f-stack/dpdk/drivers/net/hns3/hns3_flow.c

2510 lines
70 KiB
C

/* SPDX-License-Identifier: BSD-3-Clause
* Copyright(c) 2018-2021 HiSilicon Limited.
*/
#include <rte_flow_driver.h>
#include <rte_io.h>
#include <rte_malloc.h>
#include "hns3_ethdev.h"
#include "hns3_logs.h"
#include "hns3_flow.h"
#define NEXT_ITEM_OF_ACTION(act, actions, index) \
do { \
(act) = (actions) + (index); \
while ((act)->type == RTE_FLOW_ACTION_TYPE_VOID) { \
(index)++; \
(act) = (actions) + (index); \
} \
} while (0)
#define NEXT_ITEM_OF_PATTERN(item, pattern, index) \
do { \
(item) = (pattern) + (index); \
while ((item)->type == RTE_FLOW_ITEM_TYPE_VOID) { \
(index)++; \
(item) = (pattern) + (index); \
} \
} while (0)
#define HNS3_HASH_HDR_ETH RTE_BIT64(0)
#define HNS3_HASH_HDR_IPV4 RTE_BIT64(1)
#define HNS3_HASH_HDR_IPV6 RTE_BIT64(2)
#define HNS3_HASH_HDR_TCP RTE_BIT64(3)
#define HNS3_HASH_HDR_UDP RTE_BIT64(4)
#define HNS3_HASH_HDR_SCTP RTE_BIT64(5)
#define HNS3_HASH_VOID_NEXT_ALLOW BIT_ULL(RTE_FLOW_ITEM_TYPE_ETH)
#define HNS3_HASH_ETH_NEXT_ALLOW (BIT_ULL(RTE_FLOW_ITEM_TYPE_IPV4) | \
BIT_ULL(RTE_FLOW_ITEM_TYPE_IPV6))
#define HNS3_HASH_IP_NEXT_ALLOW (BIT_ULL(RTE_FLOW_ITEM_TYPE_TCP) | \
BIT_ULL(RTE_FLOW_ITEM_TYPE_UDP) | \
BIT_ULL(RTE_FLOW_ITEM_TYPE_SCTP))
static const uint64_t hash_pattern_next_allow_items[] = {
[RTE_FLOW_ITEM_TYPE_VOID] = HNS3_HASH_VOID_NEXT_ALLOW,
[RTE_FLOW_ITEM_TYPE_ETH] = HNS3_HASH_ETH_NEXT_ALLOW,
[RTE_FLOW_ITEM_TYPE_IPV4] = HNS3_HASH_IP_NEXT_ALLOW,
[RTE_FLOW_ITEM_TYPE_IPV6] = HNS3_HASH_IP_NEXT_ALLOW,
};
static const uint64_t hash_pattern_item_header[] = {
[RTE_FLOW_ITEM_TYPE_ETH] = HNS3_HASH_HDR_ETH,
[RTE_FLOW_ITEM_TYPE_IPV4] = HNS3_HASH_HDR_IPV4,
[RTE_FLOW_ITEM_TYPE_IPV6] = HNS3_HASH_HDR_IPV6,
[RTE_FLOW_ITEM_TYPE_TCP] = HNS3_HASH_HDR_TCP,
[RTE_FLOW_ITEM_TYPE_UDP] = HNS3_HASH_HDR_UDP,
[RTE_FLOW_ITEM_TYPE_SCTP] = HNS3_HASH_HDR_SCTP,
};
#define HNS3_HASH_IPV4 (HNS3_HASH_HDR_ETH | HNS3_HASH_HDR_IPV4)
#define HNS3_HASH_IPV4_TCP (HNS3_HASH_HDR_ETH | \
HNS3_HASH_HDR_IPV4 | \
HNS3_HASH_HDR_TCP)
#define HNS3_HASH_IPV4_UDP (HNS3_HASH_HDR_ETH | \
HNS3_HASH_HDR_IPV4 | \
HNS3_HASH_HDR_UDP)
#define HNS3_HASH_IPV4_SCTP (HNS3_HASH_HDR_ETH | \
HNS3_HASH_HDR_IPV4 | \
HNS3_HASH_HDR_SCTP)
#define HNS3_HASH_IPV6 (HNS3_HASH_HDR_ETH | HNS3_HASH_HDR_IPV6)
#define HNS3_HASH_IPV6_TCP (HNS3_HASH_HDR_ETH | \
HNS3_HASH_HDR_IPV6 | \
HNS3_HASH_HDR_TCP)
#define HNS3_HASH_IPV6_UDP (HNS3_HASH_HDR_ETH | \
HNS3_HASH_HDR_IPV6 | \
HNS3_HASH_HDR_UDP)
#define HNS3_HASH_IPV6_SCTP (HNS3_HASH_HDR_ETH | \
HNS3_HASH_HDR_IPV6 | \
HNS3_HASH_HDR_SCTP)
static const struct hns3_hash_map_info {
/* flow type specified, zero means action works for all flow types. */
uint64_t pattern_type;
uint64_t rss_pctype; /* packet type with prefix RTE_ETH_RSS_xxx */
uint64_t l3l4_types; /* Supported L3/L4 RSS types for this packet type */
uint64_t hw_pctype; /* packet type in driver */
uint64_t tuple_mask; /* full tuples of the hw_pctype */
} hash_map_table[] = {
/* IPV4 */
{ HNS3_HASH_IPV4,
RTE_ETH_RSS_IPV4, HNS3_RSS_SUPPORT_L3_SRC_DST,
HNS3_RSS_PCTYPE_IPV4_NONF, HNS3_RSS_TUPLE_IPV4_NONF_M },
{ HNS3_HASH_IPV4,
RTE_ETH_RSS_NONFRAG_IPV4_OTHER, HNS3_RSS_SUPPORT_L3_SRC_DST,
HNS3_RSS_PCTYPE_IPV4_NONF, HNS3_RSS_TUPLE_IPV4_NONF_M },
{ HNS3_HASH_IPV4,
RTE_ETH_RSS_FRAG_IPV4, HNS3_RSS_SUPPORT_L3_SRC_DST,
HNS3_RSS_PCTYPE_IPV4_FLAG, HNS3_RSS_TUPLE_IPV4_FLAG_M },
{ HNS3_HASH_IPV4_TCP,
RTE_ETH_RSS_NONFRAG_IPV4_TCP, HNS3_RSS_SUPPORT_L3L4,
HNS3_RSS_PCTYPE_IPV4_TCP, HNS3_RSS_TUPLE_IPV4_TCP_M },
{ HNS3_HASH_IPV4_UDP,
RTE_ETH_RSS_NONFRAG_IPV4_UDP, HNS3_RSS_SUPPORT_L3L4,
HNS3_RSS_PCTYPE_IPV4_UDP, HNS3_RSS_TUPLE_IPV4_UDP_M },
{ HNS3_HASH_IPV4_SCTP,
RTE_ETH_RSS_NONFRAG_IPV4_SCTP, HNS3_RSS_SUPPORT_L3L4,
HNS3_RSS_PCTYPE_IPV4_SCTP, HNS3_RSS_TUPLE_IPV4_SCTP_M },
/* IPV6 */
{ HNS3_HASH_IPV6,
RTE_ETH_RSS_IPV6, HNS3_RSS_SUPPORT_L3_SRC_DST,
HNS3_RSS_PCTYPE_IPV6_NONF, HNS3_RSS_TUPLE_IPV6_NONF_M },
{ HNS3_HASH_IPV6,
RTE_ETH_RSS_NONFRAG_IPV6_OTHER, HNS3_RSS_SUPPORT_L3_SRC_DST,
HNS3_RSS_PCTYPE_IPV6_NONF, HNS3_RSS_TUPLE_IPV6_NONF_M },
{ HNS3_HASH_IPV6,
RTE_ETH_RSS_FRAG_IPV6, HNS3_RSS_SUPPORT_L3_SRC_DST,
HNS3_RSS_PCTYPE_IPV6_FLAG, HNS3_RSS_TUPLE_IPV6_FLAG_M },
{ HNS3_HASH_IPV6_TCP,
RTE_ETH_RSS_NONFRAG_IPV6_TCP, HNS3_RSS_SUPPORT_L3L4,
HNS3_RSS_PCTYPE_IPV6_TCP, HNS3_RSS_TUPLE_IPV6_TCP_M },
{ HNS3_HASH_IPV6_UDP,
RTE_ETH_RSS_NONFRAG_IPV6_UDP, HNS3_RSS_SUPPORT_L3L4,
HNS3_RSS_PCTYPE_IPV6_UDP, HNS3_RSS_TUPLE_IPV6_UDP_M },
{ HNS3_HASH_IPV6_SCTP,
RTE_ETH_RSS_NONFRAG_IPV6_SCTP, HNS3_RSS_SUPPORT_L3L4,
HNS3_RSS_PCTYPE_IPV6_SCTP, HNS3_RSS_TUPLE_IPV6_SCTP_M },
};
static const uint8_t full_mask[VNI_OR_TNI_LEN] = { 0xFF, 0xFF, 0xFF };
static const uint8_t zero_mask[VNI_OR_TNI_LEN] = { 0x00, 0x00, 0x00 };
/* Special Filter id for non-specific packet flagging. Don't change value */
#define HNS3_MAX_FILTER_ID 0x0FFF
#define ETHER_TYPE_MASK 0xFFFF
#define IPPROTO_MASK 0xFF
#define TUNNEL_TYPE_MASK 0xFFFF
#define HNS3_TUNNEL_TYPE_VXLAN 0x12B5
#define HNS3_TUNNEL_TYPE_VXLAN_GPE 0x12B6
#define HNS3_TUNNEL_TYPE_GENEVE 0x17C1
#define HNS3_TUNNEL_TYPE_NVGRE 0x6558
static enum rte_flow_item_type first_items[] = {
RTE_FLOW_ITEM_TYPE_ETH,
RTE_FLOW_ITEM_TYPE_IPV4,
RTE_FLOW_ITEM_TYPE_IPV6,
RTE_FLOW_ITEM_TYPE_TCP,
RTE_FLOW_ITEM_TYPE_UDP,
RTE_FLOW_ITEM_TYPE_SCTP,
RTE_FLOW_ITEM_TYPE_ICMP,
RTE_FLOW_ITEM_TYPE_NVGRE,
RTE_FLOW_ITEM_TYPE_VXLAN,
RTE_FLOW_ITEM_TYPE_GENEVE,
RTE_FLOW_ITEM_TYPE_VXLAN_GPE
};
static enum rte_flow_item_type L2_next_items[] = {
RTE_FLOW_ITEM_TYPE_VLAN,
RTE_FLOW_ITEM_TYPE_IPV4,
RTE_FLOW_ITEM_TYPE_IPV6
};
static enum rte_flow_item_type L3_next_items[] = {
RTE_FLOW_ITEM_TYPE_TCP,
RTE_FLOW_ITEM_TYPE_UDP,
RTE_FLOW_ITEM_TYPE_SCTP,
RTE_FLOW_ITEM_TYPE_NVGRE,
RTE_FLOW_ITEM_TYPE_ICMP
};
static enum rte_flow_item_type L4_next_items[] = {
RTE_FLOW_ITEM_TYPE_VXLAN,
RTE_FLOW_ITEM_TYPE_GENEVE,
RTE_FLOW_ITEM_TYPE_VXLAN_GPE
};
static enum rte_flow_item_type tunnel_next_items[] = {
RTE_FLOW_ITEM_TYPE_ETH,
RTE_FLOW_ITEM_TYPE_VLAN
};
struct items_step_mngr {
enum rte_flow_item_type *items;
int count;
};
static inline void
net_addr_to_host(uint32_t *dst, const rte_be32_t *src, size_t len)
{
size_t i;
for (i = 0; i < len; i++)
dst[i] = rte_be_to_cpu_32(src[i]);
}
/*
* This function is used to parse filter type.
