f-stack/dpdk/drivers/net/hns3/hns3_dcb.c

1830 lines
44 KiB
C

/* SPDX-License-Identifier: BSD-3-Clause
* Copyright(c) 2018-2021 HiSilicon Limited.
*/
#include <rte_io.h>
#include <rte_ethdev.h>
#include "hns3_logs.h"
#include "hns3_ethdev.h"
#include "hns3_dcb.h"
#define HNS3_SHAPER_BS_U_DEF 5
#define HNS3_SHAPER_BS_S_DEF 20
#define BW_MAX_PERCENT 100
/*
* hns3_shaper_para_calc: calculate ir parameter for the shaper
* @ir: Rate to be config, its unit is Mbps
* @shaper_level: the shaper level. eg: port, pg, priority, queueset
* @shaper_para: shaper parameter of IR shaper
*
* the formula:
*
* IR_b * (2 ^ IR_u) * 8
* IR(Mbps) = ------------------------- * CLOCK(1000Mbps)
* Tick * (2 ^ IR_s)
*
* @return: 0: calculate successful, negative: fail
*/
static int
hns3_shaper_para_calc(struct hns3_hw *hw, uint32_t ir, uint8_t shaper_level,
struct hns3_shaper_parameter *shaper_para)
{
#define SHAPER_DEFAULT_IR_B 126
#define DIVISOR_CLK (1000 * 8)
#define DIVISOR_IR_B_126 (126 * DIVISOR_CLK)
const uint16_t tick_array[HNS3_SHAPER_LVL_CNT] = {
6 * 256, /* Priority level */
6 * 32, /* Priority group level */
6 * 8, /* Port level */
6 * 256 /* Qset level */
};
uint8_t ir_u_calc = 0;
uint8_t ir_s_calc = 0;
uint32_t denominator;
uint32_t ir_calc;
uint32_t tick;
/* Calc tick */
if (shaper_level >= HNS3_SHAPER_LVL_CNT) {
hns3_err(hw,
"shaper_level(%u) is greater than HNS3_SHAPER_LVL_CNT(%d)",
shaper_level, HNS3_SHAPER_LVL_CNT);
return -EINVAL;
}
if (ir > hw->max_tm_rate) {
hns3_err(hw, "rate(%u) exceeds the max rate(%u) driver "
"supported.", ir, hw->max_tm_rate);
return -EINVAL;
}
tick = tick_array[shaper_level];
/*
* Calc the speed if ir_b = 126, ir_u = 0 and ir_s = 0
* the formula is changed to:
* 126 * 1 * 8
* ir_calc = ---------------- * 1000
* tick * 1
*/
ir_calc = (DIVISOR_IR_B_126 + (tick >> 1) - 1) / tick;
if (ir_calc == ir) {
shaper_para->ir_b = SHAPER_DEFAULT_IR_B;
} else if (ir_calc > ir) {
/* Increasing the denominator to select ir_s value */
while (ir_calc >= ir && ir) {
ir_s_calc++;
ir_calc = DIVISOR_IR_B_126 / (tick * (1 << ir_s_calc));
}
shaper_para->ir_b = (ir * tick * (1 << ir_s_calc) +
(DIVISOR_CLK >> 1)) / DIVISOR_CLK;
} else {
/*
* Increasing the numerator to select ir_u value. ir_u_calc will
* get maximum value when ir_calc is minimum and ir is maximum.
* ir_calc gets minimum value when tick is the maximum value.
* At the same time, value of ir_u_calc can only be increased up
* to eight after the while loop if the value of ir is equal
* to hw->max_tm_rate.
*/
uint32_t numerator;
do {
ir_u_calc++;
numerator = DIVISOR_IR_B_126 * (1 << ir_u_calc);
ir_calc = (numerator + (tick >> 1)) / tick;
} while (ir_calc < ir);
if (ir_calc == ir) {
shaper_para->ir_b = SHAPER_DEFAULT_IR_B;
} else {
--ir_u_calc;
/*
* The maximum value of ir_u_calc in this branch is
* seven in all cases. Thus, value of denominator can
* not be zero here.
*/
denominator = DIVISOR_CLK * (1 << ir_u_calc);
shaper_para->ir_b =
(ir * tick + (denominator >> 1)) / denominator;
}
}
shaper_para->ir_u = ir_u_calc;
shaper_para->ir_s = ir_s_calc;
return 0;
}
static int
hns3_fill_pri_array(struct hns3_hw *hw, uint8_t *pri, uint8_t pri_id)
{
#define HNS3_HALF_BYTE_BIT_OFFSET 4
uint8_t tc = hw->dcb_info.prio_tc[pri_id];
if (tc >= hw->dcb_info.num_tc)
return -EINVAL;
/*
* The register for priority has four bytes, the first bytes includes
* priority0 and priority1, the higher 4bit stands for priority1
* while the lower 4bit stands for priority0, as below:
* first byte: | pri_1 | pri_0 |
* second byte: | pri_3 | pri_2 |
* third byte: | pri_5 | pri_4 |
* fourth byte: | pri_7 | pri_6 |
*/
pri[pri_id >> 1] |= tc << ((pri_id & 1) * HNS3_HALF_BYTE_BIT_OFFSET);
return 0;
}
static int
hns3_up_to_tc_map(struct hns3_hw *hw)
{
struct hns3_cmd_desc desc;
uint8_t *pri = (uint8_t *)desc.data;
uint8_t pri_id;
int ret;
hns3_cmd_setup_basic_desc(&desc, HNS3_OPC_PRI_TO_TC_MAPPING, false);
for (pri_id = 0; pri_id < HNS3_MAX_USER_PRIO; pri_id++) {
ret = hns3_fill_pri_array(hw, pri, pri_id);
if (ret)
return ret;
}
return hns3_cmd_send(hw, &desc, 1);
}
static int
hns3_pg_to_pri_map_cfg(struct hns3_hw *hw, uint8_t pg_id, uint8_t pri_bit_map)
{
struct hns3_pg_to_pri_link_cmd *map;
struct hns3_cmd_desc desc;
hns3_cmd_setup_basic_desc(&desc, HNS3_OPC_TM_PG_TO_PRI_LINK, false);
map = (struct hns3_pg_to_pri_link_cmd *)desc.data;
map->pg_id = pg_id;
map->pri_bit_map = pri_bit_map;
return hns3_cmd_send(hw, &desc, 1);
}
static int
hns3_pg_to_pri_map(struct hns3_hw *hw)
{
struct hns3_adapter *hns = HNS3_DEV_HW_TO_ADAPTER(hw);
struct hns3_pf *pf = &hns->pf;
struct hns3_pg_info *pg_info;
int ret, i;
if (pf->tx_sch_mode != HNS3_FLAG_TC_BASE_SCH_MODE)
return -EINVAL;
for (i = 0; i < hw->dcb_info.num_pg; i++) {
/* Cfg pg to priority mapping */
pg_info = &hw->dcb_info.pg_info[i];
ret = hns3_pg_to_pri_map_cfg(hw, i, pg_info->tc_bit_map);
if (ret)
return ret;
}
return 0;
}
static int
hns3_qs_to_pri_map_cfg(struct hns3_hw *hw, uint16_t qs_id, uint8_t pri)
{
struct hns3_qs_to_pri_link_cmd *map;
struct hns3_cmd_desc desc;
hns3_cmd_setup_basic_desc(&desc, HNS3_OPC_TM_QS_TO_PRI_LINK, false);
