f-stack/dpdk/drivers/net/enic/base/vnic_dev.c

1358 lines
32 KiB
C

/* SPDX-License-Identifier: BSD-3-Clause
* Copyright 2008-2017 Cisco Systems, Inc. All rights reserved.
* Copyright 2007 Nuova Systems, Inc. All rights reserved.
*/
#include <rte_memzone.h>
#include <rte_memcpy.h>
#include <rte_string_fns.h>
#include <rte_ether.h>
#include "vnic_dev.h"
#include "vnic_resource.h"
#include "vnic_devcmd.h"
#include "vnic_nic.h"
#include "vnic_stats.h"
#include "vnic_flowman.h"
enum vnic_proxy_type {
PROXY_NONE,
PROXY_BY_BDF,
PROXY_BY_INDEX,
};
struct vnic_res {
void __iomem *vaddr;
dma_addr_t bus_addr;
unsigned int count;
};
struct vnic_intr_coal_timer_info {
uint32_t mul;
uint32_t div;
uint32_t max_usec;
};
struct vnic_dev {
void *priv;
struct rte_pci_device *pdev;
struct vnic_res res[RES_TYPE_MAX];
enum vnic_dev_intr_mode intr_mode;
struct vnic_devcmd __iomem *devcmd;
struct vnic_devcmd_notify *notify;
struct vnic_devcmd_notify notify_copy;
dma_addr_t notify_pa;
uint32_t notify_sz;
dma_addr_t linkstatus_pa;
struct vnic_stats *stats;
dma_addr_t stats_pa;
struct vnic_devcmd_fw_info *fw_info;
dma_addr_t fw_info_pa;
struct fm_info *flowman_info;
dma_addr_t flowman_info_pa;
enum vnic_proxy_type proxy;
uint32_t proxy_index;
uint64_t args[VNIC_DEVCMD_NARGS];
int in_reset;
struct vnic_intr_coal_timer_info intr_coal_timer_info;
void *(*alloc_consistent)(void *priv, size_t size,
dma_addr_t *dma_handle, uint8_t *name);
void (*free_consistent)(void *priv,
size_t size, void *vaddr,
dma_addr_t dma_handle);
/*
* Used to serialize devcmd access, currently from PF and its
* VF representors. When there are no representors, lock is
* not used.
*/
int locked;
void (*lock)(void *priv);
void (*unlock)(void *priv);
struct vnic_dev *pf_vdev;
int vf_id;
};
#define VNIC_MAX_RES_HDR_SIZE \
(sizeof(struct vnic_resource_header) + \
sizeof(struct vnic_resource) * RES_TYPE_MAX)
#define VNIC_RES_STRIDE 128
void *vnic_dev_priv(struct vnic_dev *vdev)
{
return vdev->priv;
}
void vnic_register_cbacks(struct vnic_dev *vdev,
void *(*alloc_consistent)(void *priv, size_t size,
dma_addr_t *dma_handle, uint8_t *name),
void (*free_consistent)(void *priv,
size_t size, void *vaddr,
dma_addr_t dma_handle))
{
vdev->alloc_consistent = alloc_consistent;
vdev->free_consistent = free_consistent;
}
void vnic_register_lock(struct vnic_dev *vdev, void (*lock)(void *priv),
void (*unlock)(void *priv))
{
vdev->lock = lock;
vdev->unlock = unlock;
vdev->locked = 0;
}
static int vnic_dev_discover_res(struct vnic_dev *vdev,
struct vnic_dev_bar *bar, unsigned int num_bars)
{
struct vnic_resource_header __iomem *rh;
struct mgmt_barmap_hdr __iomem *mrh;
struct vnic_resource __iomem *r;
uint8_t type;
if (num_bars == 0)
return -EINVAL;
if (bar->len < VNIC_MAX_RES_HDR_SIZE) {
pr_err("vNIC BAR0 res hdr length error\n");
return -EINVAL;
}
rh = bar->vaddr;
mrh = bar->vaddr;
if (!rh) {
pr_err("vNIC BAR0 res hdr not mem-mapped\n");
return -EINVAL;
}
/* Check for mgmt vnic in addition to normal vnic */
if ((ioread32(&rh->magic) != VNIC_RES_MAGIC) ||
(ioread32(&rh->version) != VNIC_RES_VERSION)) {
if ((ioread32(&mrh->magic) != MGMTVNIC_MAGIC) ||
(ioread32(&mrh->version) != MGMTVNIC_VERSION)) {
pr_err("vNIC BAR0 res magic/version error " \
"exp (%lx/%lx) or (%lx/%lx), curr (%x/%x)\n",
VNIC_RES_MAGIC, VNIC_RES_VERSION,
MGMTVNIC_MAGIC, MGMTVNIC_VERSION,
ioread32(&rh->magic), ioread32(&rh->version));
return -EINVAL;
}
}
if (ioread32(&mrh->magic) == MGMTVNIC_MAGIC)
r = (struct vnic_resource __iomem *)(mrh + 1);
else
r = (struct vnic_resource __iomem *)(rh + 1);
while ((type = ioread8(&r->type)) != RES_TYPE_EOL) {
uint8_t bar_num = ioread8(&r->bar);
uint32_t bar_offset = ioread32(&r->bar_offset);
uint32_t count = ioread32(&r->count);
uint32_t len;
r++;
if (bar_num >= num_bars)
continue;
if (!bar[bar_num].len || !bar[bar_num].vaddr)
continue;
switch (type) {
case RES_TYPE_WQ:
case RES_TYPE_RQ:
case RES_TYPE_CQ:
case RES_TYPE_INTR_CTRL:
/* each count is stride bytes long */
len = count * VNIC_RES_STRIDE;
if (len + bar_offset > bar[bar_num].len) {
pr_err("vNIC BAR0 resource %d " \
"out-of-bounds, offset 0x%x + " \
"size 0x%x > bar len 0x%lx\n",
type, bar_offset,
len,
bar[bar_num].len);
return -EINVAL;
}
break;
case RES_TYPE_INTR_PBA_LEGACY:
case RES_TYPE_DEVCMD:
len = count;
break;
default:
continue;
}
vdev->res[type].count = count;
vdev->res[type].vaddr = (char __iomem *)bar[bar_num].vaddr +
bar_offset;
vdev->res[type].bus_addr = bar[bar_num].bus_addr + bar_offset;
}
return 0;
}
unsigned int vnic_dev_get_res_count(struct vnic_dev *vdev,
enum vnic_res_type type)
{
return vdev->res[type].count;
}
void __iomem *vnic_dev_get_res(struct vnic_dev *vdev, enum vnic_res_type type,
unsigned int index)
{
if (!vdev->res[type].vaddr)
return NULL;
switch (type) {
case RES_TYPE_WQ:
case RES_TYPE_RQ:
case RES_TYPE_CQ:
case RES_TYPE_INTR_CTRL:
return (char __iomem *)vdev->res[type].vaddr +
index * VNIC_RES_STRIDE;
default:
return (char __iomem *)vdev->res[type].vaddr;
}
}
unsigned int vnic_dev_desc_ring_size(struct vnic_dev_ring *ring,
unsigned int desc_count, unsigned int desc_size)
{
/* The base address of the desc rings must be 512 byte aligned.