* 1. As we know RSS is used to spread packets among several queues, the flow
* API provide the struct rte_flow_action_rss, user could config its field
* sush as: func/level/types/key/queue to control RSS function.
* 2. The flow API also supports queue region configuration for hns3. It was
* implemented by FDIR + RSS in hns3 hardware, user can create one FDIR rule
* which action is RSS queues region.
* 3. When action is RSS, we use the following rule to distinguish:
* Case 1: pattern has ETH and all fields in RSS action except 'queues' are
* zero or default, indicate it is queue region configuration.
* Case other: an rss general action.
*/
static void
hns3_parse_filter_type(const struct rte_flow_item pattern[],
const struct rte_flow_action actions[],
struct hns3_filter_info *filter_info)
{
const struct rte_flow_action_rss *rss_act;
const struct rte_flow_action *act = NULL;
bool only_has_queues = false;
bool have_eth = false;
for (; actions->type != RTE_FLOW_ACTION_TYPE_END; actions++) {
if (actions->type == RTE_FLOW_ACTION_TYPE_RSS) {
act = actions;
break;
}
}
if (act == NULL) {
filter_info->type = RTE_ETH_FILTER_FDIR;
return;
}
for (; pattern->type != RTE_FLOW_ITEM_TYPE_END; pattern++) {
if (pattern->type == RTE_FLOW_ITEM_TYPE_ETH) {
have_eth = true;
break;
}
}
rss_act = act->conf;
only_has_queues = (rss_act->queue_num > 0) &&
(rss_act->func == RTE_ETH_HASH_FUNCTION_DEFAULT &&
rss_act->types == 0 && rss_act->key_len == 0);
if (have_eth && only_has_queues) {
/*
* Pattern has ETH and all fields in RSS action except 'queues'
* are zero or default, which indicates this is queue region
* configuration.
*/
filter_info->type = RTE_ETH_FILTER_FDIR;
return;
}
filter_info->type = RTE_ETH_FILTER_HASH;
}
static inline struct hns3_flow_counter *
hns3_counter_lookup(struct rte_eth_dev *dev, uint32_t id)
{
struct hns3_adapter *hns = dev->data->dev_private;
struct hns3_pf *pf = &hns->pf;
struct hns3_flow_counter *cnt;
LIST_FOREACH(cnt, &pf->flow_counters, next) {
if (cnt->id == id)
return cnt;
}
return NULL;
}
static int
hns3_counter_new(struct rte_eth_dev *dev, uint32_t shared, uint32_t id,
struct rte_flow_error *error)
{
struct hns3_adapter *hns = dev->data->dev_private;
struct hns3_pf *pf = &hns->pf;
struct hns3_hw *hw = &hns->hw;
struct hns3_flow_counter *cnt;
uint64_t value;
int ret;
cnt = hns3_counter_lookup(dev, id);
if (cnt) {
if (!cnt->shared || cnt->shared != shared)
return rte_flow_error_set(error, ENOTSUP,
RTE_FLOW_ERROR_TYPE_ACTION_CONF,
cnt,
"Counter id is used, shared flag not match");
cnt->ref_cnt++;
return 0;
}
/* Clear the counter by read ops because the counter is read-clear */
ret = hns3_get_count(hw, id, &value);
if (ret)
return rte_flow_error_set(error, EIO,
RTE_FLOW_ERROR_TYPE_HANDLE, NULL,
"Clear counter failed!");
cnt = rte_zmalloc("hns3 counter", sizeof(*cnt), 0);
if (cnt == NULL)
return rte_flow_error_set(error, ENOMEM,
RTE_FLOW_ERROR_TYPE_HANDLE, cnt,
"Alloc mem for counter failed");
cnt->id = id;
cnt->shared = shared;
cnt->ref_cnt = 1;
cnt->hits = 0;
LIST_INSERT_HEAD(&pf->flow_counters, cnt, next);
return 0;
}
static int
hns3_counter_query(struct rte_eth_dev *dev, struct rte_flow *flow,
struct rte_flow_query_count *qc,
struct rte_flow_error *error)
{
struct hns3_adapter *hns = dev->data->dev_private;
struct hns3_flow_counter *cnt;
uint64_t value;
int ret;
/* FDIR is available only in PF driver */
if (hns->is_vf)
return rte_flow_error_set(error, ENOTSUP,
RTE_FLOW_ERROR_TYPE_HANDLE, NULL,
"Fdir is not supported in VF");
cnt = hns3_counter_lookup(dev, flow->counter_id);
if (cnt == NULL)
return rte_flow_error_set(error, EINVAL,
RTE_FLOW_ERROR_TYPE_HANDLE, NULL,
"Can't find counter id");
ret = hns3_get_count(&hns->hw, flow->counter_id, &value);
if (ret) {
rte_flow_error_set(error, -ret, RTE_FLOW_ERROR_TYPE_HANDLE,
NULL, "Read counter fail.");
return ret;
}
qc->hits_set = 1;
qc->hits = value;
qc->bytes_set = 0;
qc->bytes = 0;
return 0;
}
static int
hns3_counter_release(struct rte_eth_dev *dev, uint32_t id)
{
struct hns3_adapter *hns = dev->data->dev_private;
struct hns3_hw *hw = &hns->hw;
struct hns3_flow_counter *cnt;
cnt = hns3_counter_lookup(dev, id);
if (cnt == NULL) {
hns3_err(hw, "Can't find available counter to release");
return -EINVAL;
}
cnt->ref_cnt--;
if (cnt->ref_cnt == 0) {
LIST_REMOVE(cnt, next);
rte_free(cnt);
}
return 0;
}
static void
hns3_counter_flush(struct rte_eth_dev *dev)
{
struct hns3_adapter *hns = dev->data->dev_private;
struct hns3_pf *pf = &hns->pf;
struct hns3_flow_counter *cnt_ptr;
cnt_ptr = LIST_FIRST(&pf->flow_counters);
while (cnt_ptr) {
LIST_REMOVE(cnt_ptr, next);
rte_free(cnt_ptr);
cnt_ptr = LIST_FIRST(&pf->flow_counters);
}
}
static int
hns3_handle_action_queue(struct rte_eth_dev *dev,
const struct rte_flow_action *action,
struct hns3_fdir_rule *rule,
struct rte_flow_error *error)
{
struct hns3_adapter *hns = dev->data->dev_private;
const struct rte_flow_action_queue *queue;
struct hns3_hw *hw = &hns->hw;
queue = (const struct rte_flow_action_queue *)action->conf;
if (queue->index >= hw->data->nb_rx_queues) {
hns3_err(hw, "queue ID(%u) is greater than number of "
"available queue (%u) in driver.",
queue->index, hw->data->nb_rx_queues);
return rte_flow_error_set(error, EINVAL,
RTE_FLOW_ERROR_TYPE_ACTION_CONF,
action, "Invalid queue ID in PF");
}
rule->queue_id = queue->index;
rule->nb_queues = 1;
rule->action = HNS3_FD_ACTION_ACCEPT_PACKET;
return 0;
}
static int
hns3_handle_action_queue_region(struct rte_eth_dev *dev,
const struct rte_flow_action *action,
struct hns3_fdir_rule *rule,
struct rte_flow_error *error)
{
struct hns3_adapter *hns = dev->data->dev_private;
const struct rte_flow_action_rss *conf = action->conf;
struct hns3_hw *hw = &hns->hw;
uint16_t idx;
if (!hns3_dev_get_support(hw, FD_QUEUE_REGION))
return rte_flow_error_set(error, ENOTSUP,
RTE_FLOW_ERROR_TYPE_ACTION, action,
"Not support config queue region!");
if ((!rte_is_power_of_2(conf->queue_num)) ||
conf->queue_num > hw->rss_size_max ||
conf->queue[0] >= hw->data->nb_rx_queues ||
conf->queue[0] + conf->queue_num > hw->data->nb_rx_queues) {
return rte_flow_error_set(error, EINVAL,
RTE_FLOW_ERROR_TYPE_ACTION_CONF, action,
"Invalid start queue ID and queue num! the start queue "
"ID must valid, the queue num must be power of 2 and "
"<= rss_size_max.");
}
for (idx = 1; idx < conf->queue_num; idx++) {
if (conf->queue[idx] != conf->queue[idx - 1] + 1)
return rte_flow_error_set(error, EINVAL,
RTE_FLOW_ERROR_TYPE_ACTION_CONF, action,
"Invalid queue ID sequence! the queue ID "
"must be continuous increment.");
}
rule->queue_id = conf->queue[0];
rule->nb_queues = conf->queue_num;
rule->action = HNS3_FD_ACTION_ACCEPT_PACKET;
return 0;
}
/*
* Parse actions structure from the provided pattern.
* The pattern is validated as the items are copied.
*
* @param actions[in]
* @param rule[out]
* NIC specific actions derived from the actions.
* @param error[out]
*/
static int
hns3_handle_actions(struct rte_eth_dev *dev,
const struct rte_flow_action actions[],
struct hns3_fdir_rule *rule, struct rte_flow_error *error)
{
struct hns3_adapter *hns = dev->data->dev_private;
const struct rte_flow_action_count *act_count;
const struct rte_flow_action_mark *mark;
struct hns3_pf *pf = &hns->pf;
uint32_t counter_num;
int ret;
for (; actions->type != RTE_FLOW_ACTION_TYPE_END; actions++) {
switch (actions->type) {
case RTE_FLOW_ACTION_TYPE_QUEUE:
ret = hns3_handle_action_queue(dev, actions, rule,
error);
if (ret)
return ret;
break;
case RTE_FLOW_ACTION_TYPE_DROP:
rule->action = HNS3_FD_ACTION_DROP_PACKET;
break;
/*
* Here RSS's real action is queue region.
* Queue region is implemented by FDIR + RSS in hns3 hardware,
* the FDIR's action is one queue region (start_queue_id and
* queue_num), then RSS spread packets to the queue region by
* RSS algorithm.
