mirror of https://github.com/F-Stack/f-stack.git
402 lines
11 KiB
C
402 lines
11 KiB
C
/* SPDX-License-Identifier: BSD-3-Clause
|
|
* Copyright 2018-2020 NXP
|
|
*/
|
|
|
|
#include <stdbool.h>
|
|
#include <stdint.h>
|
|
#include <unistd.h>
|
|
|
|
#include "rte_ethdev.h"
|
|
#include "rte_malloc.h"
|
|
#include "rte_memzone.h"
|
|
|
|
#include "base/enetc_hw.h"
|
|
#include "enetc.h"
|
|
#include "enetc_logs.h"
|
|
|
|
#define ENETC_CACHE_LINE_RXBDS (RTE_CACHE_LINE_SIZE / \
|
|
sizeof(union enetc_rx_bd))
|
|
#define ENETC_RXBD_BUNDLE 16 /* Number of buffers to allocate at once */
|
|
|
|
static int
|
|
enetc_clean_tx_ring(struct enetc_bdr *tx_ring)
|
|
{
|
|
int tx_frm_cnt = 0;
|
|
struct enetc_swbd *tx_swbd, *tx_swbd_base;
|
|
int i, hwci, bd_count;
|
|
struct rte_mbuf *m[ENETC_RXBD_BUNDLE];
|
|
|
|
/* we don't need barriers here, we just want a relatively current value
|
|
* from HW.
|
|
*/
|
|
hwci = (int)(rte_read32_relaxed(tx_ring->tcisr) &
|
|
ENETC_TBCISR_IDX_MASK);
|
|
|
|
tx_swbd_base = tx_ring->q_swbd;
|
|
bd_count = tx_ring->bd_count;
|
|
i = tx_ring->next_to_clean;
|
|
tx_swbd = &tx_swbd_base[i];
|
|
|
|
/* we're only reading the CI index once here, which means HW may update
|
|
* it while we're doing clean-up. We could read the register in a loop
|
|
* but for now I assume it's OK to leave a few Tx frames for next call.
|
|
* The issue with reading the register in a loop is that we're stalling
|
|
* here trying to catch up with HW which keeps sending traffic as long
|
|
* as it has traffic to send, so in effect we could be waiting here for
|
|
* the Tx ring to be drained by HW, instead of us doing Rx in that
|
|
* meantime.
|
|
*/
|
|
while (i != hwci) {
|
|
/* It seems calling rte_pktmbuf_free is wasting a lot of cycles,
|
|
* make a list and call _free when it's done.
|
|
*/
|
|
if (tx_frm_cnt == ENETC_RXBD_BUNDLE) {
|
|
rte_pktmbuf_free_bulk(m, tx_frm_cnt);
|
|
tx_frm_cnt = 0;
|
|
}
|
|
|
|
m[tx_frm_cnt] = tx_swbd->buffer_addr;
|
|
tx_swbd->buffer_addr = NULL;
|
|
|
|
i++;
|
|
tx_swbd++;
|
|
if (unlikely(i == bd_count)) {
|
|
i = 0;
|
|
tx_swbd = tx_swbd_base;
|
|
}
|
|
|
|
tx_frm_cnt++;
|
|
}
|
|
|
|
if (tx_frm_cnt)
|
|
rte_pktmbuf_free_bulk(m, tx_frm_cnt);
|
|
|
|