map = (struct hns3_qs_to_pri_link_cmd *)desc.data;
map->qs_id = rte_cpu_to_le_16(qs_id);
map->priority = pri;
map->link_vld = HNS3_DCB_QS_PRI_LINK_VLD_MSK;
return hns3_cmd_send(hw, &desc, 1);
}
static int
hns3_dcb_qs_weight_cfg(struct hns3_hw *hw, uint16_t qs_id, uint8_t dwrr)
{
struct hns3_qs_weight_cmd *weight;
struct hns3_cmd_desc desc;
hns3_cmd_setup_basic_desc(&desc, HNS3_OPC_TM_QS_WEIGHT, false);
weight = (struct hns3_qs_weight_cmd *)desc.data;
weight->qs_id = rte_cpu_to_le_16(qs_id);
weight->dwrr = dwrr;
return hns3_cmd_send(hw, &desc, 1);
}
static int
hns3_dcb_ets_tc_dwrr_cfg(struct hns3_hw *hw)
{
#define DEFAULT_TC_OFFSET 14
struct hns3_ets_tc_weight_cmd *ets_weight;
struct hns3_pg_info *pg_info;
struct hns3_cmd_desc desc;
uint8_t i;
hns3_cmd_setup_basic_desc(&desc, HNS3_OPC_ETS_TC_WEIGHT, false);
ets_weight = (struct hns3_ets_tc_weight_cmd *)desc.data;
for (i = 0; i < HNS3_MAX_TC_NUM; i++) {
pg_info = &hw->dcb_info.pg_info[hw->dcb_info.tc_info[i].pgid];
ets_weight->tc_weight[i] = pg_info->tc_dwrr[i];
}
ets_weight->weight_offset = DEFAULT_TC_OFFSET;
return hns3_cmd_send(hw, &desc, 1);
}
static int
hns3_dcb_pri_weight_cfg(struct hns3_hw *hw, uint8_t pri_id, uint8_t dwrr)
{
struct hns3_priority_weight_cmd *weight;
struct hns3_cmd_desc desc;
hns3_cmd_setup_basic_desc(&desc, HNS3_OPC_TM_PRI_WEIGHT, false);
weight = (struct hns3_priority_weight_cmd *)desc.data;
weight->pri_id = pri_id;
weight->dwrr = dwrr;
return hns3_cmd_send(hw, &desc, 1);
}
static int
hns3_dcb_pg_weight_cfg(struct hns3_hw *hw, uint8_t pg_id, uint8_t dwrr)
{
struct hns3_pg_weight_cmd *weight;
struct hns3_cmd_desc desc;
hns3_cmd_setup_basic_desc(&desc, HNS3_OPC_TM_PG_WEIGHT, false);
weight = (struct hns3_pg_weight_cmd *)desc.data;
weight->pg_id = pg_id;
weight->dwrr = dwrr;
return hns3_cmd_send(hw, &desc, 1);
}
static int
hns3_dcb_pg_schd_mode_cfg(struct hns3_hw *hw, uint8_t pg_id)
{
struct hns3_cmd_desc desc;
hns3_cmd_setup_basic_desc(&desc, HNS3_OPC_TM_PG_SCH_MODE_CFG, false);
if (hw->dcb_info.pg_info[pg_id].pg_sch_mode == HNS3_SCH_MODE_DWRR)
desc.data[1] = rte_cpu_to_le_32(HNS3_DCB_TX_SCHD_DWRR_MSK);
else
desc.data[1] = 0;
desc.data[0] = rte_cpu_to_le_32(pg_id);
return hns3_cmd_send(hw, &desc, 1);
}
static uint32_t
hns3_dcb_get_shapping_para(uint8_t ir_b, uint8_t ir_u, uint8_t ir_s,
uint8_t bs_b, uint8_t bs_s)
{
uint32_t shapping_para = 0;
/* If ir_b is zero it means IR is 0Mbps, return zero of shapping_para */
if (ir_b == 0)
return shapping_para;
hns3_dcb_set_field(shapping_para, IR_B, ir_b);
hns3_dcb_set_field(shapping_para, IR_U, ir_u);
hns3_dcb_set_field(shapping_para, IR_S, ir_s);
hns3_dcb_set_field(shapping_para, BS_B, bs_b);
hns3_dcb_set_field(shapping_para, BS_S, bs_s);
return shapping_para;
}
static int
hns3_dcb_port_shaper_cfg(struct hns3_hw *hw, uint32_t speed)
{
struct hns3_port_shapping_cmd *shap_cfg_cmd;
struct hns3_shaper_parameter shaper_parameter;
uint32_t shapping_para;
uint32_t ir_u, ir_b, ir_s;
struct hns3_cmd_desc desc;
int ret;
ret = hns3_shaper_para_calc(hw, speed,
HNS3_SHAPER_LVL_PORT, &shaper_parameter);
if (ret) {
hns3_err(hw, "calculate shaper parameter failed: %d", ret);
return ret;
}
hns3_cmd_setup_basic_desc(&desc, HNS3_OPC_TM_PORT_SHAPPING, false);
shap_cfg_cmd = (struct hns3_port_shapping_cmd *)desc.data;
ir_b = shaper_parameter.ir_b;
ir_u = shaper_parameter.ir_u;
ir_s = shaper_parameter.ir_s;
shapping_para = hns3_dcb_get_shapping_para(ir_b, ir_u, ir_s,
HNS3_SHAPER_BS_U_DEF,
HNS3_SHAPER_BS_S_DEF);
shap_cfg_cmd->port_shapping_para = rte_cpu_to_le_32(shapping_para);
/*
* Configure the port_rate and set bit HNS3_TM_RATE_VLD_B of flag
* field in hns3_port_shapping_cmd to require firmware to recalculate
* shapping parameters. And whether the parameters are recalculated
* depends on the firmware version. But driver still needs to
* calculate it and configure to firmware for better compatibility.
*/
shap_cfg_cmd->port_rate = rte_cpu_to_le_32(speed);
hns3_set_bit(shap_cfg_cmd->flag, HNS3_TM_RATE_VLD_B, 1);
return hns3_cmd_send(hw, &desc, 1);
}
int
hns3_port_shaper_update(struct hns3_hw *hw, uint32_t speed)
{
int ret;
ret = hns3_dcb_port_shaper_cfg(hw, speed);
if (ret)
hns3_err(hw, "configure port shappering failed: ret = %d", ret);
return ret;
}
static int
hns3_dcb_pg_shapping_cfg(struct hns3_hw *hw, enum hns3_shap_bucket bucket,
uint8_t pg_id, uint32_t shapping_para, uint32_t rate)
{
struct hns3_pg_shapping_cmd *shap_cfg_cmd;
enum hns3_opcode_type opcode;
struct hns3_cmd_desc desc;
opcode = bucket ? HNS3_OPC_TM_PG_P_SHAPPING :
HNS3_OPC_TM_PG_C_SHAPPING;
hns3_cmd_setup_basic_desc(&desc, opcode, false);
shap_cfg_cmd = (struct hns3_pg_shapping_cmd *)desc.data;
shap_cfg_cmd->pg_id = pg_id;
shap_cfg_cmd->pg_shapping_para = rte_cpu_to_le_32(shapping_para);
/*
* Configure the pg_rate and set bit HNS3_TM_RATE_VLD_B of flag field in
* hns3_pg_shapping_cmd to require firmware to recalculate shapping
* parameters. And whether parameters are recalculated depends on
* the firmware version. But driver still needs to calculate it and
* configure to firmware for better compatibility.