*/
case RTE_FLOW_ACTION_TYPE_RSS:
ret = hns3_handle_action_queue_region(dev, actions,
rule, error);
if (ret)
return ret;
break;
case RTE_FLOW_ACTION_TYPE_MARK:
mark =
(const struct rte_flow_action_mark *)actions->conf;
if (mark->id >= HNS3_MAX_FILTER_ID)
return rte_flow_error_set(error, EINVAL,
RTE_FLOW_ERROR_TYPE_ACTION_CONF,
actions,
"Invalid Mark ID");
rule->fd_id = mark->id;
rule->flags |= HNS3_RULE_FLAG_FDID;
break;
case RTE_FLOW_ACTION_TYPE_FLAG:
rule->fd_id = HNS3_MAX_FILTER_ID;
rule->flags |= HNS3_RULE_FLAG_FDID;
break;
case RTE_FLOW_ACTION_TYPE_COUNT:
act_count =
(const struct rte_flow_action_count *)actions->conf;
counter_num = pf->fdir.fd_cfg.cnt_num[HNS3_FD_STAGE_1];
if (act_count->id >= counter_num)
return rte_flow_error_set(error, EINVAL,
RTE_FLOW_ERROR_TYPE_ACTION_CONF,
actions,
"Invalid counter id");
rule->act_cnt = *act_count;
rule->flags |= HNS3_RULE_FLAG_COUNTER;
break;
case RTE_FLOW_ACTION_TYPE_VOID:
break;
default:
return rte_flow_error_set(error, ENOTSUP,
RTE_FLOW_ERROR_TYPE_ACTION,
NULL, "Unsupported action");
}
}
return 0;
}
static int
hns3_check_attr(const struct rte_flow_attr *attr, struct rte_flow_error *error)
{
if (!attr->ingress)
return rte_flow_error_set(error, EINVAL,
RTE_FLOW_ERROR_TYPE_ATTR_INGRESS,
attr, "Ingress can't be zero");
if (attr->egress)
return rte_flow_error_set(error, ENOTSUP,
RTE_FLOW_ERROR_TYPE_ATTR_EGRESS,
attr, "Not support egress");
if (attr->transfer)
return rte_flow_error_set(error, ENOTSUP,
RTE_FLOW_ERROR_TYPE_ATTR_TRANSFER,
attr, "No support for transfer");
if (attr->priority)
return rte_flow_error_set(error, ENOTSUP,
RTE_FLOW_ERROR_TYPE_ATTR_PRIORITY,
attr, "Not support priority");
if (attr->group)
return rte_flow_error_set(error, ENOTSUP,
RTE_FLOW_ERROR_TYPE_ATTR_GROUP,
attr, "Not support group");
return 0;
}
static int
hns3_parse_eth(const struct rte_flow_item *item, struct hns3_fdir_rule *rule,
struct rte_flow_error *error __rte_unused)
{
const struct rte_flow_item_eth *eth_spec;
const struct rte_flow_item_eth *eth_mask;
/* Only used to describe the protocol stack. */
if (item->spec == NULL && item->mask == NULL)
return 0;
if (item->mask) {
eth_mask = item->mask;
if (eth_mask->type) {
hns3_set_bit(rule->input_set, INNER_ETH_TYPE, 1);
rule->key_conf.mask.ether_type =
rte_be_to_cpu_16(eth_mask->type);
}
if (!rte_is_zero_ether_addr(&eth_mask->src)) {
hns3_set_bit(rule->input_set, INNER_SRC_MAC, 1);
memcpy(rule->key_conf.mask.src_mac,
eth_mask->src.addr_bytes, RTE_ETHER_ADDR_LEN);
}
if (!rte_is_zero_ether_addr(&eth_mask->dst)) {
hns3_set_bit(rule->input_set, INNER_DST_MAC, 1);
memcpy(rule->key_conf.mask.dst_mac,
eth_mask->dst.addr_bytes, RTE_ETHER_ADDR_LEN);
}
}
eth_spec = item->spec;
rule->key_conf.spec.ether_type = rte_be_to_cpu_16(eth_spec->type);
memcpy(rule->key_conf.spec.src_mac, eth_spec->src.addr_bytes,
RTE_ETHER_ADDR_LEN);
memcpy(rule->key_conf.spec.dst_mac, eth_spec->dst.addr_bytes,
RTE_ETHER_ADDR_LEN);
return 0;
}
static int
hns3_parse_vlan(const struct rte_flow_item *item, struct hns3_fdir_rule *rule,
struct rte_flow_error *error)
{
const struct rte_flow_item_vlan *vlan_spec;
const struct rte_flow_item_vlan *vlan_mask;
rule->key_conf.vlan_num++;
if (rule->key_conf.vlan_num > VLAN_TAG_NUM_MAX)
return rte_flow_error_set(error, EINVAL,
RTE_FLOW_ERROR_TYPE_ITEM, item,
"Vlan_num is more than 2");
/* Only used to describe the protocol stack. */
if (item->spec == NULL && item->mask == NULL)
return 0;
if (item->mask) {
vlan_mask = item->mask;
if (vlan_mask->tci) {
if (rule->key_conf.vlan_num == 1) {
hns3_set_bit(rule->input_set, INNER_VLAN_TAG1,
1);
rule->key_conf.mask.vlan_tag1 =
rte_be_to_cpu_16(vlan_mask->tci);
} else {
hns3_set_bit(rule->input_set, INNER_VLAN_TAG2,
1);
rule->key_conf.mask.vlan_tag2 =
rte_be_to_cpu_16(vlan_mask->tci);
}
}
}
vlan_spec = item->spec;
if (rule->key_conf.vlan_num == 1)
rule->key_conf.spec.vlan_tag1 =
rte_be_to_cpu_16(vlan_spec->tci);
else
rule->key_conf.spec.vlan_tag2 =
rte_be_to_cpu_16(vlan_spec->tci);
return 0;
}
static bool
hns3_check_ipv4_mask_supported(const struct rte_flow_item_ipv4 *ipv4_mask)
{
if (ipv4_mask->hdr.total_length || ipv4_mask->hdr.packet_id ||
ipv4_mask->hdr.fragment_offset || ipv4_mask->hdr.time_to_live ||
ipv4_mask->hdr.hdr_checksum)
return false;
return true;
}
static int
hns3_parse_ipv4(const struct rte_flow_item *item, struct hns3_fdir_rule *rule,
struct rte_flow_error *error)
{
const struct rte_flow_item_ipv4 *ipv4_spec;
const struct rte_flow_item_ipv4 *ipv4_mask;
hns3_set_bit(rule->input_set, INNER_ETH_TYPE, 1);
rule->key_conf.spec.ether_type = RTE_ETHER_TYPE_IPV4;
rule->key_conf.mask.ether_type = ETHER_TYPE_MASK;
/* Only used to describe the protocol stack. */
if (item->spec == NULL && item->mask == NULL)
return 0;
if (item->mask) {
ipv4_mask = item->mask;
if (!hns3_check_ipv4_mask_supported(ipv4_mask)) {
return rte_flow_error_set(error, EINVAL,
RTE_FLOW_ERROR_TYPE_ITEM_MASK,
item,
"Only support src & dst ip,tos,proto in IPV4");
}
if (ipv4_mask->hdr.src_addr) {
hns3_set_bit(rule->input_set, INNER_SRC_IP, 1);
rule->key_conf.mask.src_ip[IP_ADDR_KEY_ID] =
rte_be_to_cpu_32(ipv4_mask->hdr.src_addr);
}
if (ipv4_mask->hdr.dst_addr) {
hns3_set_bit(rule->input_set, INNER_DST_IP, 1);
rule->key_conf.mask.dst_ip[IP_ADDR_KEY_ID] =
rte_be_to_cpu_32(ipv4_mask->hdr.dst_addr);
}
if (ipv4_mask->hdr.type_of_service) {
hns3_set_bit(rule->input_set, INNER_IP_TOS, 1);
rule->key_conf.mask.ip_tos =
ipv4_mask->hdr.type_of_service;
}
if (ipv4_mask->hdr.next_proto_id) {
hns3_set_bit(rule->input_set, INNER_IP_PROTO, 1);
rule->key_conf.mask.ip_proto =
ipv4_mask->hdr.next_proto_id;
}
}
ipv4_spec = item->spec;
rule->key_conf.spec.src_ip[IP_ADDR_KEY_ID] =
rte_be_to_cpu_32(ipv4_spec->hdr.src_addr);
rule->key_conf.spec.dst_ip[IP_ADDR_KEY_ID] =
rte_be_to_cpu_32(ipv4_spec->hdr.dst_addr);
rule->key_conf.spec.ip_tos = ipv4_spec->hdr.type_of_service;
rule->key_conf.spec.ip_proto = ipv4_spec->hdr.next_proto_id;
return 0;
}
static int
hns3_parse_ipv6(const struct rte_flow_item *item, struct hns3_fdir_rule *rule,
struct rte_flow_error *error)
{
const struct rte_flow_item_ipv6 *ipv6_spec;
const struct rte_flow_item_ipv6 *ipv6_mask;
hns3_set_bit(rule->input_set, INNER_ETH_TYPE, 1);
rule->key_conf.spec.ether_type = RTE_ETHER_TYPE_IPV6;
rule->key_conf.mask.ether_type = ETHER_TYPE_MASK;
/* Only used to describe the protocol stack. */
if (item->spec == NULL && item->mask == NULL)
return 0;
if (item->mask) {
ipv6_mask = item->mask;
if (ipv6_mask->hdr.vtc_flow || ipv6_mask->hdr.payload_len ||
ipv6_mask->hdr.hop_limits) {
return rte_flow_error_set(error, EINVAL,
RTE_FLOW_ERROR_TYPE_ITEM_MASK,
item,
"Only support src & dst ip,proto in IPV6");
}
net_addr_to_host(rule->key_conf.mask.src_ip,
(const rte_be32_t *)ipv6_mask->hdr.src_addr,
IP_ADDR_LEN);
net_addr_to_host(rule->key_conf.mask.dst_ip,
(const rte_be32_t *)ipv6_mask->hdr.dst_addr,
IP_ADDR_LEN);
rule->key_conf.mask.ip_proto = ipv6_mask->hdr.proto;
if (rule->key_conf.mask.src_ip[IP_ADDR_KEY_ID])
hns3_set_bit(rule->input_set, INNER_SRC_IP, 1);
if (rule->key_conf.mask.dst_ip[IP_ADDR_KEY_ID])
hns3_set_bit(rule->input_set, INNER_DST_IP, 1);
if (ipv6_mask->hdr.proto)
hns3_set_bit(rule->input_set, INNER_IP_PROTO, 1);
}
ipv6_spec = item->spec;
net_addr_to_host(rule->key_conf.spec.src_ip,
(const rte_be32_t *)ipv6_spec->hdr.src_addr,
IP_ADDR_LEN);
net_addr_to_host(rule->key_conf.spec.dst_ip,
(const rte_be32_t *)ipv6_spec->hdr.dst_addr,
IP_ADDR_LEN);
rule->key_conf.spec.ip_proto = ipv6_spec->hdr.proto;
return 0;
}
static bool
hns3_check_tcp_mask_supported(const struct rte_flow_item_tcp *tcp_mask)
{
if (tcp_mask->hdr.sent_seq || tcp_mask->hdr.recv_ack ||
tcp_mask->hdr.data_off || tcp_mask->hdr.tcp_flags ||
tcp_mask->hdr.rx_win || tcp_mask->hdr.cksum ||
tcp_mask->hdr.tcp_urp)
return false;
return true;
}
static int
hns3_parse_tcp(const struct rte_flow_item *item, struct hns3_fdir_rule *rule,
struct rte_flow_error *error)
{
const struct rte_flow_item_tcp *tcp_spec;
const struct rte_flow_item_tcp *tcp_mask;
hns3_set_bit(rule->input_set, INNER_IP_PROTO, 1);
rule->key_conf.spec.ip_proto = IPPROTO_TCP;
rule->key_conf.mask.ip_proto = IPPROTO_MASK;
/* Only used to describe the protocol stack. */
if (item->spec == NULL && item->mask == NULL)
return 0;
if (item->mask) {
tcp_mask = item->mask;
if (!hns3_check_tcp_mask_supported(tcp_mask)) {
return rte_flow_error_set(error, EINVAL,
RTE_FLOW_ERROR_TYPE_ITEM_MASK,
item,
"Only support src & dst port in TCP");
}
if (tcp_mask->hdr.src_port) {
hns3_set_bit(rule->input_set, INNER_SRC_PORT, 1);
rule->key_conf.mask.src_port =
rte_be_to_cpu_16(tcp_mask->hdr.src_port);
}
if (tcp_mask->hdr.dst_port) {
hns3_set_bit(rule->input_set, INNER_DST_PORT, 1);
rule->key_conf.mask.dst_port =
rte_be_to_cpu_16(tcp_mask->hdr.dst_port);
}
}
tcp_spec = item->spec;
rule->key_conf.spec.src_port = rte_be_to_cpu_16(tcp_spec->hdr.src_port);
rule->key_conf.spec.dst_port = rte_be_to_cpu_16(tcp_spec->hdr.dst_port);
return 0;
}
static int
hns3_parse_udp(const struct rte_flow_item *item, struct hns3_fdir_rule *rule,
struct rte_flow_error *error)
{
const struct rte_flow_item_udp *udp_spec;
const struct rte_flow_item_udp *udp_mask;
hns3_set_bit(rule->input_set, INNER_IP_PROTO, 1);
rule->key_conf.spec.ip_proto = IPPROTO_UDP;
rule->key_conf.mask.ip_proto = IPPROTO_MASK;
/* Only used to describe the protocol stack. */
if (item->spec == NULL && item->mask == NULL)
return 0;
if (item->mask) {
udp_mask = item->mask;
if (udp_mask->hdr.dgram_len || udp_mask->hdr.dgram_cksum) {
return rte_flow_error_set(error, EINVAL,
RTE_FLOW_ERROR_TYPE_ITEM_MASK,
item,
"Only support src & dst port in UDP");
}
if (udp_mask->hdr.src_port) {
hns3_set_bit(rule->input_set, INNER_SRC_PORT, 1);
rule->key_conf.mask.src_port =
rte_be_to_cpu_16(udp_mask->hdr.src_port);
}
if (udp_mask->hdr.dst_port) {
hns3_set_bit(rule->input_set, INNER_DST_PORT, 1);
rule->key_conf.mask.dst_port =
rte_be_to_cpu_16(udp_mask->hdr.dst_port);
}
}
udp_spec = item->spec;
rule->key_conf.spec.src_port = rte_be_to_cpu_16(udp_spec->hdr.src_port);
rule->key_conf.spec.dst_port = rte_be_to_cpu_16(udp_spec->hdr.dst_port);
return 0;
}
static int
hns3_parse_sctp(const struct rte_flow_item *item, struct hns3_fdir_rule *rule,
struct rte_flow_error *error)
{
const struct rte_flow_item_sctp *sctp_spec;
const struct rte_flow_item_sctp *sctp_mask;
hns3_set_bit(rule->input_set, INNER_IP_PROTO, 1);
rule->key_conf.spec.ip_proto = IPPROTO_SCTP;
rule->key_conf.mask.ip_proto = IPPROTO_MASK;
/* Only used to describe the protocol stack. */
if (item->spec == NULL && item->mask == NULL)
return 0;
if (item->mask) {
sctp_mask = item->mask;
if (sctp_mask->hdr.cksum)
return rte_flow_error_set(error, EINVAL,
RTE_FLOW_ERROR_TYPE_ITEM_MASK,
item,
"Only support src & dst port in SCTP");
if (sctp_mask->hdr.src_port) {
hns3_set_bit(rule->input_set, INNER_SRC_PORT, 1);
rule->key_conf.mask.src_port =
rte_be_to_cpu_16(sctp_mask->hdr.src_port);
}
if (sctp_mask->hdr.dst_port) {
hns3_set_bit(rule->input_set, INNER_DST_PORT, 1);
rule->key_conf.mask.dst_port =
rte_be_to_cpu_16(sctp_mask->hdr.dst_port);
}
if (sctp_mask->hdr.tag) {
hns3_set_bit(rule->input_set, INNER_SCTP_TAG, 1);
rule->key_conf.mask.sctp_tag =
rte_be_to_cpu_32(sctp_mask->hdr.tag);
}
}
sctp_spec = item->spec;
rule->key_conf.spec.src_port =
rte_be_to_cpu_16(sctp_spec->hdr.src_port);
rule->key_conf.spec.dst_port =
rte_be_to_cpu_16(sctp_spec->hdr.dst_port);
rule->key_conf.spec.sctp_tag = rte_be_to_cpu_32(sctp_spec->hdr.tag);
return 0;
}
/*
* Check items before tunnel, save inner configs to outer configs, and clear
* inner configs.
