64_t tmp;
switch (hw->reset.level) {
case HNS3_IMP_RESET:
hns3_atomic_clear_bit(HNS3_IMP_RESET, levels);
tmp = hns3_test_and_clear_bit(HNS3_GLOBAL_RESET, levels);
HNS3_CHECK_MERGE_CNT(tmp);
tmp = hns3_test_and_clear_bit(HNS3_FUNC_RESET, levels);
HNS3_CHECK_MERGE_CNT(tmp);
break;
case HNS3_GLOBAL_RESET:
hns3_atomic_clear_bit(HNS3_GLOBAL_RESET, levels);
tmp = hns3_test_and_clear_bit(HNS3_FUNC_RESET, levels);
HNS3_CHECK_MERGE_CNT(tmp);
break;
case HNS3_FUNC_RESET:
hns3_atomic_clear_bit(HNS3_FUNC_RESET, levels);
break;
case HNS3_VF_RESET:
hns3_atomic_clear_bit(HNS3_VF_RESET, levels);
tmp = hns3_test_and_clear_bit(HNS3_VF_PF_FUNC_RESET, levels);
HNS3_CHECK_MERGE_CNT(tmp);
tmp = hns3_test_and_clear_bit(HNS3_VF_FUNC_RESET, levels);
HNS3_CHECK_MERGE_CNT(tmp);
break;
case HNS3_VF_FULL_RESET:
hns3_atomic_clear_bit(HNS3_VF_FULL_RESET, levels);
tmp = hns3_test_and_clear_bit(HNS3_VF_FUNC_RESET, levels);
HNS3_CHECK_MERGE_CNT(tmp);
break;
case HNS3_VF_PF_FUNC_RESET:
hns3_atomic_clear_bit(HNS3_VF_PF_FUNC_RESET, levels);
tmp = hns3_test_and_clear_bit(HNS3_VF_FUNC_RESET, levels);
HNS3_CHECK_MERGE_CNT(tmp);
break;
case HNS3_VF_FUNC_RESET:
hns3_atomic_clear_bit(HNS3_VF_FUNC_RESET, levels);
break;
case HNS3_FLR_RESET:
hns3_atomic_clear_bit(HNS3_FLR_RESET, levels);
break;
case HNS3_NONE_RESET:
default:
return;
};
if (merge_cnt != hw->reset.stats.merge_cnt)
hns3_warn(hw,
"No need to do low-level reset after %s reset. "
"merge cnt: %" PRIu64 " total merge cnt: %" PRIu64,
reset_string[hw->reset.level],
hw->reset.stats.merge_cnt - merge_cnt,
hw->reset.stats.merge_cnt);
}
static bool
hns3_reset_err_handle(struct hns3_adapter *hns)
{
#define MAX_RESET_FAIL_CNT 30
struct hns3_hw *hw = &hns->hw;
if (hw->adapter_state == HNS3_NIC_CLOSING)
goto reset_fail;
if (is_reset_pending(hns)) {
hw->reset.attempts = 0;
hw->reset.stats.fail_cnt++;
hns3_warn(hw, "%s reset fail because new Reset is pending "
"attempts:%" PRIu64,
reset_string[hw->reset.level],
hw->reset.stats.fail_cnt);
hw->reset.level = HNS3_NONE_RESET;
return true;
}
hw->reset.attempts++;
if (hw->reset.attempts < MAX_RESET_FAIL_CNT) {
hns3_atomic_set_bit(hw->reset.level, &hw->reset.pending);
hns3_warn(hw, "%s retry to reset attempts: %d",
reset_string[hw->reset.level],
hw->reset.attempts);
return true;
}
/*
* Failure to reset does not mean that the network port is
* completely unavailable, so cmd still needs to be initialized.
* Regardless of whether the execution is successful or not, the
* flow after execution must be continued.