*/
shap_cfg_cmd->pg_rate = rte_cpu_to_le_32(rate);
hns3_set_bit(shap_cfg_cmd->flag, HNS3_TM_RATE_VLD_B, 1);
return hns3_cmd_send(hw, &desc, 1);
}
static int
hns3_pg_shaper_rate_cfg(struct hns3_hw *hw, uint8_t pg_id, uint32_t rate)
{
struct hns3_shaper_parameter shaper_parameter;
uint32_t ir_u, ir_b, ir_s;
uint32_t shaper_para;
int ret;
/* Calc shaper para */
ret = hns3_shaper_para_calc(hw, rate, HNS3_SHAPER_LVL_PG,
&shaper_parameter);
if (ret) {
hns3_err(hw, "calculate shaper parameter fail, ret = %d.",
ret);
return ret;
}
shaper_para = hns3_dcb_get_shapping_para(0, 0, 0,
HNS3_SHAPER_BS_U_DEF,
HNS3_SHAPER_BS_S_DEF);
ret = hns3_dcb_pg_shapping_cfg(hw, HNS3_DCB_SHAP_C_BUCKET, pg_id,
shaper_para, rate);
if (ret) {
hns3_err(hw, "config PG CIR shaper parameter fail, ret = %d.",
ret);
return ret;
}
ir_b = shaper_parameter.ir_b;
ir_u = shaper_parameter.ir_u;
ir_s = shaper_parameter.ir_s;
shaper_para = hns3_dcb_get_shapping_para(ir_b, ir_u, ir_s,
HNS3_SHAPER_BS_U_DEF,
HNS3_SHAPER_BS_S_DEF);
ret = hns3_dcb_pg_shapping_cfg(hw, HNS3_DCB_SHAP_P_BUCKET, pg_id,
shaper_para, rate);
if (ret) {
hns3_err(hw, "config PG PIR shaper parameter fail, ret = %d.",
ret);
return ret;
}
return 0;
}
static int
hns3_dcb_pg_shaper_cfg(struct hns3_hw *hw)
{
struct hns3_pf *pf = HNS3_DEV_HW_TO_PF(hw);
uint32_t rate;
uint8_t i;
int ret;
/* Cfg pg schd */
if (pf->tx_sch_mode != HNS3_FLAG_TC_BASE_SCH_MODE)
return -EINVAL;
/* Pg to pri */
for (i = 0; i < hw->dcb_info.num_pg; i++) {
rate = hw->dcb_info.pg_info[i].bw_limit;
ret = hns3_pg_shaper_rate_cfg(hw, i, rate);
if (ret)
return ret;
}
return 0;
}
static int
hns3_dcb_qs_schd_mode_cfg(struct hns3_hw *hw, uint16_t qs_id, uint8_t mode)
{
struct hns3_cmd_desc desc;
hns3_cmd_setup_basic_desc(&desc, HNS3_OPC_TM_QS_SCH_MODE_CFG, false);
if (mode == HNS3_SCH_MODE_DWRR)
desc.data[1] = rte_cpu_to_le_32(HNS3_DCB_TX_SCHD_DWRR_MSK);
else
desc.data[1] = 0;
desc.data[0] = rte_cpu_to_le_32(qs_id);
return hns3_cmd_send(hw, &desc, 1);
}
static int
hns3_dcb_pri_schd_mode_cfg(struct hns3_hw *hw, uint8_t pri_id)
{
struct hns3_cmd_desc desc;
hns3_cmd_setup_basic_desc(&desc, HNS3_OPC_TM_PRI_SCH_MODE_CFG, false);
if (hw->dcb_info.tc_info[pri_id].tc_sch_mode == HNS3_SCH_MODE_DWRR)
desc.data[1] = rte_cpu_to_le_32(HNS3_DCB_TX_SCHD_DWRR_MSK);
else
desc.data[1] = 0;
desc.data[0] = rte_cpu_to_le_32(pri_id);
return hns3_cmd_send(hw, &desc, 1);
}
static int
hns3_dcb_pri_shapping_cfg(struct hns3_hw *hw, enum hns3_shap_bucket bucket,
uint8_t pri_id, uint32_t shapping_para, uint32_t rate)
{
struct hns3_pri_shapping_cmd *shap_cfg_cmd;
enum hns3_opcode_type opcode;
struct hns3_cmd_desc desc;
opcode = bucket ? HNS3_OPC_TM_PRI_P_SHAPPING :
HNS3_OPC_TM_PRI_C_SHAPPING;
hns3_cmd_setup_basic_desc(&desc, opcode, false);
shap_cfg_cmd = (struct hns3_pri_shapping_cmd *)desc.data;
shap_cfg_cmd->pri_id = pri_id;
shap_cfg_cmd->pri_shapping_para = rte_cpu_to_le_32(shapping_para);
/*
* Configure the pri_rate and set bit HNS3_TM_RATE_VLD_B of flag
* field in hns3_pri_shapping_cmd to require firmware to recalculate
* shapping parameters. And whether the parameters are recalculated
* depends on the firmware version. But driver still needs to
* calculate it and configure to firmware for better compatibility.
*/
shap_cfg_cmd->pri_rate = rte_cpu_to_le_32(rate);
hns3_set_bit(shap_cfg_cmd->flag, HNS3_TM_RATE_VLD_B, 1);
return hns3_cmd_send(hw, &desc, 1);
}
static int
hns3_pri_shaper_rate_cfg(struct hns3_hw *hw, uint8_t tc_no, uint32_t rate)
{
struct hns3_shaper_parameter shaper_parameter;
uint32_t ir_u, ir_b, ir_s;
uint32_t shaper_para;
int ret;
ret = hns3_shaper_para_calc(hw, rate, HNS3_SHAPER_LVL_PRI,
&shaper_parameter);
if (ret) {
hns3_err(hw, "calculate shaper parameter failed: %d.",
ret);
return ret;
}
shaper_para = hns3_dcb_get_shapping_para(0, 0, 0,
HNS3_SHAPER_BS_U_DEF,
HNS3_SHAPER_BS_S_DEF);
ret = hns3_dcb_pri_shapping_cfg(hw, HNS3_DCB_SHAP_C_BUCKET, tc_no,
shaper_para, rate);
if (ret) {
hns3_err(hw,
"config priority CIR shaper parameter failed: %d.",
ret);
return ret;
}
ir_b = shaper_parameter.ir_b;
ir_u = shaper_parameter.ir_u;
ir_s = shaper_parameter.ir_s;
shaper_para = hns3_dcb_get_shapping_para(ir_b, ir_u, ir_s,
HNS3_SHAPER_BS_U_DEF,
HNS3_SHAPER_BS_S_DEF);
ret = hns3_dcb_pri_shapping_cfg(hw, HNS3_DCB_SHAP_P_BUCKET, tc_no,
shaper_para, rate);
if (ret) {
hns3_err(hw,
"config priority PIR shaper parameter failed: %d.",
ret);
return ret;
}
return 0;
}
static int
hns3_dcb_pri_shaper_cfg(struct hns3_hw *hw)
{
struct hns3_pf *pf = HNS3_DEV_HW_TO_PF(hw);
uint32_t rate;
uint8_t i;
int ret;
if (pf->tx_sch_mode != HNS3_FLAG_TC_BASE_SCH_MODE)
return -EINVAL;
for (i = 0; i < hw->dcb_info.num_tc; i++) {
rate = hw->dcb_info.tc_info[i].bw_limit;
ret = hns3_pri_shaper_rate_cfg(hw, i, rate);
if (ret) {
hns3_err(hw, "config pri shaper failed: %d.", ret);
return ret;
}
}
return 0;
}
static int
hns3_set_rss_size(struct hns3_hw *hw, uint16_t nb_rx_q)
{
struct hns3_rss_conf *rss_cfg = &hw->rss_info;
uint16_t rx_qnum_per_tc;
uint16_t used_rx_queues;
int i;
rx_qnum_per_tc = nb_rx_q / hw->num_tc;
if (rx_qnum_per_tc > hw->rss_size_max) {
hns3_err(hw, "rx queue number of per tc (%u) is greater than "
"value (%u) hardware supported.",
rx_qnum_per_tc, hw->rss_size_max);
return -EINVAL;
}
used_rx_queues = hw->num_tc * rx_qnum_per_tc;
if (used_rx_queues != nb_rx_q) {
hns3_err(hw, "rx queue number (%u) configured must be an "
"integral multiple of valid tc number (%u).",
nb_rx_q, hw->num_tc);
return -EINVAL;
}
hw->alloc_rss_size = rx_qnum_per_tc;
hw->used_rx_queues = used_rx_queues;
/*
* When rss size is changed, we need to update rss redirection table
* maintained by driver. Besides, during the entire reset process, we
* need to ensure that the rss table information are not overwritten
* and configured directly to the hardware in the RESET_STAGE_RESTORE
* stage of the reset process.