* Descriptor count is aligned to groups of 32 descriptors. A
* count of 0 means the maximum 4096 descriptors. Descriptor
* size is aligned to 16 bytes.
*/
unsigned int count_align = 32;
unsigned int desc_align = 16;
ring->base_align = 512;
if (desc_count == 0)
desc_count = 4096;
ring->desc_count = VNIC_ALIGN(desc_count, count_align);
ring->desc_size = VNIC_ALIGN(desc_size, desc_align);
ring->size = ring->desc_count * ring->desc_size;
ring->size_unaligned = ring->size + ring->base_align;
return ring->size_unaligned;
}
void vnic_dev_clear_desc_ring(struct vnic_dev_ring *ring)
{
memset(ring->descs, 0, ring->size);
}
int vnic_dev_alloc_desc_ring(struct vnic_dev *vdev,
struct vnic_dev_ring *ring,
unsigned int desc_count, unsigned int desc_size,
__rte_unused unsigned int socket_id,
char *z_name)
{
void *alloc_addr;
dma_addr_t alloc_pa = 0;
vnic_dev_desc_ring_size(ring, desc_count, desc_size);
alloc_addr = vdev->alloc_consistent(vdev->priv,
ring->size_unaligned,
&alloc_pa, (uint8_t *)z_name);
if (!alloc_addr) {
pr_err("Failed to allocate ring (size=%d), aborting\n",
(int)ring->size);
return -ENOMEM;
}
ring->descs_unaligned = alloc_addr;
if (!alloc_pa) {
pr_err("Failed to map allocated ring (size=%d), aborting\n",
(int)ring->size);
vdev->free_consistent(vdev->priv,
ring->size_unaligned,
alloc_addr,
alloc_pa);
return -ENOMEM;
}
ring->base_addr_unaligned = alloc_pa;
ring->base_addr = VNIC_ALIGN(ring->base_addr_unaligned,
ring->base_align);
ring->descs = (uint8_t *)ring->descs_unaligned +
(ring->base_addr - ring->base_addr_unaligned);
vnic_dev_clear_desc_ring(ring);
ring->desc_avail = ring->desc_count - 1;
return 0;
}
void vnic_dev_free_desc_ring(__rte_unused struct vnic_dev *vdev,
struct vnic_dev_ring *ring)
{
if (ring->descs) {
vdev->free_consistent(vdev->priv,
ring->size_unaligned,
ring->descs_unaligned,
ring->base_addr_unaligned);
ring->descs = NULL;
}
}
static int _vnic_dev_cmd(struct vnic_dev *vdev, enum vnic_devcmd_cmd cmd,
int wait)
{
struct vnic_devcmd __iomem *devcmd = vdev->devcmd;
unsigned int i;
int delay;
uint32_t status;
int err;
status = ioread32(&devcmd->status);
if (status == 0xFFFFFFFF) {
/* PCI-e target device is gone */
return -ENODEV;
}
if (status & STAT_BUSY) {
pr_err("Busy devcmd %d\n", _CMD_N(cmd));
return -EBUSY;
}
if (_CMD_DIR(cmd) & _CMD_DIR_WRITE) {
for (i = 0; i < VNIC_DEVCMD_NARGS; i++)
writeq(vdev->args[i], &devcmd->args[i]);
rte_wmb(); /* complete all writes initiated till now */
}
iowrite32(cmd, &devcmd->cmd);
if ((_CMD_FLAGS(cmd) & _CMD_FLAGS_NOWAIT))
return 0;
for (delay = 0; delay < wait; delay++) {
usleep(100);
status = ioread32(&devcmd->status);
if (status == 0xFFFFFFFF) {
/* PCI-e target device is gone */
return -ENODEV;
}
if (!(status & STAT_BUSY)) {
if (status & STAT_ERROR) {
err = -(int)readq(&devcmd->args[0]);
if (cmd != CMD_CAPABILITY &&
cmd != CMD_OVERLAY_OFFLOAD_CTRL &&
cmd != CMD_GET_SUPP_FEATURE_VER)
pr_err("Devcmd %d failed " \
"with error code %d\n",
_CMD_N(cmd), err);
return err;
}
if (_CMD_DIR(cmd) & _CMD_DIR_READ) {
rte_rmb();/* finish all reads */
for (i = 0; i < VNIC_DEVCMD_NARGS; i++)
vdev->args[i] = readq(&devcmd->args[i]);
}
return 0;
}
}
pr_err("Timedout devcmd %d\n", _CMD_N(cmd));
return -ETIMEDOUT;
}
static int vnic_dev_cmd_proxy(struct vnic_dev *vdev,
enum vnic_devcmd_cmd proxy_cmd, enum vnic_devcmd_cmd cmd,
uint64_t *args, int nargs, int wait)
{
uint32_t status;
int err;
/*
* Proxy command consumes 2 arguments. One for proxy index,
* the other is for command to be proxied
*/
if (nargs > VNIC_DEVCMD_NARGS - 2) {
pr_err("number of args %d exceeds the maximum\n", nargs);