*/
if (__atomic_load_n(&hw->reset.disable_cmd, __ATOMIC_RELAXED))
(void)hns3_cmd_init(hw);
reset_fail:
hw->reset.attempts = 0;
hw->reset.stats.fail_cnt++;
hns3_warn(hw, "%s reset fail fail_cnt:%" PRIu64 " success_cnt:%" PRIu64
" global_cnt:%" PRIu64 " imp_cnt:%" PRIu64
" request_cnt:%" PRIu64 " exec_cnt:%" PRIu64
" merge_cnt:%" PRIu64 "adapter_state:%d",
reset_string[hw->reset.level], hw->reset.stats.fail_cnt,
hw->reset.stats.success_cnt, hw->reset.stats.global_cnt,
hw->reset.stats.imp_cnt, hw->reset.stats.request_cnt,
hw->reset.stats.exec_cnt, hw->reset.stats.merge_cnt,
hw->adapter_state);
/* IMP no longer waiting the ready flag */
hns3_notify_reset_ready(hw, true);
return false;
}
static int
hns3_reset_pre(struct hns3_adapter *hns)
{
struct hns3_hw *hw = &hns->hw;
struct timeval tv;
int ret;
if (hw->reset.stage == RESET_STAGE_NONE) {
__atomic_store_n(&hns->hw.reset.resetting, 1, __ATOMIC_RELAXED);
hw->reset.stage = RESET_STAGE_DOWN;
ret = hw->reset.ops->stop_service(hns);
hns3_clock_gettime(&tv);
if (ret) {
hns3_warn(hw, "Reset step1 down fail=%d time=%ld.%.6ld",
ret, tv.tv_sec, tv.tv_usec);
return ret;
}
hns3_warn(hw, "Reset step1 down success time=%ld.%.6ld",
tv.tv_sec, tv.tv_usec);
hw->reset.stage = RESET_STAGE_PREWAIT;
}
if (hw->reset.stage == RESET_STAGE_PREWAIT) {
ret = hw->reset.ops->prepare_reset(hns);
hns3_clock_gettime(&tv);
if (ret) {
hns3_warn(hw,
"Reset step2 prepare wait fail=%d time=%ld.%.6ld",
ret, tv.tv_sec, tv.tv_usec);
return ret;
}
hns3_warn(hw, "Reset step2 prepare wait success time=%ld.%.6ld",
tv.tv_sec, tv.tv_usec);
hw->reset.stage = RESET_STAGE_REQ_HW_RESET;
hw->reset.wait_data->result = HNS3_WAIT_UNKNOWN;
}
return 0;
}
static int
hns3_reset_post(struct hns3_adapter *hns)
{
#define TIMEOUT_RETRIES_CNT 30
struct hns3_hw *hw = &hns->hw;
struct timeval tv_delta;
struct timeval tv;
int ret = 0;
if (hw->adapter_state == HNS3_NIC_CLOSING) {
hns3_warn(hw, "Don't do reset_post during closing, just uninit cmd");
hns3_cmd_uninit(hw);
return -EPERM;
}
if (hw->reset.stage == RESET_STAGE_DEV_INIT) {
rte_spinlock_lock(&hw->lock);
if (hw->reset.mbuf_deferred_free) {
hns3_dev_release_mbufs(hns);
hw->reset.mbuf_deferred_free = false;
}
ret = hw->reset.ops->reinit_dev(hns);
rte_spinlock_unlock(&hw->lock);
hns3_clock_gettime(&tv);
if (ret) {
hns3_warn(hw, "Reset step5 devinit fail=%d retries=%d",
ret, hw->reset.retries);
goto err;
}
hns3_warn(hw, "Reset step5 devinit success time=%ld.%.6ld",
tv.tv_sec, tv.tv_usec);
hw->reset.retries = 0;
hw->reset.stage = RESET_STAGE_RESTORE;
rte_eal_alarm_set(SWITCH_CONTEXT_US,
hw->reset.ops->reset_service, hns);
return -EAGAIN;
}
if (hw->reset.stage == RESET_STAGE_RESTORE) {
rte_spinlock_lock(&hw->lock);
ret = hw->reset.ops->restore_conf(hns);
rte_spinlock_unlock(&hw->lock);
hns3_clock_gettime(&tv);
if (ret) {
hns3_warn(hw,
"Reset step6 restore fail=%d retries=%d",