* The key consists of two parts: meta_data and tuple keys.
* Meta data uses 15 bits, including vlan_num(2bit), des_port(12bit) and tunnel
* packet(1bit).
* Tuple keys uses 384bit, including ot_dst-mac(48bit), ot_dst-port(16bit),
* ot_tun_vni(24bit), ot_flow_id(8bit), src-mac(48bit), dst-mac(48bit),
* src-ip(32/128bit), dst-ip(32/128bit), src-port(16bit), dst-port(16bit),
* tos(8bit), ether-proto(16bit), ip-proto(8bit), vlantag1(16bit),
* Vlantag2(16bit) and sctp-tag(32bit).
*/
static int
hns3_handle_tunnel(const struct rte_flow_item *item,
struct hns3_fdir_rule *rule, struct rte_flow_error *error)
{
/* check eth config */
if (rule->input_set & (BIT(INNER_SRC_MAC) | BIT(INNER_DST_MAC)))
return rte_flow_error_set(error, EINVAL,
RTE_FLOW_ERROR_TYPE_ITEM,
item, "Outer eth mac is unsupported");
if (rule->input_set & BIT(INNER_ETH_TYPE)) {
hns3_set_bit(rule->input_set, OUTER_ETH_TYPE, 1);
rule->key_conf.spec.outer_ether_type =
rule->key_conf.spec.ether_type;
rule->key_conf.mask.outer_ether_type =
rule->key_conf.mask.ether_type;
hns3_set_bit(rule->input_set, INNER_ETH_TYPE, 0);
rule->key_conf.spec.ether_type = 0;
rule->key_conf.mask.ether_type = 0;
}
/* check vlan config */
if (rule->input_set & (BIT(INNER_VLAN_TAG1) | BIT(INNER_VLAN_TAG2)))
return rte_flow_error_set(error, EINVAL,
RTE_FLOW_ERROR_TYPE_ITEM,
item,
"Outer vlan tags is unsupported");
/* clear vlan_num for inner vlan select */
rule->key_conf.outer_vlan_num = rule->key_conf.vlan_num;
rule->key_conf.vlan_num = 0;
/* check L3 config */
if (rule->input_set &
(BIT(INNER_SRC_IP) | BIT(INNER_DST_IP) | BIT(INNER_IP_TOS)))
return rte_flow_error_set(error, EINVAL,
RTE_FLOW_ERROR_TYPE_ITEM,
item, "Outer ip is unsupported");
if (rule->input_set & BIT(INNER_IP_PROTO)) {
hns3_set_bit(rule->input_set, OUTER_IP_PROTO, 1);
rule->key_conf.spec.outer_proto = rule->key_conf.spec.ip_proto;
rule->key_conf.mask.outer_proto = rule->key_conf.mask.ip_proto;
hns3_set_bit(rule->input_set, INNER_IP_PROTO, 0);
rule->key_conf.spec.ip_proto = 0;
rule->key_conf.mask.ip_proto = 0;
}
/* check L4 config */
if (rule->input_set & BIT(INNER_SCTP_TAG))
return rte_flow_error_set(error, EINVAL,
RTE_FLOW_ERROR_TYPE_ITEM, item,
"Outer sctp tag is unsupported");
if (rule->input_set & BIT(INNER_SRC_PORT)) {
hns3_set_bit(rule->input_set, OUTER_SRC_PORT, 1);
rule->key_conf.spec.outer_src_port =
rule->key_conf.spec.src_port;
rule->key_conf.mask.outer_src_port =
rule->key_conf.mask.src_port;
hns3_set_bit(rule->input_set, INNER_SRC_PORT, 0);
rule->key_conf.spec.src_port = 0;
rule->key_conf.mask.src_port = 0;
}
if (rule->input_set & BIT(INNER_DST_PORT)) {
hns3_set_bit(rule->input_set, INNER_DST_PORT, 0);
rule->key_conf.spec.dst_port = 0;
rule->key_conf.mask.dst_port = 0;
}
return 0;
}
static int
hns3_parse_vxlan(const struct rte_flow_item *item, struct hns3_fdir_rule *rule,
struct rte_flow_error *error)
{
const struct rte_flow_item_vxlan *vxlan_spec;
const struct rte_flow_item_vxlan *vxlan_mask;
hns3_set_bit(rule->input_set, OUTER_DST_PORT, 1);
rule->key_conf.mask.tunnel_type = TUNNEL_TYPE_MASK;
if (item->type == RTE_FLOW_ITEM_TYPE_VXLAN)
rule->key_conf.spec.tunnel_type = HNS3_TUNNEL_TYPE_VXLAN;
else
rule->key_conf.spec.tunnel_type = HNS3_TUNNEL_TYPE_VXLAN_GPE;
/* Only used to describe the protocol stack. */
if (item->spec == NULL && item->mask == NULL)
return 0;
vxlan_mask = item->mask;
vxlan_spec = item->spec;
if (vxlan_mask->flags)
return rte_flow_error_set(error, EINVAL,
RTE_FLOW_ERROR_TYPE_ITEM_MASK, item,
"Flags is not supported in VxLAN");
/* VNI must be totally masked or not. */
if (memcmp(vxlan_mask->vni, full_mask, VNI_OR_TNI_LEN) &&
memcmp(vxlan_mask->vni, zero_mask, VNI_OR_TNI_LEN))
return rte_flow_error_set(error, EINVAL,
RTE_FLOW_ERROR_TYPE_ITEM_MASK, item,
"VNI must be totally masked or not in VxLAN");
if (vxlan_mask->vni[0]) {
hns3_set_bit(rule->input_set, OUTER_TUN_VNI, 1);
memcpy(rule->key_conf.mask.outer_tun_vni, vxlan_mask->vni,
VNI_OR_TNI_LEN);
}
memcpy(rule->key_conf.spec.outer_tun_vni, vxlan_spec->vni,
VNI_OR_TNI_LEN);
return 0;
}
static int
hns3_parse_nvgre(const struct rte_flow_item *item, struct hns3_fdir_rule *rule,
struct rte_flow_error *error)
{
const struct rte_flow_item_nvgre *nvgre_spec;
const struct rte_flow_item_nvgre *nvgre_mask;
hns3_set_bit(rule->input_set, OUTER_IP_PROTO, 1);
rule->key_conf.spec.outer_proto = IPPROTO_GRE;
rule->key_conf.mask.outer_proto = IPPROTO_MASK;
hns3_set_bit(rule->input_set, OUTER_DST_PORT, 1);
rule->key_conf.spec.tunnel_type = HNS3_TUNNEL_TYPE_NVGRE;
rule->key_conf.mask.tunnel_type = ~HNS3_TUNNEL_TYPE_NVGRE;
/* Only used to describe the protocol stack. */
if (item->spec == NULL && item->mask == NULL)
return 0;
nvgre_mask = item->mask;
nvgre_spec = item->spec;
if (nvgre_mask->protocol || nvgre_mask->c_k_s_rsvd0_ver)
return rte_flow_error_set(error, EINVAL,
RTE_FLOW_ERROR_TYPE_ITEM_MASK, item,
"Ver/protocol is not supported in NVGRE");
/* TNI must be totally masked or not. */
if (memcmp(nvgre_mask->tni, full_mask, VNI_OR_TNI_LEN) &&
memcmp(nvgre_mask->tni, zero_mask, VNI_OR_TNI_LEN))
return rte_flow_error_set(error, EINVAL,
RTE_FLOW_ERROR_TYPE_ITEM_MASK, item,
"TNI must be totally masked or not in NVGRE");
if (nvgre_mask->tni[0]) {
hns3_set_bit(rule->input_set, OUTER_TUN_VNI, 1);
memcpy(rule->key_conf.mask.outer_tun_vni, nvgre_mask->tni,
VNI_OR_TNI_LEN);
}
memcpy(rule->key_conf.spec.outer_tun_vni, nvgre_spec->tni,
VNI_OR_TNI_LEN);
if (nvgre_mask->flow_id) {
hns3_set_bit(rule->input_set, OUTER_TUN_FLOW_ID, 1);
rule->key_conf.mask.outer_tun_flow_id = nvgre_mask->flow_id;
}
rule->key_conf.spec.outer_tun_flow_id = nvgre_spec->flow_id;
return 0;
}
static int
hns3_parse_geneve(const struct rte_flow_item *item, struct hns3_fdir_rule *rule,
struct rte_flow_error *error)
{
const struct rte_flow_item_geneve *geneve_spec;
const struct rte_flow_item_geneve *geneve_mask;
hns3_set_bit(rule->input_set, OUTER_DST_PORT, 1);
rule->key_conf.spec.tunnel_type = HNS3_TUNNEL_TYPE_GENEVE;
rule->key_conf.mask.tunnel_type = TUNNEL_TYPE_MASK;
/* Only used to describe the protocol stack. */
if (item->spec == NULL && item->mask == NULL)
return 0;
geneve_mask = item->mask;
geneve_spec = item->spec;
if (geneve_mask->ver_opt_len_o_c_rsvd0 || geneve_mask->protocol)
return rte_flow_error_set(error, EINVAL,
RTE_FLOW_ERROR_TYPE_ITEM_MASK, item,
"Ver/protocol is not supported in GENEVE");
/* VNI must be totally masked or not. */
if (memcmp(geneve_mask->vni, full_mask, VNI_OR_TNI_LEN) &&
memcmp(geneve_mask->vni, zero_mask, VNI_OR_TNI_LEN))
return rte_flow_error_set(error, EINVAL,
RTE_FLOW_ERROR_TYPE_ITEM_MASK, item,
"VNI must be totally masked or not in GENEVE");
if (geneve_mask->vni[0]) {
hns3_set_bit(rule->input_set, OUTER_TUN_VNI, 1);
memcpy(rule->key_conf.mask.outer_tun_vni, geneve_mask->vni,
VNI_OR_TNI_LEN);
}
memcpy(rule->key_conf.spec.outer_tun_vni, geneve_spec->vni,
VNI_OR_TNI_LEN);
return 0;
}
static int
hns3_parse_tunnel(const struct rte_flow_item *item, struct hns3_fdir_rule *rule,