*/
if (__atomic_load_n(&hw->reset.resetting, __ATOMIC_RELAXED) == 0) {
for (i = 0; i < hw->rss_ind_tbl_size; i++)
rss_cfg->rss_indirection_tbl[i] =
i % hw->alloc_rss_size;
}
return 0;
}
static int
hns3_tc_queue_mapping_cfg(struct hns3_hw *hw, uint16_t nb_tx_q)
{
struct hns3_tc_queue_info *tc_queue;
uint16_t used_tx_queues;
uint16_t tx_qnum_per_tc;
uint8_t i;
tx_qnum_per_tc = nb_tx_q / hw->num_tc;
used_tx_queues = hw->num_tc * tx_qnum_per_tc;
if (used_tx_queues != nb_tx_q) {
hns3_err(hw, "tx queue number (%u) configured must be an "
"integral multiple of valid tc number (%u).",
nb_tx_q, hw->num_tc);
return -EINVAL;
}
hw->used_tx_queues = used_tx_queues;
hw->tx_qnum_per_tc = tx_qnum_per_tc;
for (i = 0; i < HNS3_MAX_TC_NUM; i++) {
tc_queue = &hw->tc_queue[i];
if (hw->hw_tc_map & BIT(i) && i < hw->num_tc) {
tc_queue->enable = true;
tc_queue->tqp_offset = i * hw->tx_qnum_per_tc;
tc_queue->tqp_count = hw->tx_qnum_per_tc;
tc_queue->tc = i;
} else {
/* Set to default queue if TC is disable */
tc_queue->enable = false;
tc_queue->tqp_offset = 0;
tc_queue->tqp_count = 0;
tc_queue->tc = 0;
}
}
return 0;
}
uint8_t
hns3_txq_mapped_tc_get(struct hns3_hw *hw, uint16_t txq_no)
{
struct hns3_tc_queue_info *tc_queue;
uint8_t i;
for (i = 0; i < HNS3_MAX_TC_NUM; i++) {
tc_queue = &hw->tc_queue[i];
if (!tc_queue->enable)
continue;
if (txq_no >= tc_queue->tqp_offset &&
txq_no < tc_queue->tqp_offset + tc_queue->tqp_count)
return i;
}
/* return TC0 in default case */
return 0;
}
int
hns3_queue_to_tc_mapping(struct hns3_hw *hw, uint16_t nb_rx_q, uint16_t nb_tx_q)
{
int ret;
if (nb_rx_q < hw->num_tc) {
hns3_err(hw, "number of Rx queues(%u) is less than number of TC(%u).",
nb_rx_q, hw->num_tc);
return -EINVAL;
}
if (nb_tx_q < hw->num_tc) {
hns3_err(hw, "number of Tx queues(%u) is less than number of TC(%u).",
nb_tx_q, hw->num_tc);
return -EINVAL;
}
ret = hns3_set_rss_size(hw, nb_rx_q);
if (ret)
return ret;
return hns3_tc_queue_mapping_cfg(hw, nb_tx_q);
}
static int
hns3_dcb_update_tc_queue_mapping(struct hns3_hw *hw, uint16_t nb_rx_q,
uint16_t nb_tx_q)
{
struct hns3_adapter *hns = HNS3_DEV_HW_TO_ADAPTER(hw);
struct hns3_pf *pf = &hns->pf;
int ret;
hw->num_tc = hw->dcb_info.num_tc;
ret = hns3_queue_to_tc_mapping(hw, nb_rx_q, nb_tx_q);
if (ret)
return ret;
if (!hns->is_vf)
memcpy(pf->prio_tc, hw->dcb_info.prio_tc, HNS3_MAX_USER_PRIO);
return 0;
}
int
hns3_dcb_info_init(struct hns3_hw *hw)
{
struct hns3_adapter *hns = HNS3_DEV_HW_TO_ADAPTER(hw);
struct hns3_pf *pf = &hns->pf;
int i, k;
if (pf->tx_sch_mode != HNS3_FLAG_TC_BASE_SCH_MODE &&
hw->dcb_info.num_pg != 1)
return -EINVAL;
/* Initializing PG information */
memset(hw->dcb_info.pg_info, 0,
sizeof(struct hns3_pg_info) * HNS3_PG_NUM);
for (i = 0; i < hw->dcb_info.num_pg; i++) {
hw->dcb_info.pg_dwrr[i] = i ? 0 : BW_MAX_PERCENT;
hw->dcb_info.pg_info[i].pg_id = i;
hw->dcb_info.pg_info[i].pg_sch_mode = HNS3_SCH_MODE_DWRR;
hw->dcb_info.pg_info[i].bw_limit = hw->max_tm_rate;
if (i != 0)
continue;
hw->dcb_info.pg_info[i].tc_bit_map = hw->hw_tc_map;
for (k = 0; k < hw->dcb_info.num_tc; k++)
hw->dcb_info.pg_info[i].tc_dwrr[k] = BW_MAX_PERCENT;
}
/* All UPs mapping to TC0 */
for (i = 0; i < HNS3_MAX_USER_PRIO; i++)
hw->dcb_info.prio_tc[i] = 0;
/* Initializing tc information */
memset(hw->dcb_info.tc_info, 0,
sizeof(struct hns3_tc_info) * HNS3_MAX_TC_NUM);
for (i = 0; i < hw->dcb_info.num_tc; i++) {
hw->dcb_info.tc_info[i].tc_id = i;
hw->dcb_info.tc_info[i].tc_sch_mode = HNS3_SCH_MODE_DWRR;
hw->dcb_info.tc_info[i].pgid = 0;
hw->dcb_info.tc_info[i].bw_limit =
hw->dcb_info.pg_info[0].bw_limit;
}
return 0;
}
static int
hns3_dcb_lvl2_schd_mode_cfg(struct hns3_hw *hw)
{
struct hns3_adapter *hns = HNS3_DEV_HW_TO_ADAPTER(hw);
struct hns3_pf *pf = &hns->pf;
int ret, i;
/* Only being config on TC-Based scheduler mode */
if (pf->tx_sch_mode == HNS3_FLAG_VNET_BASE_SCH_MODE)
return -EINVAL;
for (i = 0; i < hw->dcb_info.num_pg; i++) {
ret = hns3_dcb_pg_schd_mode_cfg(hw, i);
if (ret)
return ret;
}
return 0;
}
static int
hns3_dcb_lvl34_schd_mode_cfg(struct hns3_hw *hw)
{
struct hns3_adapter *hns = HNS3_DEV_HW_TO_ADAPTER(hw);
struct hns3_pf *pf = &hns->pf;
uint8_t i;
int ret;
if (pf->tx_sch_mode == HNS3_FLAG_TC_BASE_SCH_MODE) {
for (i = 0; i < hw->dcb_info.num_tc; i++) {
ret = hns3_dcb_pri_schd_mode_cfg(hw, i);
if (ret)
return ret;
ret = hns3_dcb_qs_schd_mode_cfg(hw, i,
HNS3_SCH_MODE_DWRR);
if (ret)
return ret;
}
}
return 0;
}
static int
hns3_dcb_schd_mode_cfg(struct hns3_hw *hw)
{
int ret;
ret = hns3_dcb_lvl2_schd_mode_cfg(hw);
if (ret) {
hns3_err(hw, "config lvl2_schd_mode failed: %d", ret);
return ret;
}
ret = hns3_dcb_lvl34_schd_mode_cfg(hw);
if (ret)
hns3_err(hw, "config lvl34_schd_mode failed: %d", ret);
return ret;
}
static int
hns3_dcb_pri_tc_base_dwrr_cfg(struct hns3_hw *hw)
{
struct hns3_pg_info *pg_info;
uint8_t dwrr;
int ret, i;
for (i = 0; i < hw->dcb_info.num_tc; i++) {
pg_info = &hw->dcb_info.pg_info[hw->dcb_info.tc_info[i].pgid];
dwrr = pg_info->tc_dwrr[i];
ret = hns3_dcb_pri_weight_cfg(hw, i, dwrr);
if (ret) {
hns3_err(hw,
"fail to send priority weight cmd: %d, ret = %d",
i, ret);
return ret;
}
ret = hns3_dcb_qs_weight_cfg(hw, i, BW_MAX_PERCENT);
if (ret) {
hns3_err(hw, "fail to send qs_weight cmd: %d, ret = %d",
i, ret);
return ret;
}
}
return 0;
}
static int
hns3_dcb_pri_dwrr_cfg(struct hns3_hw *hw)
{
struct hns3_adapter *hns = HNS3_DEV_HW_TO_ADAPTER(hw);
struct hns3_pf *pf = &hns->pf;
uint32_t version;
int ret;
if (pf->tx_sch_mode != HNS3_FLAG_TC_BASE_SCH_MODE)
return -EINVAL;
ret = hns3_dcb_pri_tc_base_dwrr_cfg(hw);
if (ret)
return ret;
if (!hns3_dev_get_support(hw, DCB))