return -EINVAL;
}
memset(vdev->args, 0, sizeof(vdev->args));
vdev->args[0] = vdev->proxy_index;
vdev->args[1] = cmd;
memcpy(&vdev->args[2], args, nargs * sizeof(args[0]));
err = _vnic_dev_cmd(vdev, proxy_cmd, wait);
if (err)
return err;
status = (uint32_t)vdev->args[0];
if (status & STAT_ERROR) {
err = (int)vdev->args[1];
if (err != ERR_ECMDUNKNOWN ||
cmd != CMD_CAPABILITY)
pr_err("Error %d proxy devcmd %d\n", err, _CMD_N(cmd));
return err;
}
memcpy(args, &vdev->args[1], nargs * sizeof(args[0]));
return 0;
}
static int vnic_dev_cmd_no_proxy(struct vnic_dev *vdev,
enum vnic_devcmd_cmd cmd, uint64_t *args, int nargs, int wait)
{
int err;
if (nargs > VNIC_DEVCMD_NARGS) {
pr_err("number of args %d exceeds the maximum\n", nargs);
return -EINVAL;
}
memset(vdev->args, 0, sizeof(vdev->args));
memcpy(vdev->args, args, nargs * sizeof(args[0]));
err = _vnic_dev_cmd(vdev, cmd, wait);
memcpy(args, vdev->args, nargs * sizeof(args[0]));
return err;
}
void vnic_dev_cmd_proxy_by_index_start(struct vnic_dev *vdev, uint16_t index)
{
vdev->proxy = PROXY_BY_INDEX;
vdev->proxy_index = index;
}
void vnic_dev_cmd_proxy_end(struct vnic_dev *vdev)
{
vdev->proxy = PROXY_NONE;
vdev->proxy_index = 0;
}
int vnic_dev_cmd(struct vnic_dev *vdev, enum vnic_devcmd_cmd cmd,
uint64_t *a0, uint64_t *a1, int wait)
{
uint64_t args[2];
bool vf_rep;
int vf_idx;
int err;
vf_rep = false;
if (vdev->pf_vdev) {
vf_rep = true;
vf_idx = vdev->vf_id;
/* Everything below assumes PF vdev */
vdev = vdev->pf_vdev;
}
if (vdev->lock)
vdev->lock(vdev->priv);
/* For VF representor, proxy devcmd to VF index */
if (vf_rep)
vnic_dev_cmd_proxy_by_index_start(vdev, vf_idx);
args[0] = *a0;
args[1] = *a1;
memset(vdev->args, 0, sizeof(vdev->args));
switch (vdev->proxy) {
case PROXY_BY_INDEX:
err = vnic_dev_cmd_proxy(vdev, CMD_PROXY_BY_INDEX, cmd,
args, ARRAY_SIZE(args), wait);
break;
case PROXY_BY_BDF:
err = vnic_dev_cmd_proxy(vdev, CMD_PROXY_BY_BDF, cmd,
args, ARRAY_SIZE(args), wait);
break;
case PROXY_NONE:
default:
err = vnic_dev_cmd_no_proxy(vdev, cmd, args, 2, wait);
break;
}
if (vf_rep)
vnic_dev_cmd_proxy_end(vdev);
if (vdev->unlock)
vdev->unlock(vdev->priv);
if (err == 0) {
*a0 = args[0];
*a1 = args[1];
}
return err;
}
int vnic_dev_cmd_args(struct vnic_dev *vdev, enum vnic_devcmd_cmd cmd,
uint64_t *args, int nargs, int wait)
{
bool vf_rep;
int vf_idx;
int err;
vf_rep = false;
if (vdev->pf_vdev) {
vf_rep = true;
vf_idx = vdev->vf_id;
vdev = vdev->pf_vdev;
}
if (vdev->lock)
vdev->lock(vdev->priv);
if (vf_rep)
vnic_dev_cmd_proxy_by_index_start(vdev, vf_idx);
switch (vdev->proxy) {
case PROXY_BY_INDEX:
err = vnic_dev_cmd_proxy(vdev, CMD_PROXY_BY_INDEX, cmd,
args, nargs, wait);
break;
case PROXY_BY_BDF:
err = vnic_dev_cmd_proxy(vdev, CMD_PROXY_BY_BDF, cmd,
args, nargs, wait);
break;
case PROXY_NONE:
default:
err = vnic_dev_cmd_no_proxy(vdev, cmd, args, nargs, wait);
break;
}
if (vf_rep)
vnic_dev_cmd_proxy_end(vdev);
if (vdev->unlock)
vdev->unlock(vdev->priv);
return err;
}
int vnic_dev_fw_info(struct vnic_dev *vdev,
struct vnic_devcmd_fw_info **fw_info)
{
char name[RTE_MEMZONE_NAMESIZE];
uint64_t a0, a1 = 0;
int wait = 1000;
int err = 0;
static uint32_t instance;
if (!vdev->fw_info) {
snprintf((char *)name, sizeof(name), "vnic_fw_info-%u",
instance++);
vdev->fw_info = vdev->alloc_consistent(vdev->priv,
sizeof(struct vnic_devcmd_fw_info),
&vdev->fw_info_pa, (uint8_t *)name);
if (!vdev->fw_info)
return -ENOMEM;
a0 = vdev->fw_info_pa;
a1 = sizeof(struct vnic_devcmd_fw_info);
err = vnic_dev_cmd(vdev, CMD_MCPU_FW_INFO,
&a0, &a1, wait);
}