struct rte_flow_error *error)
{
int ret;
if (item->spec == NULL && item->mask)
return rte_flow_error_set(error, EINVAL,
RTE_FLOW_ERROR_TYPE_ITEM, item,
"Can't configure FDIR with mask "
"but without spec");
else if (item->spec && (item->mask == NULL))
return rte_flow_error_set(error, EINVAL,
RTE_FLOW_ERROR_TYPE_ITEM, item,
"Tunnel packets must configure "
"with mask");
switch (item->type) {
case RTE_FLOW_ITEM_TYPE_VXLAN:
case RTE_FLOW_ITEM_TYPE_VXLAN_GPE:
ret = hns3_parse_vxlan(item, rule, error);
break;
case RTE_FLOW_ITEM_TYPE_NVGRE:
ret = hns3_parse_nvgre(item, rule, error);
break;
case RTE_FLOW_ITEM_TYPE_GENEVE:
ret = hns3_parse_geneve(item, rule, error);
break;
default:
return rte_flow_error_set(error, ENOTSUP,
RTE_FLOW_ERROR_TYPE_ITEM,
NULL, "Unsupported tunnel type!");
}
if (ret)
return ret;
return hns3_handle_tunnel(item, rule, error);
}
static int
hns3_parse_normal(const struct rte_flow_item *item, struct hns3_fdir_rule *rule,
struct items_step_mngr *step_mngr,
struct rte_flow_error *error)
{
int ret;
if (item->spec == NULL && item->mask)
return rte_flow_error_set(error, EINVAL,
RTE_FLOW_ERROR_TYPE_ITEM, item,
"Can't configure FDIR with mask "
"but without spec");
switch (item->type) {
case RTE_FLOW_ITEM_TYPE_ETH:
ret = hns3_parse_eth(item, rule, error);
step_mngr->items = L2_next_items;
step_mngr->count = RTE_DIM(L2_next_items);
break;
case RTE_FLOW_ITEM_TYPE_VLAN:
ret = hns3_parse_vlan(item, rule, error);
step_mngr->items = L2_next_items;
step_mngr->count = RTE_DIM(L2_next_items);
break;
case RTE_FLOW_ITEM_TYPE_IPV4:
ret = hns3_parse_ipv4(item, rule, error);
step_mngr->items = L3_next_items;
step_mngr->count = RTE_DIM(L3_next_items);
break;
case RTE_FLOW_ITEM_TYPE_IPV6:
ret = hns3_parse_ipv6(item, rule, error);
step_mngr->items = L3_next_items;
step_mngr->count = RTE_DIM(L3_next_items);
break;
case RTE_FLOW_ITEM_TYPE_TCP:
ret = hns3_parse_tcp(item, rule, error);
step_mngr->items = L4_next_items;
step_mngr->count = RTE_DIM(L4_next_items);
break;
case RTE_FLOW_ITEM_TYPE_UDP:
ret = hns3_parse_udp(item, rule, error);
step_mngr->items = L4_next_items;
step_mngr->count = RTE_DIM(L4_next_items);
break;
case RTE_FLOW_ITEM_TYPE_SCTP:
ret = hns3_parse_sctp(item, rule, error);
step_mngr->items = L4_next_items;
step_mngr->count = RTE_DIM(L4_next_items);
break;
default:
return rte_flow_error_set(error, ENOTSUP,
RTE_FLOW_ERROR_TYPE_ITEM,
NULL, "Unsupported normal type!");
}
return ret;
}
static int
hns3_validate_item(const struct rte_flow_item *item,
struct items_step_mngr step_mngr,
struct rte_flow_error *error)
{
int i;
if (item->last)
return rte_flow_error_set(error, ENOTSUP,
RTE_FLOW_ERROR_TYPE_ITEM_LAST, item,
"Not supported last point for range");
for (i = 0; i < step_mngr.count; i++) {
if (item->type == step_mngr.items[i])
break;
}
if (i == step_mngr.count) {
return rte_flow_error_set(error, EINVAL,
RTE_FLOW_ERROR_TYPE_ITEM,
item, "Inval or missing item");
}
return 0;
}
static inline bool
is_tunnel_packet(enum rte_flow_item_type type)
{
if (type == RTE_FLOW_ITEM_TYPE_VXLAN_GPE ||
type == RTE_FLOW_ITEM_TYPE_VXLAN ||
type == RTE_FLOW_ITEM_TYPE_NVGRE ||
type == RTE_FLOW_ITEM_TYPE_GENEVE)
return true;
return false;
}
/*
* Parse the flow director rule.
* The supported PATTERN:
* case: non-tunnel packet:
* ETH : src-mac, dst-mac, ethertype
* VLAN: tag1, tag2
* IPv4: src-ip, dst-ip, tos, proto
* IPv6: src-ip(last 32 bit addr), dst-ip(last 32 bit addr), proto
* UDP : src-port, dst-port
* TCP : src-port, dst-port
* SCTP: src-port, dst-port, tag
* case: tunnel packet:
* OUTER-ETH: ethertype
* OUTER-L3 : proto
* OUTER-L4 : src-port, dst-port
* TUNNEL : vni, flow-id(only valid when NVGRE)
* INNER-ETH/VLAN/IPv4/IPv6/UDP/TCP/SCTP: same as non-tunnel packet
* The supported ACTION:
* QUEUE
* DROP
* COUNT
* MARK: the id range [0, 4094]
* FLAG
* RSS: only valid if firmware support FD_QUEUE_REGION.
*/
static int
hns3_parse_fdir_filter(struct rte_eth_dev *dev,
const struct rte_flow_item pattern[],
const struct rte_flow_action actions[],
struct hns3_fdir_rule *rule,
struct rte_flow_error *error)
{
struct hns3_adapter *hns = dev->data->dev_private;
const struct rte_flow_item *item;
struct items_step_mngr step_mngr;
int ret;
/* FDIR is available only in PF driver */
if (hns->is_vf)
return rte_flow_error_set(error, ENOTSUP,
RTE_FLOW_ERROR_TYPE_HANDLE, NULL,
"Fdir not supported in VF");
step_mngr.items = first_items;
step_mngr.count = RTE_DIM(first_items);
for (item = pattern; item->type != RTE_FLOW_ITEM_TYPE_END; item++) {
if (item->type == RTE_FLOW_ITEM_TYPE_VOID)
continue;
ret = hns3_validate_item(item, step_mngr, error);
if (ret)
return ret;
if (is_tunnel_packet(item->type)) {
ret = hns3_parse_tunnel(item, rule, error);
if (ret)
return ret;
step_mngr.items = tunnel_next_items;
step_mngr.count = RTE_DIM(tunnel_next_items);
} else {
ret = hns3_parse_normal(item, rule, &step_mngr, error);
if (ret)
return ret;
}
}
return hns3_handle_actions(dev, actions, rule, error);
}
static void
hns3_filterlist_flush(struct rte_eth_dev *dev)
{
struct hns3_hw *hw = HNS3_DEV_PRIVATE_TO_HW(dev->data->dev_private);
struct hns3_fdir_rule_ele *fdir_rule_ptr;
struct hns3_flow_mem *flow_node;
fdir_rule_ptr = TAILQ_FIRST(&hw->flow_fdir_list);
while (fdir_rule_ptr) {
TAILQ_REMOVE(&hw->flow_fdir_list, fdir_rule_ptr, entries);
rte_free(fdir_rule_ptr);
fdir_rule_ptr = TAILQ_FIRST(&hw->flow_fdir_list);
}
flow_node = TAILQ_FIRST(&hw->flow_list);
while (flow_node) {
TAILQ_REMOVE(&hw->flow_list, flow_node, entries);
rte_free(flow_node->flow);
rte_free(flow_node);
flow_node = TAILQ_FIRST(&hw->flow_list);
}
}
static bool
hns3_flow_rule_key_same(const struct rte_flow_action_rss *comp,
const struct rte_flow_action_rss *with)
{
if (comp->key_len != with->key_len)
return false;
if (with->key_len == 0)
return true;
if (comp->key == NULL && with->key == NULL)
return true;
if (!(comp->key != NULL && with->key != NULL))
return false;
return !memcmp(comp->key, with->key, with->key_len);
}
static bool
hns3_flow_rule_queues_same(const struct rte_flow_action_rss *comp,
const struct rte_flow_action_rss *with)
{
if (comp->queue_num != with->queue_num)
return false;
if (with->queue_num == 0)
return true;
if (comp->queue == NULL && with->queue == NULL)
return true;
if (!(comp->queue != NULL && with->queue != NULL))
return false;
return !memcmp(comp->queue, with->queue, with->queue_num);
}
static bool
hns3_action_rss_same(const struct rte_flow_action_rss *comp,
const struct rte_flow_action_rss *with)
{
bool same_level;
bool same_types;
bool same_func;
same_level = (comp->level == with->level);
same_types = (comp->types == with->types);
same_func = (comp->func == with->func);
return same_level && same_types && same_func &&
hns3_flow_rule_key_same(comp, with) &&
hns3_flow_rule_queues_same(comp, with);
}
static bool
hns3_valid_ipv6_sctp_rss_types(struct hns3_hw *hw, uint64_t types)
{
/*
* Some hardware don't support to use src/dst port fields to hash
* for IPV6 SCTP packet type.