return 0;
ret = hns3_dcb_ets_tc_dwrr_cfg(hw);
if (ret == -EOPNOTSUPP) {
version = hw->fw_version;
hns3_warn(hw,
"fw %lu.%lu.%lu.%lu doesn't support ets tc weight cmd",
hns3_get_field(version, HNS3_FW_VERSION_BYTE3_M,
HNS3_FW_VERSION_BYTE3_S),
hns3_get_field(version, HNS3_FW_VERSION_BYTE2_M,
HNS3_FW_VERSION_BYTE2_S),
hns3_get_field(version, HNS3_FW_VERSION_BYTE1_M,
HNS3_FW_VERSION_BYTE1_S),
hns3_get_field(version, HNS3_FW_VERSION_BYTE0_M,
HNS3_FW_VERSION_BYTE0_S));
ret = 0;
}
return ret;
}
static int
hns3_dcb_pg_dwrr_cfg(struct hns3_hw *hw)
{
struct hns3_adapter *hns = HNS3_DEV_HW_TO_ADAPTER(hw);
struct hns3_pf *pf = &hns->pf;
int ret, i;
/* Cfg pg schd */
if (pf->tx_sch_mode != HNS3_FLAG_TC_BASE_SCH_MODE)
return -EINVAL;
/* Cfg pg to prio */
for (i = 0; i < hw->dcb_info.num_pg; i++) {
/* Cfg dwrr */
ret = hns3_dcb_pg_weight_cfg(hw, i, hw->dcb_info.pg_dwrr[i]);
if (ret)
return ret;
}
return 0;
}
static int
hns3_dcb_dwrr_cfg(struct hns3_hw *hw)
{
int ret;
ret = hns3_dcb_pg_dwrr_cfg(hw);
if (ret) {
hns3_err(hw, "config pg_dwrr failed: %d", ret);
return ret;
}
ret = hns3_dcb_pri_dwrr_cfg(hw);
if (ret)
hns3_err(hw, "config pri_dwrr failed: %d", ret);
return ret;
}
static int
hns3_dcb_shaper_cfg(struct hns3_hw *hw)
{
int ret;
ret = hns3_dcb_port_shaper_cfg(hw, hw->mac.link_speed);
if (ret) {
hns3_err(hw, "config port shaper failed: %d", ret);
return ret;
}
ret = hns3_dcb_pg_shaper_cfg(hw);
if (ret) {
hns3_err(hw, "config pg shaper failed: %d", ret);
return ret;
}
return hns3_dcb_pri_shaper_cfg(hw);
}
static int
hns3_q_to_qs_map_cfg(struct hns3_hw *hw, uint16_t q_id, uint16_t qs_id)
{
struct hns3_nq_to_qs_link_cmd *map;
struct hns3_cmd_desc desc;
uint16_t tmp_qs_id = 0;
uint16_t qs_id_l;
uint16_t qs_id_h;
hns3_cmd_setup_basic_desc(&desc, HNS3_OPC_TM_NQ_TO_QS_LINK, false);
map = (struct hns3_nq_to_qs_link_cmd *)desc.data;
map->nq_id = rte_cpu_to_le_16(q_id);
/*
* Network engine with revision_id 0x21 uses 0~9 bit of qs_id to
* configure qset_id. So we need to convert qs_id to the follow
* format to support qset_id > 1024.
* qs_id: | 15 | 14 ~ 10 | 9 ~ 0 |
* / / \ \
* / / \ \
* qset_id: | 15 ~ 11 | 10 | 9 ~ 0 |
* | qs_id_h | vld | qs_id_l |
*/
qs_id_l = hns3_get_field(qs_id, HNS3_DCB_QS_ID_L_MSK,
HNS3_DCB_QS_ID_L_S);
qs_id_h = hns3_get_field(qs_id, HNS3_DCB_QS_ID_H_MSK,
HNS3_DCB_QS_ID_H_S);
hns3_set_field(tmp_qs_id, HNS3_DCB_QS_ID_L_MSK, HNS3_DCB_QS_ID_L_S,
qs_id_l);
hns3_set_field(tmp_qs_id, HNS3_DCB_QS_ID_H_EXT_MSK,
HNS3_DCB_QS_ID_H_EXT_S, qs_id_h);
map->qset_id = rte_cpu_to_le_16(tmp_qs_id | HNS3_DCB_Q_QS_LINK_VLD_MSK);
return hns3_cmd_send(hw, &desc, 1);
}
static int
hns3_q_to_qs_map(struct hns3_hw *hw)
{
struct hns3_tc_queue_info *tc_queue;
uint16_t q_id;
uint32_t i, j;
int ret;
for (i = 0; i < hw->num_tc; i++) {
tc_queue = &hw->tc_queue[i];
for (j = 0; j < tc_queue->tqp_count; j++) {
q_id = tc_queue->tqp_offset + j;
ret = hns3_q_to_qs_map_cfg(hw, q_id, i);
if (ret)
return ret;
}
}
return 0;
}
static int
hns3_pri_q_qs_cfg(struct hns3_hw *hw)
{
struct hns3_adapter *hns = HNS3_DEV_HW_TO_ADAPTER(hw);
struct hns3_pf *pf = &hns->pf;
uint32_t i;
int ret;
if (pf->tx_sch_mode != HNS3_FLAG_TC_BASE_SCH_MODE)
return -EINVAL;
/* Cfg qs -> pri mapping */
for (i = 0; i < hw->num_tc; i++) {
ret = hns3_qs_to_pri_map_cfg(hw, i, i);
if (ret) {
hns3_err(hw, "qs_to_pri mapping fail: %d", ret);
return ret;
}
}
/* Cfg q -> qs mapping */
ret = hns3_q_to_qs_map(hw);
if (ret)
hns3_err(hw, "nq_to_qs mapping fail: %d", ret);
return ret;
}
static int
hns3_dcb_map_cfg(struct hns3_hw *hw)
{
int ret;
ret = hns3_up_to_tc_map(hw);
if (ret) {
hns3_err(hw, "up_to_tc mapping fail: %d", ret);
return ret;
}
ret = hns3_pg_to_pri_map(hw);
if (ret) {
hns3_err(hw, "pri_to_pg mapping fail: %d", ret);
return ret;
}
return hns3_pri_q_qs_cfg(hw);
}
static int
hns3_dcb_schd_setup_hw(struct hns3_hw *hw)
{
int ret;
/* Cfg dcb mapping */
ret = hns3_dcb_map_cfg(hw);
if (ret)
return ret;
/* Cfg dcb shaper */
ret = hns3_dcb_shaper_cfg(hw);
if (ret)
return ret;
/* Cfg dwrr */
ret = hns3_dcb_dwrr_cfg(hw);
if (ret)
return ret;
/* Cfg schd mode for each level schd */
return hns3_dcb_schd_mode_cfg(hw);
}
static int
hns3_pause_param_cfg(struct hns3_hw *hw, const uint8_t *addr,
uint8_t pause_trans_gap, uint16_t pause_trans_time)
{
struct hns3_cfg_pause_param_cmd *pause_param;
struct hns3_cmd_desc desc;
pause_param = (struct hns3_cfg_pause_param_cmd *)desc.data;
hns3_cmd_setup_basic_desc(&desc, HNS3_OPC_CFG_MAC_PARA, false);
memcpy(pause_param->mac_addr, addr, RTE_ETHER_ADDR_LEN);
memcpy(pause_param->mac_addr_extra, addr, RTE_ETHER_ADDR_LEN);
pause_param->pause_trans_gap = pause_trans_gap;
pause_param->pause_trans_time = rte_cpu_to_le_16(pause_trans_time);
return hns3_cmd_send(hw, &desc, 1);
}
int
hns3_pause_addr_cfg(struct hns3_hw *hw, const uint8_t *mac_addr)
{
struct hns3_cfg_pause_param_cmd *pause_param;
struct hns3_cmd_desc desc;
uint16_t trans_time;
uint8_t trans_gap;
int ret;
pause_param = (struct hns3_cfg_pause_param_cmd *)desc.data;
hns3_cmd_setup_basic_desc(&desc, HNS3_OPC_CFG_MAC_PARA, true);
ret = hns3_cmd_send(hw, &desc, 1);
if (ret)
return ret;
trans_gap = pause_param->pause_trans_gap;
trans_time = rte_le_to_cpu_16(pause_param->pause_trans_time);
return hns3_pause_param_cfg(hw, mac_addr, trans_gap, trans_time);
}
static int
hns3_pause_param_setup_hw(struct hns3_hw *hw, uint16_t pause_time)
{
#define PAUSE_TIME_DIV_BY 2
#define PAUSE_TIME_MIN_VALUE 0x4
struct hns3_mac *mac = &hw->mac;
uint8_t pause_trans_gap;
/*
* Pause transmit gap must be less than "pause_time / 2", otherwise
* the behavior of MAC is undefined.