tx_ring->next_to_clean = i;
|
|
|
|
return 0;
|
|
}
|
|
|
|
uint16_t
|
|
enetc_xmit_pkts(void *tx_queue,
|
|
struct rte_mbuf **tx_pkts,
|
|
uint16_t nb_pkts)
|
|
{
|
|
struct enetc_swbd *tx_swbd;
|
|
int i, start, bds_to_use;
|
|
struct enetc_tx_bd *txbd;
|
|
struct enetc_bdr *tx_ring = (struct enetc_bdr *)tx_queue;
|
|
|
|
i = tx_ring->next_to_use;
|
|
|
|
bds_to_use = enetc_bd_unused(tx_ring);
|
|
if (bds_to_use < nb_pkts)
|
|
nb_pkts = bds_to_use;
|
|
|
|
start = 0;
|
|
while (nb_pkts--) {
|
|
tx_ring->q_swbd[i].buffer_addr = tx_pkts[start];
|
|
txbd = ENETC_TXBD(*tx_ring, i);
|
|
tx_swbd = &tx_ring->q_swbd[i];
|
|
txbd->frm_len = tx_pkts[start]->pkt_len;
|
|
txbd->buf_len = txbd->frm_len;
|
|
txbd->flags = rte_cpu_to_le_16(ENETC_TXBD_FLAGS_F);
|
|
txbd->addr = (uint64_t)(uintptr_t)
|
|
rte_cpu_to_le_64((size_t)tx_swbd->buffer_addr->buf_iova +
|
|
tx_swbd->buffer_addr->data_off);
|
|
i++;
|
|
start++;
|
|
if (unlikely(i == tx_ring->bd_count))
|
|
i = 0;
|
|
}
|
|
|
|
/* we're only cleaning up the Tx ring here, on the assumption that
|
|
* software is slower than hardware and hardware completed sending
|
|
* older frames out by now.
|
|
* We're also cleaning up the ring before kicking off Tx for the new
|
|
* batch to minimize chances of contention on the Tx ring
|
|
*/
|
|
enetc_clean_tx_ring(tx_ring);
|
|
|
|
tx_ring->next_to_use = i;
|
|
enetc_wr_reg(tx_ring->tcir, i);
|
|
return start;
|
|
}
|
|
|
|
int
|
|
enetc_refill_rx_ring(struct enetc_bdr *rx_ring, const int buff_cnt)
|
|
{
|
|
struct enetc_swbd *rx_swbd;
|
|
union enetc_rx_bd *rxbd;
|
|
int i, j, k = ENETC_RXBD_BUNDLE;
|
|
struct rte_mbuf *m[ENETC_RXBD_BUNDLE];
|
|
struct rte_mempool *mb_pool;
|
|
|
|
i = rx_ring->next_to_use;
|
|
mb_pool = rx_ring->mb_pool;
|
|
rx_swbd = &rx_ring->q_swbd[i];
|
|
rxbd = ENETC_RXBD(*rx_ring, i);
|
|
for (j = 0; j < buff_cnt; j++) {
|
|
/* bulk alloc for the next up to 8 BDs */
|
|
if (k == ENETC_RXBD_BUNDLE) {
|
|
k = 0;
|
|
int m_cnt = RTE_MIN(buff_cnt - j, ENETC_RXBD_BUNDLE);
|
|
|
|
if (rte_pktmbuf_alloc_bulk(mb_pool, m, m_cnt))
|
|
return -1;
|
|
}
|
|
|
|
rx_swbd->buffer_addr = m[k];
|
|
rxbd->w.addr = (uint64_t)(uintptr_t)
|
|
rx_swbd->buffer_addr->buf_iova +
|
|
rx_swbd->buffer_addr->data_off;
|
|