*fw_info = vdev->fw_info;
return err;
}
static int vnic_dev_advanced_filters_cap(struct vnic_dev *vdev, uint64_t *args,
int nargs)
{
memset(args, 0, nargs * sizeof(*args));
args[0] = CMD_ADD_ADV_FILTER;
args[1] = FILTER_CAP_MODE_V1_FLAG;
return vnic_dev_cmd_args(vdev, CMD_CAPABILITY, args, nargs, 1000);
}
int vnic_dev_capable_adv_filters(struct vnic_dev *vdev)
{
uint64_t a0 = CMD_ADD_ADV_FILTER, a1 = 0;
int wait = 1000;
int err;
err = vnic_dev_cmd(vdev, CMD_CAPABILITY, &a0, &a1, wait);
if (err)
return 0;
return (a1 >= (uint32_t)FILTER_DPDK_1);
}
int vnic_dev_flowman_cmd(struct vnic_dev *vdev, uint64_t *args, int nargs)
{
int wait = 1000;
return vnic_dev_cmd_args(vdev, CMD_FLOW_MANAGER_OP, args, nargs, wait);
}
static int vnic_dev_flowman_enable(struct vnic_dev *vdev, uint32_t *mode,
uint8_t *filter_actions)
{
char name[RTE_MEMZONE_NAMESIZE];
uint64_t args[3];
uint64_t ops;
static uint32_t instance;
/* Advanced filtering is a prerequisite */
if (!vnic_dev_capable_adv_filters(vdev))
return 0;
/* flowman devcmd available? */
if (!vnic_dev_capable(vdev, CMD_FLOW_MANAGER_OP))
return 0;
/* Have the version we are using? */
args[0] = FM_API_VERSION_QUERY;
if (vnic_dev_flowman_cmd(vdev, args, 1))
return 0;
if ((args[0] & (1ULL << FM_VERSION)) == 0)
return 0;
/* Select the version */
args[0] = FM_API_VERSION_SELECT;
args[1] = FM_VERSION;
if (vnic_dev_flowman_cmd(vdev, args, 2))
return 0;
/* Can we get fm_info? */
if (!vdev->flowman_info) {
snprintf((char *)name, sizeof(name), "vnic_fm_info-%u",
instance++);
vdev->flowman_info = vdev->alloc_consistent(vdev->priv,
sizeof(struct fm_info),
&vdev->flowman_info_pa, (uint8_t *)name);
if (!vdev->flowman_info)
return 0;
}
args[0] = FM_INFO_QUERY;
args[1] = vdev->flowman_info_pa;
args[2] = sizeof(struct fm_info);
if (vnic_dev_flowman_cmd(vdev, args, 3))
return 0;
/* Have required operations? */
ops = (1ULL << FMOP_END) |
(1ULL << FMOP_DROP) |
(1ULL << FMOP_RQ_STEER) |
(1ULL << FMOP_EXACT_MATCH) |
(1ULL << FMOP_MARK) |
(1ULL << FMOP_TAG) |
(1ULL << FMOP_EG_HAIRPIN) |
(1ULL << FMOP_ENCAP) |
(1ULL << FMOP_DECAP_NOSTRIP);
if ((vdev->flowman_info->fm_op_mask & ops) != ops)
return 0;
/* Good to use flowman now */
*mode = FILTER_FLOWMAN;
*filter_actions = FILTER_ACTION_RQ_STEERING_FLAG |
FILTER_ACTION_FILTER_ID_FLAG |
FILTER_ACTION_COUNTER_FLAG |
FILTER_ACTION_DROP_FLAG;
return 1;
}
/* Determine the "best" filtering mode VIC is capable of. Returns one of 4
* value or 0 if filtering is unavailble:
* FILTER_FLOWMAN- flowman api capable
* FILTER_DPDK_1- advanced filters availabile
* FILTER_USNIC_IP_FLAG - advanced filters but with the restriction that
* the IP layer must explicitly specified. I.e. cannot have a UDP
* filter that matches both IPv4 and IPv6.
* FILTER_IPV4_5TUPLE - fallback if either of the 2 above aren't available.
* all other filter types are not available.
* Retrun true in filter_tags if supported
*/
int vnic_dev_capable_filter_mode(struct vnic_dev *vdev, uint32_t *mode,
uint8_t *filter_actions)
{
uint64_t args[4];
int err;
uint32_t max_level = 0;
/* If flowman is available, use it as it is the most capable API */
if (vnic_dev_flowman_enable(vdev, mode, filter_actions))
return 0;
err = vnic_dev_advanced_filters_cap(vdev, args, 4);
/* determine supported filter actions */
*filter_actions = FILTER_ACTION_RQ_STEERING_FLAG; /* always available */
if (args[2] == FILTER_CAP_MODE_V1)
*filter_actions = args[3];
if (err || ((args[0] == 1) && (args[1] == 0))) {
/* Adv filter Command not supported or adv filters available but
* not enabled. Try the normal filter capability command.