*/
if (pause_time > PAUSE_TIME_DIV_BY * HNS3_DEFAULT_PAUSE_TRANS_GAP)
pause_trans_gap = HNS3_DEFAULT_PAUSE_TRANS_GAP;
else if (pause_time >= PAUSE_TIME_MIN_VALUE &&
pause_time <= PAUSE_TIME_DIV_BY * HNS3_DEFAULT_PAUSE_TRANS_GAP)
pause_trans_gap = pause_time / PAUSE_TIME_DIV_BY - 1;
else {
hns3_warn(hw, "pause_time(%u) is adjusted to 4", pause_time);
pause_time = PAUSE_TIME_MIN_VALUE;
pause_trans_gap = pause_time / PAUSE_TIME_DIV_BY - 1;
}
return hns3_pause_param_cfg(hw, mac->mac_addr,
pause_trans_gap, pause_time);
}
static int
hns3_mac_pause_en_cfg(struct hns3_hw *hw, bool tx, bool rx)
{
struct hns3_cmd_desc desc;
hns3_cmd_setup_basic_desc(&desc, HNS3_OPC_CFG_MAC_PAUSE_EN, false);
desc.data[0] = rte_cpu_to_le_32((tx ? HNS3_TX_MAC_PAUSE_EN_MSK : 0) |
(rx ? HNS3_RX_MAC_PAUSE_EN_MSK : 0));
return hns3_cmd_send(hw, &desc, 1);
}
static int
hns3_pfc_pause_en_cfg(struct hns3_hw *hw, uint8_t pfc_bitmap, bool tx, bool rx)
{
struct hns3_cmd_desc desc;
struct hns3_pfc_en_cmd *pfc = (struct hns3_pfc_en_cmd *)desc.data;
hns3_cmd_setup_basic_desc(&desc, HNS3_OPC_CFG_PFC_PAUSE_EN, false);
pfc->tx_rx_en_bitmap = (uint8_t)((tx ? HNS3_TX_MAC_PAUSE_EN_MSK : 0) |
(rx ? HNS3_RX_MAC_PAUSE_EN_MSK : 0));
pfc->pri_en_bitmap = pfc_bitmap;
return hns3_cmd_send(hw, &desc, 1);
}
static int
hns3_qs_bp_cfg(struct hns3_hw *hw, uint8_t tc, uint8_t grp_id, uint32_t bit_map)
{
struct hns3_bp_to_qs_map_cmd *bp_to_qs_map_cmd;
struct hns3_cmd_desc desc;
hns3_cmd_setup_basic_desc(&desc, HNS3_OPC_TM_BP_TO_QSET_MAPPING, false);
bp_to_qs_map_cmd = (struct hns3_bp_to_qs_map_cmd *)desc.data;
bp_to_qs_map_cmd->tc_id = tc;
bp_to_qs_map_cmd->qs_group_id = grp_id;
bp_to_qs_map_cmd->qs_bit_map = rte_cpu_to_le_32(bit_map);
return hns3_cmd_send(hw, &desc, 1);
}
static void
hns3_get_rx_tx_en_status(struct hns3_hw *hw, bool *tx_en, bool *rx_en)
{
switch (hw->requested_fc_mode) {
case HNS3_FC_NONE:
*tx_en = false;
*rx_en = false;
break;
case HNS3_FC_RX_PAUSE:
*tx_en = false;
*rx_en = true;
break;
case HNS3_FC_TX_PAUSE:
*tx_en = true;
*rx_en = false;
break;
case HNS3_FC_FULL:
*tx_en = true;
*rx_en = true;
break;
default:
*tx_en = false;
*rx_en = false;
break;
}
}
static int
hns3_mac_pause_setup_hw(struct hns3_hw *hw)
{
bool tx_en, rx_en;
if (hw->current_fc_status == HNS3_FC_STATUS_MAC_PAUSE)
hns3_get_rx_tx_en_status(hw, &tx_en, &rx_en);
else {
tx_en = false;
rx_en = false;
}
return hns3_mac_pause_en_cfg(hw, tx_en, rx_en);
}
static int
hns3_pfc_setup_hw(struct hns3_hw *hw)
{
bool tx_en, rx_en;
if (hw->current_fc_status == HNS3_FC_STATUS_PFC)
hns3_get_rx_tx_en_status(hw, &tx_en, &rx_en);
else {
tx_en = false;
rx_en = false;
}
return hns3_pfc_pause_en_cfg(hw, hw->dcb_info.pfc_en, tx_en, rx_en);
}
/*
* Each Tc has a 1024 queue sets to backpress, it divides to
* 32 group, each group contains 32 queue sets, which can be
* represented by uint32_t bitmap.