*/
if (types & RTE_ETH_RSS_NONFRAG_IPV6_SCTP &&
types & HNS3_RSS_SUPPORT_L4_SRC_DST &&
!hw->rss_info.ipv6_sctp_offload_supported)
return false;
return true;
}
static int
hns3_flow_parse_hash_func(const struct rte_flow_action_rss *rss_act,
struct hns3_flow_rss_conf *rss_conf,
struct rte_flow_error *error)
{
if (rss_act->func >= RTE_ETH_HASH_FUNCTION_MAX)
return rte_flow_error_set(error, ENOTSUP,
RTE_FLOW_ERROR_TYPE_ACTION_CONF,
NULL, "RSS hash func are not supported");
rss_conf->conf.func = rss_act->func;
return 0;
}
static int
hns3_flow_parse_hash_key(struct hns3_hw *hw,
const struct rte_flow_action_rss *rss_act,
struct hns3_flow_rss_conf *rss_conf,
struct rte_flow_error *error)
{
if (rss_act->key_len != hw->rss_key_size)
return rte_flow_error_set(error, EINVAL,
RTE_FLOW_ERROR_TYPE_ACTION_CONF,
NULL, "invalid RSS key length");
if (rss_act->key != NULL)
memcpy(rss_conf->key, rss_act->key, rss_act->key_len);
else
memcpy(rss_conf->key, hns3_hash_key,
RTE_MIN(sizeof(hns3_hash_key), rss_act->key_len));
/* Need to record if user sets hash key. */
rss_conf->conf.key = rss_act->key;
rss_conf->conf.key_len = rss_act->key_len;
return 0;
}
static int
hns3_flow_parse_queues(struct hns3_hw *hw,
const struct rte_flow_action_rss *rss_act,
struct hns3_flow_rss_conf *rss_conf,
struct rte_flow_error *error)
{
uint16_t i;
if (rss_act->queue_num > hw->rss_ind_tbl_size)
return rte_flow_error_set(error, ENOTSUP,
RTE_FLOW_ERROR_TYPE_ACTION_CONF,
NULL,
"queue number can not exceed RSS indirection table.");
if (rss_act->queue_num > HNS3_RSS_QUEUES_BUFFER_NUM)
return rte_flow_error_set(error, ENOTSUP,
RTE_FLOW_ERROR_TYPE_ACTION_CONF,
NULL,
"queue number configured exceeds queue buffer size driver supported");
for (i = 0; i < rss_act->queue_num; i++) {
if (rss_act->queue[i] >= hw->alloc_rss_size)
return rte_flow_error_set(error, EINVAL,
RTE_FLOW_ERROR_TYPE_ACTION_CONF,
NULL,
"queue id must be less than queue number allocated to a TC");
}
memcpy(rss_conf->queue, rss_act->queue,
rss_act->queue_num * sizeof(rss_conf->queue[0]));
rss_conf->conf.queue = rss_conf->queue;
rss_conf->conf.queue_num = rss_act->queue_num;
return 0;
}
static int
hns3_flow_get_hw_pctype(struct hns3_hw *hw,
const struct rte_flow_action_rss *rss_act,
const struct hns3_hash_map_info *map,
struct hns3_flow_rss_conf *rss_conf,
struct rte_flow_error *error)
{
uint64_t l3l4_src_dst, l3l4_refine, left_types;
if (rss_act->types == 0) {
/* Disable RSS hash of this packet type if types is zero. */
rss_conf->hw_pctypes |= map->hw_pctype;
return 0;
}
/*
* Can not have extra types except rss_pctype and l3l4_type in this map.
*/
left_types = ~map->rss_pctype & rss_act->types;
if (left_types & ~map->l3l4_types)
return rte_flow_error_set(error, EINVAL,
RTE_FLOW_ERROR_TYPE_ACTION_CONF, NULL,
"cannot set extra types.");
l3l4_src_dst = left_types;
/* L3/L4 SRC and DST shouldn't be specified at the same time. */
l3l4_refine = rte_eth_rss_hf_refine(l3l4_src_dst);
if (l3l4_refine != l3l4_src_dst)
return rte_flow_error_set(error, ENOTSUP,
RTE_FLOW_ERROR_TYPE_ACTION_CONF, NULL,
"cannot specify L3_SRC/DST_ONLY or L4_SRC/DST_ONLY at the same.");
if (!hns3_valid_ipv6_sctp_rss_types(hw, rss_act->types))
return rte_flow_error_set(error, ENOTSUP,
RTE_FLOW_ERROR_TYPE_ACTION_CONF, NULL,
"hardware doesn't support to use L4 src/dst to hash for IPV6-SCTP.");
rss_conf->hw_pctypes |= map->hw_pctype;
return 0;
}
static int
hns3_flow_parse_rss_types_by_ptype(struct hns3_hw *hw,
const struct rte_flow_action_rss *rss_act,
uint64_t pattern_type,
struct hns3_flow_rss_conf *rss_conf,
struct rte_flow_error *error)
{
const struct hns3_hash_map_info *map;
bool matched = false;
uint16_t i;
int ret;
for (i = 0; i < RTE_DIM(hash_map_table); i++) {
map = &hash_map_table[i];
if (map->pattern_type != pattern_type) {
/*
* If the target pattern type is already matched with
* the one before this pattern in the hash map table,
* no need to continue walk.
*/
if (matched)
break;
continue;
}
matched = true;
/*
* If pattern type is matched and the 'types' is zero, all packet flow
* types related to this pattern type disable RSS hash.
* Otherwise, RSS types must match the pattern type and cannot have no
* extra or unsupported types.
*/
if (rss_act->types != 0 && !(map->rss_pctype & rss_act->types))
continue;
ret = hns3_flow_get_hw_pctype(hw, rss_act, map, rss_conf, error);
if (ret != 0)
return ret;
}
if (rss_conf->hw_pctypes != 0)
return 0;
if (matched)
return rte_flow_error_set(error, ENOTSUP,
RTE_FLOW_ERROR_TYPE_ACTION_CONF,
NULL, "RSS types are unsupported");
return rte_flow_error_set(error, ENOTSUP,
RTE_FLOW_ERROR_TYPE_ACTION_CONF,
NULL, "Pattern specified is unsupported");
}
static uint64_t
hns3_flow_get_all_hw_pctypes(uint64_t types)
{
uint64_t hw_pctypes = 0;
uint16_t i;
for (i = 0; i < RTE_DIM(hash_map_table); i++) {
if (types & hash_map_table[i].rss_pctype)
hw_pctypes |= hash_map_table[i].hw_pctype;
}
return hw_pctypes;
}
static int
hns3_flow_parse_rss_types(struct hns3_hw *hw,
const struct rte_flow_action_rss *rss_act,
uint64_t pattern_type,
struct hns3_flow_rss_conf *rss_conf,
struct rte_flow_error *error)
{
rss_conf->conf.types = rss_act->types;
/* no pattern specified to set global RSS types. */
if (pattern_type == 0) {
if (!hns3_check_rss_types_valid(hw, rss_act->types))
return rte_flow_error_set(error, EINVAL,
RTE_FLOW_ERROR_TYPE_ACTION_CONF,
NULL, "RSS types is invalid.");
rss_conf->hw_pctypes =
hns3_flow_get_all_hw_pctypes(rss_act->types);
return 0;
}
return hns3_flow_parse_rss_types_by_ptype(hw, rss_act, pattern_type,
rss_conf, error);
}
static int
hns3_flow_parse_hash_global_conf(struct rte_eth_dev *dev,
const struct rte_flow_action_rss *rss_act,
struct hns3_flow_rss_conf *rss_conf,
struct rte_flow_error *error)
{
struct hns3_hw *hw = HNS3_DEV_PRIVATE_TO_HW(dev->data->dev_private);
int ret;
ret = hns3_flow_parse_hash_func(rss_act, rss_conf, error);
if (ret != 0)
return ret;
if (rss_act->queue_num > 0) {
ret = hns3_flow_parse_queues(hw, rss_act, rss_conf, error);
if (ret != 0)
return ret;
}
if (rss_act->key_len > 0) {
ret = hns3_flow_parse_hash_key(hw, rss_act, rss_conf, error);
if (ret != 0)
return ret;
}
return hns3_flow_parse_rss_types(hw, rss_act, rss_conf->pattern_type,
rss_conf, error);
}
static int
hns3_flow_parse_pattern_type(const struct rte_flow_item pattern[],
uint64_t *ptype, struct rte_flow_error *error)
{
enum rte_flow_item_type pre_type = RTE_FLOW_ITEM_TYPE_VOID;
const char *message = "Pattern specified isn't supported";
uint64_t item_hdr, pattern_hdrs = 0;
enum rte_flow_item_type cur_type;
for (; pattern->type != RTE_FLOW_ITEM_TYPE_END; pattern++) {
if (pattern->type == RTE_FLOW_ITEM_TYPE_VOID)
continue;
if (pattern->mask || pattern->spec || pattern->last) {
message = "Header info shouldn't be specified";
goto unsup;
}
/* Check the sub-item allowed by the previous item . */
if (pre_type >= RTE_DIM(hash_pattern_next_allow_items) ||
!(hash_pattern_next_allow_items[pre_type] &
BIT_ULL(pattern->type)))
goto unsup;
cur_type = pattern->type;
/* Unsupported for current type being greater than array size. */
if (cur_type >= RTE_DIM(hash_pattern_item_header))
goto unsup;
/* The value is zero, which means unsupported current header. */
item_hdr = hash_pattern_item_header[cur_type];
if (item_hdr == 0)
goto unsup;
/* Have duplicate pattern header. */
if (item_hdr & pattern_hdrs)
goto unsup;
pre_type = cur_type;
pattern_hdrs |= item_hdr;
}
if (pattern_hdrs != 0) {
*ptype = pattern_hdrs;
return 0;
}
unsup:
return rte_flow_error_set(error, ENOTSUP, RTE_FLOW_ERROR_TYPE_ITEM,
pattern, message);
}
static int
hns3_flow_parse_pattern_act(struct rte_eth_dev *dev,
const struct rte_flow_item pattern[],
const struct rte_flow_action_rss *rss_act,
struct hns3_flow_rss_conf *rss_conf,
struct rte_flow_error *error)
{
struct hns3_hw *hw = HNS3_DEV_PRIVATE_TO_HW(dev->data->dev_private);
int ret;
ret = hns3_flow_parse_hash_func(rss_act, rss_conf, error);
if (ret != 0)
return ret;
if (rss_act->key_len > 0) {
ret = hns3_flow_parse_hash_key(hw, rss_act, rss_conf, error);
if (ret != 0)
return ret;
}
if (rss_act->queue_num > 0) {
ret = hns3_flow_parse_queues(hw, rss_act, rss_conf, error);
if (ret != 0)
return ret;
}
ret = hns3_flow_parse_pattern_type(pattern, &rss_conf->pattern_type,
error);
if (ret != 0)
return ret;
ret = hns3_flow_parse_rss_types(hw, rss_act, rss_conf->pattern_type,
rss_conf, error);
if (ret != 0)
return ret;
if (rss_act->func != RTE_ETH_HASH_FUNCTION_DEFAULT ||
rss_act->key_len > 0 || rss_act->queue_num > 0)
hns3_warn(hw, "hash func, key and queues are global config, which work for all flow types. "
"Recommend: don't set them together with pattern.");
return 0;
}
static bool
hns3_rss_action_is_dup(struct hns3_hw *hw,
const struct hns3_flow_rss_conf *conf)
{
struct hns3_rss_conf_ele *filter;
TAILQ_FOREACH(filter, &hw->flow_rss_list, entries) {
if (conf->pattern_type != filter->filter_info.pattern_type)
continue;
if (hns3_action_rss_same(&filter->filter_info.conf, &conf->conf))
return true;
}
return false;
}
/*
* This function is used to parse rss action validation.