ret, hw->reset.retries);
goto err;
}
hns3_warn(hw, "Reset step6 restore success time=%ld.%.6ld",
tv.tv_sec, tv.tv_usec);
hw->reset.retries = 0;
hw->reset.stage = RESET_STAGE_DONE;
}
if (hw->reset.stage == RESET_STAGE_DONE) {
/* IMP will wait ready flag before reset */
hns3_notify_reset_ready(hw, false);
hns3_clear_reset_level(hw, &hw->reset.pending);
__atomic_store_n(&hns->hw.reset.resetting, 0, __ATOMIC_RELAXED);
hw->reset.attempts = 0;
hw->reset.stats.success_cnt++;
hw->reset.stage = RESET_STAGE_NONE;
rte_spinlock_lock(&hw->lock);
hw->reset.ops->start_service(hns);
rte_spinlock_unlock(&hw->lock);
hns3_clock_gettime(&tv);
timersub(&tv, &hw->reset.start_time, &tv_delta);
hns3_warn(hw, "%s reset done fail_cnt:%" PRIu64
" success_cnt:%" PRIu64 " global_cnt:%" PRIu64
" imp_cnt:%" PRIu64 " request_cnt:%" PRIu64
" exec_cnt:%" PRIu64 " merge_cnt:%" PRIu64,
reset_string[hw->reset.level],
hw->reset.stats.fail_cnt, hw->reset.stats.success_cnt,
hw->reset.stats.global_cnt, hw->reset.stats.imp_cnt,
hw->reset.stats.request_cnt, hw->reset.stats.exec_cnt,
hw->reset.stats.merge_cnt);
hns3_warn(hw,
"%s reset done delta %" PRIu64 " ms time=%ld.%.6ld",
reset_string[hw->reset.level],
hns3_clock_calctime_ms(&tv_delta),
tv.tv_sec, tv.tv_usec);
hw->reset.level = HNS3_NONE_RESET;
}
return 0;
err:
if (ret == -ETIME) {
hw->reset.retries++;
if (hw->reset.retries < TIMEOUT_RETRIES_CNT) {
rte_eal_alarm_set(HNS3_RESET_SYNC_US,
hw->reset.ops->reset_service, hns);
return -EAGAIN;
}
}
hw->reset.retries = 0;
return -EIO;
}
/*
* There are three scenarios as follows:
* When the reset is not in progress, the reset process starts.
* During the reset process, if the reset level has not changed,
* the reset process continues; otherwise, the reset process is aborted.
* hw->reset.level new_level action
* HNS3_NONE_RESET HNS3_XXXX_RESET start reset
* HNS3_XXXX_RESET HNS3_XXXX_RESET continue reset
* HNS3_LOW_RESET HNS3_HIGH_RESET abort
*/
int
hns3_reset_process(struct hns3_adapter *hns, enum hns3_reset_level new_level)
{
struct hns3_hw *hw = &hns->hw;
struct timeval tv_delta;
struct timeval tv;
int ret;
if (hw->reset.level == HNS3_NONE_RESET) {
hw->reset.level = new_level;
hw->reset.stats.exec_cnt++;
hns3_clock_gettime(&hw->reset.start_time);
hns3_warn(hw, "Start %s reset time=%ld.%.6ld",
reset_string[hw->reset.level],
hw->reset.start_time.tv_sec,
hw->reset.start_time.tv_usec);
}
if (is_reset_pending(hns)) {
hns3_clock_gettime(&tv);
hns3_warn(hw,
"%s reset is aborted by high level time=%ld.%.6ld",
reset_string[hw->reset.level], tv.tv_sec, tv.tv_usec);
if (hw->reset.wait_data->result == HNS3_WAIT_REQUEST)
rte_eal_alarm_cancel(hns3_wait_callback,
hw->reset.wait_data);
goto err;
}
ret = hns3_reset_pre(hns);
if (ret)
goto err;
if (hw->reset.stage == RESET_STAGE_REQ_HW_RESET) {
ret = hns3_reset_req_hw_reset(hns);
if (ret == -EAGAIN)