*/
static int
hns3_bp_setup_hw(struct hns3_hw *hw, uint8_t tc)
{
uint32_t qs_bitmap;
int ret;
int i;
for (i = 0; i < HNS3_BP_GRP_NUM; i++) {
uint8_t grp, sub_grp;
qs_bitmap = 0;
grp = hns3_get_field(tc, HNS3_BP_GRP_ID_M, HNS3_BP_GRP_ID_S);
sub_grp = hns3_get_field(tc, HNS3_BP_SUB_GRP_ID_M,
HNS3_BP_SUB_GRP_ID_S);
if (i == grp)
qs_bitmap |= (1 << sub_grp);
ret = hns3_qs_bp_cfg(hw, tc, i, qs_bitmap);
if (ret)
return ret;
}
return 0;
}
static int
hns3_dcb_bp_setup(struct hns3_hw *hw)
{
int ret, i;
for (i = 0; i < hw->dcb_info.num_tc; i++) {
ret = hns3_bp_setup_hw(hw, i);
if (ret)
return ret;
}
return 0;
}
static int
hns3_dcb_pause_setup_hw(struct hns3_hw *hw)
{
struct hns3_adapter *hns = HNS3_DEV_HW_TO_ADAPTER(hw);
struct hns3_pf *pf = &hns->pf;
int ret;
ret = hns3_pause_param_setup_hw(hw, pf->pause_time);
if (ret) {
hns3_err(hw, "Fail to set pause parameter. ret = %d", ret);
return ret;
}
ret = hns3_mac_pause_setup_hw(hw);
if (ret) {
hns3_err(hw, "Fail to setup MAC pause. ret = %d", ret);
return ret;
}
/* Only DCB-supported dev supports qset back pressure and pfc cmd */
if (!hns3_dev_get_support(hw, DCB))
return 0;
ret = hns3_pfc_setup_hw(hw);
if (ret) {
hns3_err(hw, "config pfc failed! ret = %d", ret);
return ret;
}
return hns3_dcb_bp_setup(hw);
}
static uint8_t
hns3_dcb_undrop_tc_map(struct hns3_hw *hw, uint8_t pfc_en)
{
uint8_t pfc_map = 0;
uint8_t *prio_tc;
uint8_t i, j;
prio_tc = hw->dcb_info.prio_tc;
for (i = 0; i < hw->dcb_info.num_tc; i++) {
for (j = 0; j < HNS3_MAX_USER_PRIO; j++) {
if (prio_tc[j] == i && pfc_en & BIT(j)) {
pfc_map |= BIT(i);
break;
}
}
}
return pfc_map;
}
static uint8_t
hns3_dcb_parse_num_tc(struct hns3_adapter *hns)
{
struct rte_eth_dcb_rx_conf *dcb_rx_conf;
struct hns3_hw *hw = &hns->hw;
uint8_t max_tc_id = 0;
int i;
dcb_rx_conf = &hw->data->dev_conf.rx_adv_conf.dcb_rx_conf;
for (i = 0; i < HNS3_MAX_USER_PRIO; i++) {
if (dcb_rx_conf->dcb_tc[i] > max_tc_id)
max_tc_id = dcb_rx_conf->dcb_tc[i];
}
/* Number of TC is equal to max_tc_id plus 1. */
return max_tc_id + 1;
}
static int
hns3_dcb_info_cfg(struct hns3_adapter *hns)
{
struct rte_eth_dcb_rx_conf *dcb_rx_conf;
struct hns3_pf *pf = &hns->pf;
struct hns3_hw *hw = &hns->hw;
uint8_t tc_bw, bw_rest;
uint8_t i, j;
int ret;
dcb_rx_conf = &hw->data->dev_conf.rx_adv_conf.dcb_rx_conf;
pf->local_max_tc = (uint8_t)dcb_rx_conf->nb_tcs;
pf->pfc_max = (uint8_t)dcb_rx_conf->nb_tcs;
/* Config pg0 */
memset(hw->dcb_info.pg_info, 0,
sizeof(struct hns3_pg_info) * HNS3_PG_NUM);
hw->dcb_info.pg_dwrr[0] = BW_MAX_PERCENT;
hw->dcb_info.pg_info[0].pg_id = 0;
hw->dcb_info.pg_info[0].pg_sch_mode = HNS3_SCH_MODE_DWRR;
hw->dcb_info.pg_info[0].bw_limit = hw->max_tm_rate;
hw->dcb_info.pg_info[0].tc_bit_map = hw->hw_tc_map;
/* Each tc has same bw for valid tc by default */
tc_bw = BW_MAX_PERCENT / hw->dcb_info.num_tc;
for (i = 0; i < hw->dcb_info.num_tc; i++)
hw->dcb_info.pg_info[0].tc_dwrr[i] = tc_bw;
/* To ensure the sum of tc_dwrr is equal to 100 */
bw_rest = BW_MAX_PERCENT % hw->dcb_info.num_tc;
for (j = 0; j < bw_rest; j++)
hw->dcb_info.pg_info[0].tc_dwrr[j]++;
for (; i < dcb_rx_conf->nb_tcs; i++)
hw->dcb_info.pg_info[0].tc_dwrr[i] = 0;
/* All tcs map to pg0 */
memset(hw->dcb_info.tc_info, 0,
sizeof(struct hns3_tc_info) * HNS3_MAX_TC_NUM);
for (i = 0; i < hw->dcb_info.num_tc; i++) {
hw->dcb_info.tc_info[i].tc_id = i;
hw->dcb_info.tc_info[i].tc_sch_mode = HNS3_SCH_MODE_DWRR;
hw->dcb_info.tc_info[i].pgid = 0;
hw->dcb_info.tc_info[i].bw_limit =
hw->dcb_info.pg_info[0].bw_limit;
}
for (i = 0; i < HNS3_MAX_USER_PRIO; i++)
hw->dcb_info.prio_tc[i] = dcb_rx_conf->dcb_tc[i];
ret = hns3_dcb_update_tc_queue_mapping(hw, hw->data->nb_rx_queues,
hw->data->nb_tx_queues);
if (ret)
hns3_err(hw, "update tc queue mapping failed, ret = %d.", ret);
return ret;
}
static int
hns3_dcb_info_update(struct hns3_adapter *hns, uint8_t num_tc)
{
struct hns3_pf *pf = &hns->pf;
struct hns3_hw *hw = &hns->hw;
uint16_t nb_rx_q = hw->data->nb_rx_queues;
uint16_t nb_tx_q = hw->data->nb_tx_queues;
uint8_t bit_map = 0;
uint8_t i;
if (pf->tx_sch_mode != HNS3_FLAG_TC_BASE_SCH_MODE &&
hw->dcb_info.num_pg != 1)
return -EINVAL;
if (nb_rx_q < num_tc) {
hns3_err(hw, "number of Rx queues(%u) is less than tcs(%u).",
nb_rx_q, num_tc);
return -EINVAL;
}
if (nb_tx_q < num_tc) {
hns3_err(hw, "number of Tx queues(%u) is less than tcs(%u).",
nb_tx_q, num_tc);
return -EINVAL;
}
/* Currently not support uncontinuous tc */
hw->dcb_info.num_tc = num_tc;
for (i = 0; i < hw->dcb_info.num_tc; i++)
bit_map |= BIT(i);
if (!bit_map) {
bit_map = 1;
hw->dcb_info.num_tc = 1;
}
hw->hw_tc_map = bit_map;
return hns3_dcb_info_cfg(hns);
}
static int
hns3_dcb_hw_configure(struct hns3_adapter *hns)
{
struct rte_eth_dcb_rx_conf *dcb_rx_conf;
struct hns3_pf *pf = &hns->pf;
struct hns3_hw *hw = &hns->hw;
enum hns3_fc_status fc_status = hw->current_fc_status;
enum hns3_fc_mode requested_fc_mode = hw->requested_fc_mode;
uint8_t hw_pfc_map = hw->dcb_info.hw_pfc_map;
uint8_t pfc_en = hw->dcb_info.pfc_en;
int ret;
if (pf->tx_sch_mode != HNS3_FLAG_TC_BASE_SCH_MODE &&
pf->tx_sch_mode != HNS3_FLAG_VNET_BASE_SCH_MODE)
return -ENOTSUP;
ret = hns3_dcb_schd_setup_hw(hw);
if (ret) {
hns3_err(hw, "dcb schedule configure failed! ret = %d", ret);
return ret;
}
if (hw->data->dev_conf.dcb_capability_en & RTE_ETH_DCB_PFC_SUPPORT) {
dcb_rx_conf = &hw->data->dev_conf.rx_adv_conf.dcb_rx_conf;
if (dcb_rx_conf->nb_tcs == 0)
hw->dcb_info.pfc_en = 1; /* tc0 only */
else
hw->dcb_info.pfc_en =
RTE_LEN2MASK((uint8_t)dcb_rx_conf->nb_tcs, uint8_t);
hw->dcb_info.hw_pfc_map =
hns3_dcb_undrop_tc_map(hw, hw->dcb_info.pfc_en);
hw->current_fc_status = HNS3_FC_STATUS_PFC;
hw->requested_fc_mode = HNS3_FC_FULL;
} else {
hw->current_fc_status = HNS3_FC_STATUS_NONE;
hw->requested_fc_mode = HNS3_FC_NONE;
hw->dcb_info.pfc_en = 0;
hw->dcb_info.hw_pfc_map = 0;
}
ret = hns3_buffer_alloc(hw);
if (ret)
goto cfg_fail;
ret = hns3_dcb_pause_setup_hw(hw);
if (ret) {
hns3_err(hw, "setup pfc failed! ret = %d", ret);
goto cfg_fail;
}
return 0;
cfg_fail:
hw->requested_fc_mode = requested_fc_mode;
hw->current_fc_status = fc_status;
hw->dcb_info.pfc_en = pfc_en;
hw->dcb_info.hw_pfc_map = hw_pfc_map;
return ret;
}
/*
* hns3_dcb_configure - setup dcb related config
* @hns: pointer to hns3 adapter
* Returns 0 on success, negative value on failure.