*/
args[0] = CMD_ADD_FILTER;
args[1] = 0;
err = vnic_dev_cmd_args(vdev, CMD_CAPABILITY, args, 2, 1000);
/*
* ERR_EPERM may be returned if, for example, vNIC is
* on a VF. It simply means no filtering is available
*/
if (err == -ERR_EPERM) {
*mode = 0;
return 0;
}
if (err)
return err;
max_level = args[1];
goto parse_max_level;
} else if (args[2] == FILTER_CAP_MODE_V1) {
/* parse filter capability mask in args[1] */
if (args[1] & FILTER_DPDK_1_FLAG)
*mode = FILTER_DPDK_1;
else if (args[1] & FILTER_USNIC_IP_FLAG)
*mode = FILTER_USNIC_IP;
else if (args[1] & FILTER_IPV4_5TUPLE_FLAG)
*mode = FILTER_IPV4_5TUPLE;
return 0;
}
max_level = args[1];
parse_max_level:
if (max_level >= (uint32_t)FILTER_USNIC_IP)
*mode = FILTER_USNIC_IP;
else
*mode = FILTER_IPV4_5TUPLE;
return 0;
}
void vnic_dev_capable_udp_rss_weak(struct vnic_dev *vdev, bool *cfg_chk,
bool *weak)
{
uint64_t a0 = CMD_NIC_CFG, a1 = 0;
int wait = 1000;
int err;
*cfg_chk = false;
*weak = false;
err = vnic_dev_cmd(vdev, CMD_CAPABILITY, &a0, &a1, wait);
if (err == 0 && a0 != 0 && a1 != 0) {
*cfg_chk = true;
*weak = !!((a1 >> 32) & CMD_NIC_CFG_CAPF_UDP_WEAK);
}
}
int vnic_dev_capable(struct vnic_dev *vdev, enum vnic_devcmd_cmd cmd)
{
uint64_t a0 = (uint32_t)cmd, a1 = 0;
int wait = 1000;
int err;
err = vnic_dev_cmd(vdev, CMD_CAPABILITY, &a0, &a1, wait);
return !(err || a0);
}
int vnic_dev_spec(struct vnic_dev *vdev, unsigned int offset, size_t size,
void *value)
{
uint64_t a0, a1;
int wait = 1000;
int err;
a0 = offset;
a1 = size;
err = vnic_dev_cmd(vdev, CMD_DEV_SPEC, &a0, &a1, wait);
switch (size) {
case 1:
*(uint8_t *)value = (uint8_t)a0;
break;
case 2:
*(uint16_t *)value = (uint16_t)a0;
break;
case 4:
*(uint32_t *)value = (uint32_t)a0;
break;
case 8:
*(uint64_t *)value = a0;
break;
default:
BUG();
break;
}
return err;
}
int vnic_dev_stats_clear(struct vnic_dev *vdev)
{
uint64_t a0 = 0, a1 = 0;
int wait = 1000;
return vnic_dev_cmd(vdev, CMD_STATS_CLEAR, &a0, &a1, wait);
}
int vnic_dev_stats_dump(struct vnic_dev *vdev, struct vnic_stats **stats)
{
uint64_t a0, a1;
int wait = 1000;
if (!vdev->stats)
return -ENOMEM;
*stats = vdev->stats;
a0 = vdev->stats_pa;
a1 = sizeof(struct vnic_stats);
return vnic_dev_cmd(vdev, CMD_STATS_DUMP, &a0, &a1, wait);
}
int vnic_dev_close(struct vnic_dev *vdev)
{
uint64_t a0 = 0, a1 = 0;
int wait = 1000;
return vnic_dev_cmd(vdev, CMD_CLOSE, &a0, &a1, wait);
}
int vnic_dev_enable_wait(struct vnic_dev *vdev)
{
uint64_t a0 = 0, a1 = 0;
int wait = 1000;
if (vnic_dev_capable(vdev, CMD_ENABLE_WAIT))
return vnic_dev_cmd(vdev, CMD_ENABLE_WAIT, &a0, &a1, wait);
else
return vnic_dev_cmd(vdev, CMD_ENABLE, &a0, &a1, wait);
}
int vnic_dev_disable(struct vnic_dev *vdev)
{
uint64_t a0 = 0, a1 = 0;
int wait = 1000;
return vnic_dev_cmd(vdev, CMD_DISABLE, &a0, &a1, wait);
}
int vnic_dev_open(struct vnic_dev *vdev, int arg)
{
uint64_t a0 = (uint32_t)arg, a1 = 0;
int wait = 1000;
return vnic_dev_cmd(vdev, CMD_OPEN, &a0, &a1, wait);
}
int vnic_dev_open_done(struct vnic_dev *vdev, int *done)
{
uint64_t a0 = 0, a1 = 0;
int wait = 1000;
int err;
*done = 0;
err = vnic_dev_cmd(vdev, CMD_OPEN_STATUS, &a0, &a1, wait);
if (err)
return err;
*done = (a0 == 0);
return 0;
}
int vnic_dev_get_mac_addr(struct vnic_dev *vdev, uint8_t *mac_addr)
{
uint64_t a0 = 0, a1 = 0;
int wait = 1000;
int err, i;
for (i = 0; i < RTE_ETHER_ADDR_LEN; i++)
mac_addr[i] = 0;
err = vnic_dev_cmd(vdev, CMD_GET_MAC_ADDR, &a0, &a1, wait);
if (err)
return err;
for (i = 0; i < RTE_ETHER_ADDR_LEN; i++)
mac_addr[i] = ((uint8_t *)&a0)[i];
return 0;
}
int vnic_dev_packet_filter(struct vnic_dev *vdev, int directed, int multicast,
int broadcast, int promisc, int allmulti)
{
uint64_t a0, a1 = 0;
int wait = 1000;
int err;
a0 = (directed ? CMD_PFILTER_DIRECTED : 0) |
(multicast ? CMD_PFILTER_MULTICAST : 0) |
(broadcast ? CMD_PFILTER_BROADCAST : 0) |
(promisc ? CMD_PFILTER_PROMISCUOUS : 0) |
(allmulti ? CMD_PFILTER_ALL_MULTICAST : 0);
err = vnic_dev_cmd(vdev, CMD_PACKET_FILTER, &a0, &a1, wait);