return ret;
hns3_clock_gettime(&tv);
hns3_warn(hw,
"Reset step3 request IMP reset success time=%ld.%.6ld",
tv.tv_sec, tv.tv_usec);
hw->reset.stage = RESET_STAGE_WAIT;
hw->reset.wait_data->result = HNS3_WAIT_UNKNOWN;
}
if (hw->reset.stage == RESET_STAGE_WAIT) {
ret = hw->reset.ops->wait_hardware_ready(hns);
if (ret)
goto retry;
hns3_clock_gettime(&tv);
hns3_warn(hw, "Reset step4 reset wait success time=%ld.%.6ld",
tv.tv_sec, tv.tv_usec);
hw->reset.stage = RESET_STAGE_DEV_INIT;
}
ret = hns3_reset_post(hns);
if (ret)
goto retry;
return 0;
retry:
if (ret == -EAGAIN)
return ret;
err:
hns3_clear_reset_level(hw, &hw->reset.pending);
if (hns3_reset_err_handle(hns)) {
hw->reset.stage = RESET_STAGE_PREWAIT;
hns3_schedule_reset(hns);
} else {
rte_spinlock_lock(&hw->lock);
if (hw->reset.mbuf_deferred_free) {
hns3_dev_release_mbufs(hns);
hw->reset.mbuf_deferred_free = false;
}
rte_spinlock_unlock(&hw->lock);
__atomic_store_n(&hns->hw.reset.resetting, 0, __ATOMIC_RELAXED);
hw->reset.stage = RESET_STAGE_NONE;
hns3_clock_gettime(&tv);
timersub(&tv, &hw->reset.start_time, &tv_delta);
hns3_warn(hw, "%s reset fail delta %" PRIu64 " ms time=%ld.%.6ld",
reset_string[hw->reset.level],
hns3_clock_calctime_ms(&tv_delta),
tv.tv_sec, tv.tv_usec);
hw->reset.level = HNS3_NONE_RESET;
}
return -EIO;
}
/*
* The reset process can only be terminated after handshake with IMP(step3),
* so that IMP can complete the reset process normally.
*/
void
hns3_reset_abort(struct hns3_adapter *hns)
{
struct hns3_hw *hw = &hns->hw;
struct timeval tv;
int i;
for (i = 0; i < HNS3_QUIT_RESET_CNT; i++) {
if (hw->reset.level == HNS3_NONE_RESET)
break;
rte_delay_ms(HNS3_QUIT_RESET_DELAY_MS);
}
/* IMP no longer waiting the ready flag */
hns3_notify_reset_ready(hw, true);
rte_eal_alarm_cancel(hw->reset.ops->reset_service, hns);
rte_eal_alarm_cancel(hns3_wait_callback, hw->reset.wait_data);
if (hw->reset.level != HNS3_NONE_RESET) {
hns3_clock_gettime(&tv);
hns3_err(hw, "Failed to terminate reset: %s time=%ld.%.6ld",
reset_string[hw->reset.level], tv.tv_sec, tv.tv_usec);
}
}
static void
hns3_report_lse(void *arg)
{
struct rte_eth_dev *dev = (struct rte_eth_dev *)arg;
struct hns3_hw *hw = HNS3_DEV_PRIVATE_TO_HW(dev->data->dev_private);
if (hw->adapter_state == HNS3_NIC_STARTED)
rte_eth_dev_callback_process(dev, RTE_ETH_EVENT_INTR_LSC, NULL);
}
void
hns3_start_report_lse(struct rte_eth_dev *dev)
{
#define DELAY_REPORT_LSE_US 1
/*
* When this function called, the context may hold hns3_hw.lock, if
* report lse right now, in some application such as bonding, it will
* trigger call driver's ops which may acquire hns3_hw.lock again, so
* lead to deadlock.
* Here we use delay report to avoid the deadlock.
*/
rte_eal_alarm_set(DELAY_REPORT_LSE_US, hns3_report_lse, dev);
}
void
hns3_stop_report_lse(struct rte_eth_dev *dev)
{
rte_eal_alarm_cancel(hns3_report_lse, dev);
}