*/
int
hns3_dcb_configure(struct hns3_adapter *hns)
{
struct hns3_hw *hw = &hns->hw;
uint8_t num_tc;
int ret;
num_tc = hns3_dcb_parse_num_tc(hns);
ret = hns3_dcb_info_update(hns, num_tc);
if (ret) {
hns3_err(hw, "dcb info update failed: %d", ret);
return ret;
}
ret = hns3_dcb_hw_configure(hns);
if (ret) {
hns3_err(hw, "dcb sw configure failed: %d", ret);
return ret;
}
return 0;
}
int
hns3_dcb_init_hw(struct hns3_hw *hw)
{
int ret;
ret = hns3_dcb_schd_setup_hw(hw);
if (ret) {
hns3_err(hw, "dcb schedule setup failed: %d", ret);
return ret;
}
ret = hns3_dcb_pause_setup_hw(hw);
if (ret)
hns3_err(hw, "PAUSE setup failed: %d", ret);
return ret;
}
int
hns3_dcb_init(struct hns3_hw *hw)
{
struct hns3_adapter *hns = HNS3_DEV_HW_TO_ADAPTER(hw);
struct hns3_pf *pf = &hns->pf;
uint16_t default_tqp_num;
int ret;
PMD_INIT_FUNC_TRACE();
/*
* According to the 'adapter_state' identifier, the following branch
* is only executed to initialize default configurations of dcb during
* the initializing driver process. Due to driver saving dcb-related
* information before reset triggered, the reinit dev stage of the
* reset process can not access to the branch, or those information
* will be changed.
*/
if (hw->adapter_state == HNS3_NIC_UNINITIALIZED) {
hw->requested_fc_mode = HNS3_FC_NONE;
pf->pause_time = HNS3_DEFAULT_PAUSE_TRANS_TIME;
hw->current_fc_status = HNS3_FC_STATUS_NONE;
ret = hns3_dcb_info_init(hw);
if (ret) {
hns3_err(hw, "dcb info init failed, ret = %d.", ret);
return ret;
}
/*
* The number of queues configured by default cannot exceed
* the maximum number of queues for a single TC.
*/
default_tqp_num = RTE_MIN(hw->rss_size_max,
hw->tqps_num / hw->dcb_info.num_tc);
ret = hns3_dcb_update_tc_queue_mapping(hw, default_tqp_num,
default_tqp_num);
if (ret) {
hns3_err(hw,
"update tc queue mapping failed, ret = %d.",
ret);
return ret;
}
}
/*
* DCB hardware will be configured by following the function during
* the initializing driver process and the reset process. However,
* driver will restore directly configurations of dcb hardware based
* on dcb-related information soft maintained when driver
* initialization has finished and reset is coming.
*/
ret = hns3_dcb_init_hw(hw);
if (ret) {
hns3_err(hw, "dcb init hardware failed, ret = %d.", ret);
return ret;
}
return 0;
}
int
hns3_update_queue_map_configure(struct hns3_adapter *hns)
{
struct hns3_hw *hw = &hns->hw;
enum rte_eth_rx_mq_mode mq_mode = hw->data->dev_conf.rxmode.mq_mode;
uint16_t nb_rx_q = hw->data->nb_rx_queues;
uint16_t nb_tx_q = hw->data->nb_tx_queues;
int ret;
if ((uint32_t)mq_mode & RTE_ETH_MQ_RX_DCB_FLAG)
return 0;
ret = hns3_dcb_update_tc_queue_mapping(hw, nb_rx_q, nb_tx_q);
if (ret) {
hns3_err(hw, "failed to update tc queue mapping, ret = %d.",
ret);
return ret;
}
ret = hns3_q_to_qs_map(hw);
if (ret)
hns3_err(hw, "failed to map nq to qs, ret = %d.", ret);
return ret;
}
static void
hns3_get_fc_mode(struct hns3_hw *hw, enum rte_eth_fc_mode mode)
{
switch (mode) {
case RTE_ETH_FC_NONE:
hw->requested_fc_mode = HNS3_FC_NONE;
break;
case RTE_ETH_FC_RX_PAUSE:
hw->requested_fc_mode = HNS3_FC_RX_PAUSE;
break;
case RTE_ETH_FC_TX_PAUSE:
hw->requested_fc_mode = HNS3_FC_TX_PAUSE;
break;
case RTE_ETH_FC_FULL:
hw->requested_fc_mode = HNS3_FC_FULL;
break;
default:
hw->requested_fc_mode = HNS3_FC_NONE;
hns3_warn(hw, "fc_mode(%u) exceeds member scope and is "
"configured to RTE_ETH_FC_NONE", mode);
break;
}
}
/*
* hns3_dcb_pfc_enable - Enable priority flow control
* @dev: pointer to ethernet device
*
* Configures the pfc settings for one priority.
*/
int
hns3_dcb_pfc_enable(struct rte_eth_dev *dev, struct rte_eth_pfc_conf *pfc_conf)
{
struct hns3_hw *hw = HNS3_DEV_PRIVATE_TO_HW(dev->data->dev_private);
struct hns3_pf *pf = HNS3_DEV_PRIVATE_TO_PF(dev->data->dev_private);
enum hns3_fc_status fc_status = hw->current_fc_status;
enum hns3_fc_mode old_fc_mode = hw->requested_fc_mode;
uint8_t hw_pfc_map = hw->dcb_info.hw_pfc_map;
uint8_t pfc_en = hw->dcb_info.pfc_en;
uint8_t priority = pfc_conf->priority;
uint16_t pause_time = pf->pause_time;
int ret;
hw->dcb_info.pfc_en |= BIT(priority);
hw->dcb_info.hw_pfc_map =
hns3_dcb_undrop_tc_map(hw, hw->dcb_info.pfc_en);
ret = hns3_buffer_alloc(hw);
if (ret) {
hns3_err(hw, "update packet buffer failed, ret = %d", ret);
goto buffer_alloc_fail;
}
pf->pause_time = pfc_conf->fc.pause_time;
hns3_get_fc_mode(hw, pfc_conf->fc.mode);
if (hw->requested_fc_mode == HNS3_FC_NONE)
hw->current_fc_status = HNS3_FC_STATUS_NONE;
else
hw->current_fc_status = HNS3_FC_STATUS_PFC;
/*
* The flow control mode of all UPs will be changed based on
* requested_fc_mode coming from user.
*/
ret = hns3_dcb_pause_setup_hw(hw);
if (ret) {
hns3_err(hw, "enable pfc failed! ret = %d", ret);
goto pfc_setup_fail;
}
return 0;
pfc_setup_fail:
hw->requested_fc_mode = old_fc_mode;
hw->current_fc_status = fc_status;
pf->pause_time = pause_time;
buffer_alloc_fail:
hw->dcb_info.pfc_en = pfc_en;
hw->dcb_info.hw_pfc_map = hw_pfc_map;
return ret;
}
/*
* hns3_fc_enable - Enable MAC pause
* @dev: pointer to ethernet device
*
* Configures the MAC pause settings.
*/
int
hns3_fc_enable(struct rte_eth_dev *dev, struct rte_eth_fc_conf *fc_conf)
{
struct hns3_hw *hw = HNS3_DEV_PRIVATE_TO_HW(dev->data->dev_private);
struct hns3_pf *pf = HNS3_DEV_PRIVATE_TO_PF(dev->data->dev_private);
enum hns3_fc_mode old_fc_mode = hw->requested_fc_mode;
enum hns3_fc_status fc_status = hw->current_fc_status;
uint16_t pause_time = pf->pause_time;
int ret;
pf->pause_time = fc_conf->pause_time;
hns3_get_fc_mode(hw, fc_conf->mode);
/*
* In fact, current_fc_status is HNS3_FC_STATUS_NONE when mode
* of flow control is configured to be HNS3_FC_NONE.
*/
if (hw->requested_fc_mode == HNS3_FC_NONE)
hw->current_fc_status = HNS3_FC_STATUS_NONE;
else
hw->current_fc_status = HNS3_FC_STATUS_MAC_PAUSE;
ret = hns3_dcb_pause_setup_hw(hw);
if (ret) {
hns3_err(hw, "enable MAC Pause failed! ret = %d", ret);
goto setup_fc_fail;
}
return 0;
setup_fc_fail:
hw->requested_fc_mode = old_fc_mode;
hw->current_fc_status = fc_status;
pf->pause_time = pause_time;
return ret;
}