if (err)
pr_err("Can't set packet filter\n");
return err;
}
int vnic_dev_add_addr(struct vnic_dev *vdev, uint8_t *addr)
{
uint64_t a0 = 0, a1 = 0;
int wait = 1000;
int err;
int i;
for (i = 0; i < RTE_ETHER_ADDR_LEN; i++)
((uint8_t *)&a0)[i] = addr[i];
err = vnic_dev_cmd(vdev, CMD_ADDR_ADD, &a0, &a1, wait);
if (err)
pr_err("Can't add addr [" RTE_ETHER_ADDR_PRT_FMT "], %d\n",
addr[0], addr[1], addr[2], addr[3], addr[4], addr[5],
err);
return err;
}
int vnic_dev_del_addr(struct vnic_dev *vdev, uint8_t *addr)
{
uint64_t a0 = 0, a1 = 0;
int wait = 1000;
int err;
int i;
for (i = 0; i < RTE_ETHER_ADDR_LEN; i++)
((uint8_t *)&a0)[i] = addr[i];
err = vnic_dev_cmd(vdev, CMD_ADDR_DEL, &a0, &a1, wait);
if (err)
pr_err("Can't del addr [" RTE_ETHER_ADDR_PRT_FMT "], %d\n",
addr[0], addr[1], addr[2], addr[3], addr[4], addr[5],
err);
return err;
}
int vnic_dev_set_ig_vlan_rewrite_mode(struct vnic_dev *vdev,
uint8_t ig_vlan_rewrite_mode)
{
uint64_t a0 = ig_vlan_rewrite_mode, a1 = 0;
int wait = 1000;
if (vnic_dev_capable(vdev, CMD_IG_VLAN_REWRITE_MODE))
return vnic_dev_cmd(vdev, CMD_IG_VLAN_REWRITE_MODE,
&a0, &a1, wait);
else
return 0;
}
void vnic_dev_set_reset_flag(struct vnic_dev *vdev, int state)
{
vdev->in_reset = state;
}
static inline int vnic_dev_in_reset(struct vnic_dev *vdev)
{
return vdev->in_reset;
}
int vnic_dev_notify_setcmd(struct vnic_dev *vdev,
void *notify_addr, dma_addr_t notify_pa, uint16_t intr)
{
uint64_t a0, a1;
int wait = 1000;
int r;
memset(notify_addr, 0, sizeof(struct vnic_devcmd_notify));
if (!vnic_dev_in_reset(vdev)) {
vdev->notify = notify_addr;
vdev->notify_pa = notify_pa;
}
a0 = (uint64_t)notify_pa;
a1 = ((uint64_t)intr << 32) & 0x0000ffff00000000ULL;
a1 += sizeof(struct vnic_devcmd_notify);
r = vnic_dev_cmd(vdev, CMD_NOTIFY, &a0, &a1, wait);
if (!vnic_dev_in_reset(vdev))
vdev->notify_sz = (r == 0) ? (uint32_t)a1 : 0;
return r;
}
int vnic_dev_notify_set(struct vnic_dev *vdev, uint16_t intr)
{
void *notify_addr = NULL;
dma_addr_t notify_pa = 0;
char name[RTE_MEMZONE_NAMESIZE];
static uint32_t instance;
if (vdev->notify || vdev->notify_pa) {
return vnic_dev_notify_setcmd(vdev, vdev->notify,
vdev->notify_pa, intr);
}
if (!vnic_dev_in_reset(vdev)) {
snprintf((char *)name, sizeof(name),
"vnic_notify-%u", instance++);
notify_addr = vdev->alloc_consistent(vdev->priv,
sizeof(struct vnic_devcmd_notify),
&notify_pa, (uint8_t *)name);
if (!notify_addr)
return -ENOMEM;
}
return vnic_dev_notify_setcmd(vdev, notify_addr, notify_pa, intr);
}
int vnic_dev_notify_unsetcmd(struct vnic_dev *vdev)
{
uint64_t a0, a1;
int wait = 1000;
int err;
a0 = 0; /* paddr = 0 to unset notify buffer */
a1 = 0x0000ffff00000000ULL; /* intr num = -1 to unreg for intr */
a1 += sizeof(struct vnic_devcmd_notify);
err = vnic_dev_cmd(vdev, CMD_NOTIFY, &a0, &a1, wait);
if (!vnic_dev_in_reset(vdev)) {
vdev->notify = NULL;
vdev->notify_pa = 0;
vdev->notify_sz = 0;
}
return err;
}
int vnic_dev_notify_unset(struct vnic_dev *vdev)
{
if (vdev->notify && !vnic_dev_in_reset(vdev)) {
vdev->free_consistent(vdev->priv,
sizeof(struct vnic_devcmd_notify),
vdev->notify,
vdev->notify_pa);
}
return vnic_dev_notify_unsetcmd(vdev);
}
static int vnic_dev_notify_ready(struct vnic_dev *vdev)
{
uint32_t *words;
unsigned int nwords = vdev->notify_sz / 4;
unsigned int i;
uint32_t csum;
if (!vdev->notify || !vdev->notify_sz)
return 0;
do {
csum = 0;
rte_memcpy(&vdev->notify_copy, vdev->notify, vdev->notify_sz);
words = (uint32_t *)&vdev->notify_copy;
for (i = 1; i < nwords; i++)
csum += words[i];
} while (csum != words[0]);
return 1;
}
int vnic_dev_init(struct vnic_dev *vdev, int arg)
{
uint64_t a0 = (uint32_t)arg, a1 = 0;
int wait = 1000;
int r = 0;
if (vnic_dev_capable(vdev, CMD_INIT))
r = vnic_dev_cmd(vdev, CMD_INIT, &a0, &a1, wait);
else {
vnic_dev_cmd(vdev, CMD_INIT_v1, &a0, &a1, wait);
if (a0 & CMD_INITF_DEFAULT_MAC) {
/* Emulate these for old CMD_INIT_v1 which
* didn't pass a0 so no CMD_INITF_*.