*/
static int
hns3_parse_rss_filter(struct rte_eth_dev *dev,
const struct rte_flow_item pattern[],
const struct rte_flow_action *actions,
struct hns3_flow_rss_conf *rss_conf,
struct rte_flow_error *error)
{
struct hns3_adapter *hns = dev->data->dev_private;
const struct rte_flow_action_rss *rss_act;
const struct rte_flow_action *act;
const struct rte_flow_item *pat;
struct hns3_hw *hw = &hns->hw;
uint32_t index = 0;
int ret;
NEXT_ITEM_OF_ACTION(act, actions, index);
if (actions[1].type != RTE_FLOW_ACTION_TYPE_END)
return rte_flow_error_set(error, EINVAL,
RTE_FLOW_ERROR_TYPE_ACTION,
&actions[1],
"Only support one action for RSS.");
rss_act = (const struct rte_flow_action_rss *)act->conf;
if (rss_act == NULL) {
return rte_flow_error_set(error, EINVAL,
RTE_FLOW_ERROR_TYPE_ACTION_CONF,
act, "lost RSS action configuration");
}
if (rss_act->level != 0)
return rte_flow_error_set(error, ENOTSUP,
RTE_FLOW_ERROR_TYPE_ACTION_CONF,
act,
"RSS level is not supported");
index = 0;
NEXT_ITEM_OF_PATTERN(pat, pattern, index);
if (pat[0].type == RTE_FLOW_ITEM_TYPE_END) {
rss_conf->pattern_type = 0;
ret = hns3_flow_parse_hash_global_conf(dev, rss_act,
rss_conf, error);
} else {
ret = hns3_flow_parse_pattern_act(dev, pat, rss_act,
rss_conf, error);
}
if (ret != 0)
return ret;
if (hns3_rss_action_is_dup(hw, rss_conf))
return rte_flow_error_set(error, EINVAL,
RTE_FLOW_ERROR_TYPE_ACTION_CONF,
act, "duplicate RSS rule");
return 0;
}
static int
hns3_update_indir_table(struct hns3_hw *hw,
const struct rte_flow_action_rss *conf, uint16_t num)
{
uint16_t indir_tbl[HNS3_RSS_IND_TBL_SIZE_MAX];
uint16_t j;
uint32_t i;
/* Fill in redirection table */
for (i = 0, j = 0; i < hw->rss_ind_tbl_size; i++, j++) {
j %= num;
if (conf->queue[j] >= hw->alloc_rss_size) {
hns3_err(hw, "queue id(%u) set to redirection table "
"exceeds queue number(%u) allocated to a TC.",
conf->queue[j], hw->alloc_rss_size);
return -EINVAL;
}
indir_tbl[i] = conf->queue[j];
}
return hns3_set_rss_indir_table(hw, indir_tbl, hw->rss_ind_tbl_size);
}
static uint64_t
hns3_flow_get_pctype_tuple_mask(uint64_t hw_pctype)
{
uint64_t tuple_mask = 0;
uint16_t i;
for (i = 0; i < RTE_DIM(hash_map_table); i++) {
if (hw_pctype == hash_map_table[i].hw_pctype) {
tuple_mask = hash_map_table[i].tuple_mask;
break;
}
}
return tuple_mask;
}
static int
hns3_flow_set_rss_ptype_tuple(struct hns3_hw *hw,
struct hns3_flow_rss_conf *rss_conf)
{
uint64_t old_tuple_fields, new_tuple_fields;
uint64_t hw_pctypes, tuples, tuple_mask = 0;
bool cfg_global_tuple;
int ret;
cfg_global_tuple = (rss_conf->pattern_type == 0);
if (!cfg_global_tuple) {
/*
* To ensure that different packets do not affect each other,
* we have to first read all tuple fields, and then only modify
* the tuples for the specified packet type.
*/
ret = hns3_get_rss_tuple_field(hw, &old_tuple_fields);
if (ret != 0)
return ret;
new_tuple_fields = old_tuple_fields;
hw_pctypes = rss_conf->hw_pctypes;
while (hw_pctypes > 0) {
uint32_t idx = rte_bsf64(hw_pctypes);
uint64_t pctype = BIT_ULL(idx);
tuple_mask = hns3_flow_get_pctype_tuple_mask(pctype);
tuples = hns3_rss_calc_tuple_filed(rss_conf->conf.types);
new_tuple_fields &= ~tuple_mask;
new_tuple_fields |= tuples;
hw_pctypes &= ~pctype;
}
} else {
new_tuple_fields =
hns3_rss_calc_tuple_filed(rss_conf->conf.types);
}
ret = hns3_set_rss_tuple_field(hw, new_tuple_fields);
if (ret != 0)
return ret;
if (!cfg_global_tuple)
hns3_info(hw, "RSS tuple fields changed from 0x%" PRIx64 " to 0x%" PRIx64,
old_tuple_fields, new_tuple_fields);
return 0;
}
static int
hns3_config_rss_filter(struct hns3_hw *hw,
struct hns3_flow_rss_conf *rss_conf)
{
struct rte_flow_action_rss *rss_act;
int ret;
rss_act = &rss_conf->conf;
if (rss_act->queue_num > 0) {
ret = hns3_update_indir_table(hw, rss_act, rss_act->queue_num);
if (ret) {
hns3_err(hw, "set queues action failed, ret = %d", ret);
return ret;
}
}
if (rss_act->key_len > 0 ||
rss_act->func != RTE_ETH_HASH_FUNCTION_DEFAULT) {
ret = hns3_update_rss_algo_key(hw, rss_act->func, rss_conf->key,
rss_act->key_len);
if (ret != 0) {
hns3_err(hw, "set func or hash key action failed, ret = %d",
ret);
return ret;
}
}
if (rss_conf->hw_pctypes > 0) {
ret = hns3_flow_set_rss_ptype_tuple(hw, rss_conf);
if (ret != 0) {
hns3_err(hw, "set types action failed, ret = %d", ret);
return ret;
}
}
return 0;
}
static int
hns3_clear_rss_filter(struct rte_eth_dev *dev)
{
struct hns3_adapter *hns = dev->data->dev_private;
struct hns3_rss_conf_ele *rss_filter_ptr;
struct hns3_hw *hw = &hns->hw;
rss_filter_ptr = TAILQ_FIRST(&hw->flow_rss_list);
while (rss_filter_ptr) {
TAILQ_REMOVE(&hw->flow_rss_list, rss_filter_ptr, entries);
rte_free(rss_filter_ptr);
rss_filter_ptr = TAILQ_FIRST(&hw->flow_rss_list);
}
return hns3_config_rss(hns);
}
static int
hns3_reconfig_all_rss_filter(struct hns3_hw *hw)
{
struct hns3_rss_conf_ele *filter;
uint32_t rule_no = 0;
int ret;
TAILQ_FOREACH(filter, &hw->flow_rss_list, entries) {
ret = hns3_config_rss_filter(hw, &filter->filter_info);
if (ret != 0) {
hns3_err(hw, "config %uth RSS filter failed, ret = %d",
rule_no, ret);
return ret;
}
rule_no++;
}
return 0;
}
static int
hns3_restore_rss_filter(struct hns3_hw *hw)
{
int ret;
pthread_mutex_lock(&hw->flows_lock);
ret = hns3_reconfig_all_rss_filter(hw);
pthread_mutex_unlock(&hw->flows_lock);
return ret;
}
int
hns3_restore_filter(struct hns3_adapter *hns)
{
struct hns3_hw *hw = &hns->hw;
int ret;
ret = hns3_restore_all_fdir_filter(hns);
if (ret != 0)
return ret;
return hns3_restore_rss_filter(hw);
}
static int
hns3_flow_args_check(const struct rte_flow_attr *attr,
const struct rte_flow_item pattern[],
const struct rte_flow_action actions[],
struct rte_flow_error *error)
{
if (pattern == NULL)
return rte_flow_error_set(error, EINVAL,
RTE_FLOW_ERROR_TYPE_ITEM_NUM,
NULL, "NULL pattern.");
if (actions == NULL)
return rte_flow_error_set(error, EINVAL,
RTE_FLOW_ERROR_TYPE_ACTION_NUM,
NULL, "NULL action.");
if (attr == NULL)
return rte_flow_error_set(error, EINVAL,
RTE_FLOW_ERROR_TYPE_ATTR,
NULL, "NULL attribute.");
return hns3_check_attr(attr, error);
}
/*
* Check if the flow rule is supported by hns3.
* It only checks the format. Don't guarantee the rule can be programmed into
* the HW. Because there can be no enough room for the rule.
*/
static int
hns3_flow_validate(struct rte_eth_dev *dev, const struct rte_flow_attr *attr,
const struct rte_flow_item pattern[],
const struct rte_flow_action actions[],
struct rte_flow_error *error,
struct hns3_filter_info *filter_info)
{
union hns3_filter_conf *conf;
int ret;
ret = hns3_flow_args_check(attr, pattern, actions, error);
if (ret)
return ret;
hns3_parse_filter_type(pattern, actions, filter_info);
conf = &filter_info->conf;
if (filter_info->type == RTE_ETH_FILTER_HASH)
return hns3_parse_rss_filter(dev, pattern, actions,
&conf->rss_conf, error);
return hns3_parse_fdir_filter(dev, pattern, actions,
&conf->fdir_conf, error);
}
static int
hns3_flow_rebuild_all_rss_filter(struct hns3_adapter *hns)
{
struct hns3_hw *hw = &hns->hw;
int ret;
ret = hns3_config_rss(hns);
if (ret != 0) {
hns3_err(hw, "restore original RSS configuration failed, ret = %d.",
ret);
return ret;
}
ret = hns3_reconfig_all_rss_filter(hw);
if (ret != 0)
hns3_err(hw, "rebuild all RSS filter failed, ret = %d.", ret);
return ret;
}
static int
hns3_flow_create_rss_rule(struct rte_eth_dev *dev,
struct hns3_flow_rss_conf *rss_conf,
struct rte_flow *flow)
{
struct hns3_hw *hw = HNS3_DEV_PRIVATE_TO_HW(dev->data->dev_private);
struct hns3_adapter *hns = HNS3_DEV_HW_TO_ADAPTER(hw);
struct hns3_rss_conf_ele *rss_filter_ptr;
struct hns3_flow_rss_conf *new_conf;
struct rte_flow_action_rss *rss_act;
int ret;
rss_filter_ptr = rte_zmalloc("hns3 rss filter",
sizeof(struct hns3_rss_conf_ele), 0);
if (rss_filter_ptr == NULL) {
hns3_err(hw, "failed to allocate hns3_rss_filter memory");
return -ENOMEM;
}
new_conf = &rss_filter_ptr->filter_info;
memcpy(new_conf, rss_conf, sizeof(*new_conf));
rss_act = &new_conf->conf;
if (rss_act->queue_num > 0)
new_conf->conf.queue = new_conf->queue;
/*
* There are two ways to deliver hash key action:
* 1> 'key_len' is greater than zero and 'key' isn't NULL.
* 2> 'key_len' is greater than zero, but 'key' is NULL.
* For case 2, we need to keep 'key' of the new_conf is NULL so as to
* inherit the configuration from user in case of failing to verify
* duplicate rule later.
*/
if (rss_act->key_len > 0 && rss_act->key != NULL)
new_conf->conf.key = new_conf->key;
ret = hns3_config_rss_filter(hw, new_conf);
if (ret != 0) {
rte_free(rss_filter_ptr);
(void)hns3_flow_rebuild_all_rss_filter(hns);
return ret;
}
TAILQ_INSERT_TAIL(&hw->flow_rss_list, rss_filter_ptr, entries);
flow->rule = rss_filter_ptr;
flow->filter_type = RTE_ETH_FILTER_HASH;
return 0;
}
static int
hns3_flow_create_fdir_rule(struct rte_eth_dev *dev,
struct hns3_fdir_rule *fdir_rule,
struct rte_flow_error *error,
struct rte_flow *flow)
{
struct hns3_hw *hw = HNS3_DEV_PRIVATE_TO_HW(dev->data->dev_private);
struct hns3_adapter *hns = HNS3_DEV_HW_TO_ADAPTER(hw);
struct hns3_fdir_rule_ele *fdir_rule_ptr;
int ret;
if (fdir_rule->flags & HNS3_RULE_FLAG_COUNTER) {
ret = hns3_counter_new(dev, 0,
fdir_rule->act_cnt.id, error);
if (ret != 0)
return ret;
flow->counter_id = fdir_rule->act_cnt.id;
}
fdir_rule_ptr = rte_zmalloc("hns3 fdir rule",
sizeof(struct hns3_fdir_rule_ele), 0);
if (fdir_rule_ptr == NULL) {
hns3_err(hw, "failed to allocate fdir_rule memory.");
ret = -ENOMEM;
goto err_malloc;
}
/*
* After all the preceding tasks are successfully configured, configure
* rules to the hardware to simplify the rollback of rules in the
* hardware.