*/
vnic_dev_cmd(vdev, CMD_GET_MAC_ADDR, &a0, &a1, wait);
vnic_dev_cmd(vdev, CMD_ADDR_ADD, &a0, &a1, wait);
}
}
return r;
}
void vnic_dev_intr_coal_timer_info_default(struct vnic_dev *vdev)
{
/* Default: hardware intr coal timer is in units of 1.5 usecs */
vdev->intr_coal_timer_info.mul = 2;
vdev->intr_coal_timer_info.div = 3;
vdev->intr_coal_timer_info.max_usec =
vnic_dev_intr_coal_timer_hw_to_usec(vdev, 0xffff);
}
int vnic_dev_link_status(struct vnic_dev *vdev)
{
if (!vnic_dev_notify_ready(vdev))
return 0;
return vdev->notify_copy.link_state;
}
uint32_t vnic_dev_port_speed(struct vnic_dev *vdev)
{
if (!vnic_dev_notify_ready(vdev))
return 0;
return vdev->notify_copy.port_speed;
}
uint32_t vnic_dev_mtu(struct vnic_dev *vdev)
{
if (!vnic_dev_notify_ready(vdev))
return 0;
return vdev->notify_copy.mtu;
}
uint32_t vnic_dev_uif(struct vnic_dev *vdev)
{
if (!vnic_dev_notify_ready(vdev))
return 0;
return vdev->notify_copy.uif;
}
uint32_t vnic_dev_intr_coal_timer_usec_to_hw(struct vnic_dev *vdev,
uint32_t usec)
{
return (usec * vdev->intr_coal_timer_info.mul) /
vdev->intr_coal_timer_info.div;
}
uint32_t vnic_dev_intr_coal_timer_hw_to_usec(struct vnic_dev *vdev,
uint32_t hw_cycles)
{
return (hw_cycles * vdev->intr_coal_timer_info.div) /
vdev->intr_coal_timer_info.mul;
}
uint32_t vnic_dev_get_intr_coal_timer_max(struct vnic_dev *vdev)
{
return vdev->intr_coal_timer_info.max_usec;
}
int vnic_dev_alloc_stats_mem(struct vnic_dev *vdev)
{
char name[RTE_MEMZONE_NAMESIZE];
static uint32_t instance;
snprintf((char *)name, sizeof(name), "vnic_stats-%u", instance++);
vdev->stats = vdev->alloc_consistent(vdev->priv,
sizeof(struct vnic_stats),
&vdev->stats_pa, (uint8_t *)name);
return vdev->stats == NULL ? -ENOMEM : 0;
}
void vnic_dev_unregister(struct vnic_dev *vdev)
{
if (vdev) {
if (vdev->notify)
vdev->free_consistent(vdev->priv,
sizeof(struct vnic_devcmd_notify),
vdev->notify,
vdev->notify_pa);
if (vdev->stats)
vdev->free_consistent(vdev->priv,
sizeof(struct vnic_stats),
vdev->stats, vdev->stats_pa);
if (vdev->flowman_info)
vdev->free_consistent(vdev->priv,
sizeof(struct fm_info),
vdev->flowman_info, vdev->flowman_info_pa);
if (vdev->fw_info)
vdev->free_consistent(vdev->priv,
sizeof(struct vnic_devcmd_fw_info),
vdev->fw_info, vdev->fw_info_pa);
rte_free(vdev);
}
}
struct vnic_dev *vnic_dev_register(struct vnic_dev *vdev,
void *priv, struct rte_pci_device *pdev, struct vnic_dev_bar *bar,
unsigned int num_bars)
{
if (!vdev) {
char name[RTE_MEMZONE_NAMESIZE];
snprintf((char *)name, sizeof(name), "%s-vnic",
pdev->device.name);
vdev = (struct vnic_dev *)rte_zmalloc_socket(name,
sizeof(struct vnic_dev),
RTE_CACHE_LINE_SIZE,
pdev->device.numa_node);
if (!vdev)
return NULL;
}
vdev->priv = priv;
vdev->pdev = pdev;
if (vnic_dev_discover_res(vdev, bar, num_bars))
goto err_out;
vdev->devcmd = vnic_dev_get_res(vdev, RES_TYPE_DEVCMD, 0);
if (!vdev->devcmd)
goto err_out;
return vdev;
err_out:
vnic_dev_unregister(vdev);
return NULL;
}
struct vnic_dev *vnic_vf_rep_register(void *priv, struct vnic_dev *pf_vdev,
int vf_id)
{
struct vnic_dev *vdev;
vdev = (struct vnic_dev *)rte_zmalloc("enic-vf-rep-vdev",
sizeof(struct vnic_dev), RTE_CACHE_LINE_SIZE);
if (!vdev)
return NULL;
vdev->priv = priv;
vdev->pf_vdev = pf_vdev;
vdev->vf_id = vf_id;
vdev->alloc_consistent = pf_vdev->alloc_consistent;
vdev->free_consistent = pf_vdev->free_consistent;
return vdev;
}
/*
* vnic_dev_classifier: Add/Delete classifier entries
* @vdev: vdev of the device
* @cmd: CLSF_ADD for Add filter
* CLSF_DEL for Delete filter
* @entry: In case of ADD filter, the caller passes the RQ number in this
* variable.
* This function stores the filter_id returned by the
* firmware in the same variable before return;
*
* In case of DEL filter, the caller passes the RQ number. Return
* value is irrelevant.
* @data: filter data
* @action: action data
*/
int vnic_dev_classifier(struct vnic_dev *vdev, uint8_t cmd, uint16_t *entry,
struct filter_v2 *data, struct filter_action_v2 *action_v2)
{
uint64_t a0 = 0, a1 = 0;
int wait = 1000;
dma_addr_t tlv_pa;
int ret = -EINVAL;
struct filter_tlv *tlv, *tlv_va;
uint64_t tlv_size;
uint32_t filter_size, action_size;
static unsigned int unique_id;
char z_name[RTE_MEMZONE_NAMESIZE];
enum vnic_devcmd_cmd dev_cmd;
if (cmd == CLSF_ADD) {
dev_cmd = (data->type >= FILTER_DPDK_1) ?
CMD_ADD_ADV_FILTER : CMD_ADD_FILTER;
filter_size = vnic_filter_size(data);
action_size = vnic_action_size(action_v2);
tlv_size = filter_size + action_size +
2*sizeof(struct filter_tlv);
snprintf((char *)z_name, sizeof(z_name),
"vnic_clsf_%u", unique_id++);
tlv_va = vdev->alloc_consistent(vdev->priv,
tlv_size, &tlv_pa, (uint8_t *)z_name);
if (!tlv_va)
return -ENOMEM;
tlv = tlv_va;
a0 = tlv_pa;
a1 = tlv_size;
memset(tlv, 0, tlv_size);
tlv->type = CLSF_TLV_FILTER;
tlv->length = filter_size;
memcpy(&tlv->val, (void *)data, filter_size);
tlv = (struct filter_tlv *)((char *)tlv +
sizeof(struct filter_tlv) +
filter_size);
tlv->type = CLSF_TLV_ACTION;
tlv->length = action_size;
memcpy(&tlv->val, (void *)action_v2, action_size);
ret = vnic_dev_cmd(vdev, dev_cmd, &a0, &a1, wait);
*entry = (uint16_t)a0;
vdev->free_consistent(vdev->priv, tlv_size, tlv_va, tlv_pa);
} else if (cmd == CLSF_DEL) {
a0 = *entry;
ret = vnic_dev_cmd(vdev, CMD_DEL_FILTER, &a0, &a1, wait);
}
return ret;
}
int vnic_dev_overlay_offload_ctrl(struct vnic_dev *vdev, uint8_t overlay,
uint8_t config)
{
uint64_t a0 = overlay;
uint64_t a1 = config;
int wait = 1000;
return vnic_dev_cmd(vdev, CMD_OVERLAY_OFFLOAD_CTRL, &a0, &a1, wait);
}
int vnic_dev_overlay_offload_cfg(struct vnic_dev *vdev, uint8_t overlay,
uint16_t vxlan_udp_port_number)
{
uint64_t a1 = vxlan_udp_port_number;
uint64_t a0 = overlay;
int wait = 1000;
return vnic_dev_cmd(vdev, CMD_OVERLAY_OFFLOAD_CFG, &a0, &a1, wait);
}
int vnic_dev_capable_vxlan(struct vnic_dev *vdev)
{
uint64_t a0 = VIC_FEATURE_VXLAN;
uint64_t a1 = 0;
int wait = 1000;
int ret;
ret = vnic_dev_cmd(vdev, CMD_GET_SUPP_FEATURE_VER, &a0, &a1, wait);
/* 1 if the NIC can do VXLAN for both IPv4 and IPv6 with multiple WQs */
return ret == 0 &&
(a1 & (FEATURE_VXLAN_IPV6 | FEATURE_VXLAN_MULTI_WQ)) ==
(FEATURE_VXLAN_IPV6 | FEATURE_VXLAN_MULTI_WQ);
}
int vnic_dev_capable_geneve(struct vnic_dev *vdev)
{
uint64_t a0 = VIC_FEATURE_GENEVE;
uint64_t a1 = 0;
int wait = 1000;
int ret;
ret = vnic_dev_cmd(vdev, CMD_GET_SUPP_FEATURE_VER, &a0, &a1, wait);
return ret == 0 && !!(a1 & FEATURE_GENEVE_OPTIONS);
}
uint64_t vnic_dev_capable_cq_entry_size(struct vnic_dev *vdev)
{
uint64_t a0 = CMD_CQ_ENTRY_SIZE_SET;
uint64_t a1 = 0;
int wait = 1000;
int ret;
ret = vnic_dev_cmd(vdev, CMD_CAPABILITY, &a0, &a1, wait);
/* All models support 16B CQ entry by default */
if (!(ret == 0 && a0 == 0))
a1 = VNIC_RQ_CQ_ENTRY_SIZE_16_CAPABLE;
return a1;
}
int vnic_dev_set_cq_entry_size(struct vnic_dev *vdev, uint32_t rq_idx,
uint32_t size_flag)
{
uint64_t a0 = rq_idx;
uint64_t a1 = size_flag;
int wait = 1000;
return vnic_dev_cmd(vdev, CMD_CQ_ENTRY_SIZE_SET, &a0, &a1, wait);
}