*/
ret = hns3_fdir_filter_program(hns, fdir_rule, false);
if (ret != 0)
goto err_fdir_filter;
memcpy(&fdir_rule_ptr->fdir_conf, fdir_rule,
sizeof(struct hns3_fdir_rule));
TAILQ_INSERT_TAIL(&hw->flow_fdir_list, fdir_rule_ptr, entries);
flow->rule = fdir_rule_ptr;
flow->filter_type = RTE_ETH_FILTER_FDIR;
return 0;
err_fdir_filter:
rte_free(fdir_rule_ptr);
err_malloc:
if (fdir_rule->flags & HNS3_RULE_FLAG_COUNTER)
hns3_counter_release(dev, fdir_rule->act_cnt.id);
return ret;
}
/*
* Create or destroy a flow rule.
* Theorically one rule can match more than one filters.
* We will let it use the filter which it hit first.
* So, the sequence matters.
*/
static struct rte_flow *
hns3_flow_create(struct rte_eth_dev *dev, const struct rte_flow_attr *attr,
const struct rte_flow_item pattern[],
const struct rte_flow_action actions[],
struct rte_flow_error *error)
{
struct hns3_adapter *hns = dev->data->dev_private;
struct hns3_filter_info filter_info = {0};
struct hns3_flow_mem *flow_node;
struct hns3_hw *hw = &hns->hw;
union hns3_filter_conf *conf;
struct rte_flow *flow;
int ret;
ret = hns3_flow_validate(dev, attr, pattern, actions, error,
&filter_info);
if (ret)
return NULL;
flow = rte_zmalloc("hns3 flow", sizeof(struct rte_flow), 0);
if (flow == NULL) {
rte_flow_error_set(error, ENOMEM, RTE_FLOW_ERROR_TYPE_HANDLE,
NULL, "Failed to allocate flow memory");
return NULL;
}
flow_node = rte_zmalloc("hns3 flow node",
sizeof(struct hns3_flow_mem), 0);
if (flow_node == NULL) {
rte_flow_error_set(error, ENOMEM, RTE_FLOW_ERROR_TYPE_HANDLE,
NULL, "Failed to allocate flow list memory");
rte_free(flow);
return NULL;
}
flow_node->flow = flow;
conf = &filter_info.conf;
TAILQ_INSERT_TAIL(&hw->flow_list, flow_node, entries);
if (filter_info.type == RTE_ETH_FILTER_HASH)
ret = hns3_flow_create_rss_rule(dev, &conf->rss_conf, flow);
else
ret = hns3_flow_create_fdir_rule(dev, &conf->fdir_conf,
error, flow);
if (ret == 0)
return flow;
rte_flow_error_set(error, -ret, RTE_FLOW_ERROR_TYPE_HANDLE, NULL,
"Failed to create flow");
TAILQ_REMOVE(&hw->flow_list, flow_node, entries);
rte_free(flow_node);
rte_free(flow);
return NULL;
}
/* Destroy a flow rule on hns3. */
static int
hns3_flow_destroy(struct rte_eth_dev *dev, struct rte_flow *flow,
struct rte_flow_error *error)
{
struct hns3_adapter *hns = dev->data->dev_private;
struct hns3_fdir_rule_ele *fdir_rule_ptr;
struct hns3_rss_conf_ele *rss_filter_ptr;
struct hns3_flow_mem *flow_node;
enum rte_filter_type filter_type;
struct hns3_fdir_rule fdir_rule;
struct hns3_hw *hw = &hns->hw;
int ret;
if (flow == NULL)
return rte_flow_error_set(error, EINVAL,
RTE_FLOW_ERROR_TYPE_HANDLE,
flow, "Flow is NULL");
filter_type = flow->filter_type;
switch (filter_type) {
case RTE_ETH_FILTER_FDIR:
fdir_rule_ptr = (struct hns3_fdir_rule_ele *)flow->rule;
memcpy(&fdir_rule, &fdir_rule_ptr->fdir_conf,
sizeof(struct hns3_fdir_rule));
ret = hns3_fdir_filter_program(hns, &fdir_rule, true);
if (ret)
return rte_flow_error_set(error, EIO,
RTE_FLOW_ERROR_TYPE_HANDLE,
flow,
"Destroy FDIR fail.Try again");
if (fdir_rule.flags & HNS3_RULE_FLAG_COUNTER)
hns3_counter_release(dev, fdir_rule.act_cnt.id);
TAILQ_REMOVE(&hw->flow_fdir_list, fdir_rule_ptr, entries);
rte_free(fdir_rule_ptr);
fdir_rule_ptr = NULL;
break;
case RTE_ETH_FILTER_HASH:
rss_filter_ptr = (struct hns3_rss_conf_ele *)flow->rule;
TAILQ_REMOVE(&hw->flow_rss_list, rss_filter_ptr, entries);
rte_free(rss_filter_ptr);
rss_filter_ptr = NULL;
(void)hns3_flow_rebuild_all_rss_filter(hns);
break;
default:
return rte_flow_error_set(error, EINVAL,
RTE_FLOW_ERROR_TYPE_HANDLE, flow,
"Unsupported filter type");
}
TAILQ_FOREACH(flow_node, &hw->flow_list, entries) {
if (flow_node->flow == flow) {
TAILQ_REMOVE(&hw->flow_list, flow_node, entries);
rte_free(flow_node);
flow_node = NULL;
break;
}
}
rte_free(flow);
flow = NULL;
return 0;
}
/* Destroy all flow rules associated with a port on hns3. */
static int
hns3_flow_flush(struct rte_eth_dev *dev, struct rte_flow_error *error)
{
struct hns3_adapter *hns = dev->data->dev_private;
int ret;
/* FDIR is available only in PF driver */
if (!hns->is_vf) {
ret = hns3_clear_all_fdir_filter(hns);
if (ret) {
rte_flow_error_set(error, ret,
RTE_FLOW_ERROR_TYPE_HANDLE,
NULL, "Failed to flush rule");
return ret;
}
hns3_counter_flush(dev);
}
ret = hns3_clear_rss_filter(dev);
if (ret) {
rte_flow_error_set(error, ret, RTE_FLOW_ERROR_TYPE_HANDLE,
NULL, "Failed to flush rss filter");
return ret;
}
hns3_filterlist_flush(dev);
return 0;
}
/* Query an existing flow rule. */
static int
hns3_flow_query(struct rte_eth_dev *dev, struct rte_flow *flow,
const struct rte_flow_action *actions, void *data,
struct rte_flow_error *error)
{
struct rte_flow_action_rss *rss_conf;
struct hns3_rss_conf_ele *rss_rule;
struct rte_flow_query_count *qc;
int ret;
if (!flow->rule)
return rte_flow_error_set(error, EINVAL,
RTE_FLOW_ERROR_TYPE_HANDLE, NULL, "invalid rule");
for (; actions->type != RTE_FLOW_ACTION_TYPE_END; actions++) {
switch (actions->type) {
case RTE_FLOW_ACTION_TYPE_VOID:
break;
case RTE_FLOW_ACTION_TYPE_COUNT:
qc = (struct rte_flow_query_count *)data;
ret = hns3_counter_query(dev, flow, qc, error);
if (ret)
return ret;
break;
case RTE_FLOW_ACTION_TYPE_RSS:
if (flow->filter_type != RTE_ETH_FILTER_HASH) {
return rte_flow_error_set(error, ENOTSUP,
RTE_FLOW_ERROR_TYPE_ACTION,
actions, "action is not supported");
}
rss_conf = (struct rte_flow_action_rss *)data;
rss_rule = (struct hns3_rss_conf_ele *)flow->rule;
rte_memcpy(rss_conf, &rss_rule->filter_info.conf,
sizeof(struct rte_flow_action_rss));
break;
default:
return rte_flow_error_set(error, ENOTSUP,
RTE_FLOW_ERROR_TYPE_ACTION,
actions, "action is not supported");
}
}
return 0;
}
static int
hns3_flow_validate_wrap(struct rte_eth_dev *dev,
const struct rte_flow_attr *attr,
const struct rte_flow_item pattern[],
const struct rte_flow_action actions[],
struct rte_flow_error *error)
{
struct hns3_hw *hw = HNS3_DEV_PRIVATE_TO_HW(dev->data->dev_private);
struct hns3_filter_info filter_info = {0};
int ret;
pthread_mutex_lock(&hw->flows_lock);
ret = hns3_flow_validate(dev, attr, pattern, actions, error,
&filter_info);
pthread_mutex_unlock(&hw->flows_lock);
return ret;
}
static struct rte_flow *
hns3_flow_create_wrap(struct rte_eth_dev *dev, const struct rte_flow_attr *attr,
const struct rte_flow_item pattern[],
const struct rte_flow_action actions[],
struct rte_flow_error *error)
{
struct hns3_hw *hw = HNS3_DEV_PRIVATE_TO_HW(dev->data->dev_private);
struct rte_flow *flow;
pthread_mutex_lock(&hw->flows_lock);
flow = hns3_flow_create(dev, attr, pattern, actions, error);
pthread_mutex_unlock(&hw->flows_lock);
return flow;
}
static int
hns3_flow_destroy_wrap(struct rte_eth_dev *dev, struct rte_flow *flow,
struct rte_flow_error *error)
{
struct hns3_hw *hw = HNS3_DEV_PRIVATE_TO_HW(dev->data->dev_private);
int ret;
pthread_mutex_lock(&hw->flows_lock);
ret = hns3_flow_destroy(dev, flow, error);
pthread_mutex_unlock(&hw->flows_lock);
return ret;
}
static int
hns3_flow_flush_wrap(struct rte_eth_dev *dev, struct rte_flow_error *error)
{
struct hns3_hw *hw = HNS3_DEV_PRIVATE_TO_HW(dev->data->dev_private);
int ret;
pthread_mutex_lock(&hw->flows_lock);
ret = hns3_flow_flush(dev, error);
pthread_mutex_unlock(&hw->flows_lock);
return ret;
}
static int
hns3_flow_query_wrap(struct rte_eth_dev *dev, struct rte_flow *flow,
const struct rte_flow_action *actions, void *data,
struct rte_flow_error *error)
{
struct hns3_hw *hw = HNS3_DEV_PRIVATE_TO_HW(dev->data->dev_private);
int ret;
pthread_mutex_lock(&hw->flows_lock);
ret = hns3_flow_query(dev, flow, actions, data, error);
pthread_mutex_unlock(&hw->flows_lock);
return ret;
}
static const struct rte_flow_ops hns3_flow_ops = {
.validate = hns3_flow_validate_wrap,
.create = hns3_flow_create_wrap,
.destroy = hns3_flow_destroy_wrap,
.flush = hns3_flow_flush_wrap,
.query = hns3_flow_query_wrap,
.isolate = NULL,
};
int
hns3_dev_flow_ops_get(struct rte_eth_dev *dev,
const struct rte_flow_ops **ops)
{
struct hns3_hw *hw;
hw = HNS3_DEV_PRIVATE_TO_HW(dev->data->dev_private);
if (hw->adapter_state >= HNS3_NIC_CLOSED)
return -ENODEV;
*ops = &hns3_flow_ops;
return 0;
}
void
hns3_flow_init(struct rte_eth_dev *dev)
{
struct hns3_hw *hw = HNS3_DEV_PRIVATE_TO_HW(dev->data->dev_private);
pthread_mutexattr_t attr;
if (rte_eal_process_type() != RTE_PROC_PRIMARY)
return;
pthread_mutexattr_init(&attr);
pthread_mutexattr_setpshared(&attr, PTHREAD_PROCESS_SHARED);
pthread_mutex_init(&hw->flows_lock, &attr);
dev->data->dev_flags |= RTE_ETH_DEV_FLOW_OPS_THREAD_SAFE;
TAILQ_INIT(&hw->flow_fdir_list);
TAILQ_INIT(&hw->flow_rss_list);
TAILQ_INIT(&hw->flow_list);
}
void
hns3_flow_uninit(struct rte_eth_dev *dev)
{
struct rte_flow_error error;
if (rte_eal_process_type() == RTE_PROC_PRIMARY)
hns3_flow_flush_wrap(dev, &error);
}