/* clear 'R" as well */
|
|
rxbd->r.lstatus = 0;
|
|
rx_swbd++;
|
|
rxbd++;
|
|
i++;
|
|
k++;
|
|
if (unlikely(i == rx_ring->bd_count)) {
|
|
i = 0;
|
|
rxbd = ENETC_RXBD(*rx_ring, 0);
|
|
rx_swbd = &rx_ring->q_swbd[i];
|
|
}
|
|
}
|
|
|
|
if (likely(j)) {
|
|
rx_ring->next_to_alloc = i;
|
|
rx_ring->next_to_use = i;
|
|
enetc_wr_reg(rx_ring->rcir, i);
|
|
}
|
|
|
|
return j;
|
|
}
|
|
|
|
static inline void enetc_slow_parsing(struct rte_mbuf *m,
|
|
uint64_t parse_results)
|
|
{
|
|
m->ol_flags &= ~(RTE_MBUF_F_RX_IP_CKSUM_GOOD | RTE_MBUF_F_RX_L4_CKSUM_GOOD);
|
|
|
|
switch (parse_results) {
|
|
case ENETC_PARSE_ERROR | ENETC_PKT_TYPE_IPV4:
|
|
m->packet_type = RTE_PTYPE_L2_ETHER |
|
|
RTE_PTYPE_L3_IPV4;
|
|
m->ol_flags |= RTE_MBUF_F_RX_IP_CKSUM_BAD;
|
|
return;
|
|
case ENETC_PARSE_ERROR | ENETC_PKT_TYPE_IPV6:
|
|
m->packet_type = RTE_PTYPE_L2_ETHER |
|
|
RTE_PTYPE_L3_IPV6;
|
|
m->ol_flags |= RTE_MBUF_F_RX_IP_CKSUM_BAD;
|
|
return;
|
|
case ENETC_PARSE_ERROR | ENETC_PKT_TYPE_IPV4_TCP:
|
|
m->packet_type = RTE_PTYPE_L2_ETHER |
|
|
RTE_PTYPE_L3_IPV4 |
|
|
RTE_PTYPE_L4_TCP;
|
|
m->ol_flags |= RTE_MBUF_F_RX_IP_CKSUM_GOOD |
|
|
RTE_MBUF_F_RX_L4_CKSUM_BAD;
|
|
return;
|
|
case ENETC_PARSE_ERROR | ENETC_PKT_TYPE_IPV6_TCP:
|
|
m->packet_type = RTE_PTYPE_L2_ETHER |
|
|
RTE_PTYPE_L3_IPV6 |
|
|
RTE_PTYPE_L4_TCP;
|
|
m->ol_flags |= RTE_MBUF_F_RX_IP_CKSUM_GOOD |
|
|
RTE_MBUF_F_RX_L4_CKSUM_BAD;
|
|
return;
|
|
case ENETC_PARSE_ERROR | ENETC_PKT_TYPE_IPV4_UDP:
|
|
m->packet_type = RTE_PTYPE_L2_ETHER |
|
|
RTE_PTYPE_L3_IPV4 |
|
|
RTE_PTYPE_L4_UDP;
|
|
m->ol_flags |= RTE_MBUF_F_RX_IP_CKSUM_GOOD |
|
|
RTE_MBUF_F_RX_L4_CKSUM_BAD;
|
|
return;
|
|
case ENETC_PARSE_ERROR | ENETC_PKT_TYPE_IPV6_UDP:
|
|
m->packet_type = RTE_PTYPE_L2_ETHER |
|
|
RTE_PTYPE_L3_IPV6 |
|
|
RTE_PTYPE_L4_UDP;
|
|
m->ol_flags |= RTE_MBUF_F_RX_IP_CKSUM_GOOD |
|
|
RTE_MBUF_F_RX_L4_CKSUM_BAD;
|
|
return;
|
|
case ENETC_PARSE_ERROR | ENETC_PKT_TYPE_IPV4_SCTP:
|
|
m->packet_type = RTE_PTYPE_L2_ETHER |
|
|
RTE_PTYPE_L3_IPV4 |
|
|
RTE_PTYPE_L4_SCTP;
|
|
m->ol_flags |= RTE_MBUF_F_RX_IP_CKSUM_GOOD |
|
|
RTE_MBUF_F_RX_L4_CKSUM_BAD;
|
|
return;
|
|
case ENETC_PARSE_ERROR | ENETC_PKT_TYPE_IPV6_SCTP:
|
|
m->packet_type = RTE_PTYPE_L2_ETHER |
|
|
RTE_PTYPE_L3_IPV6 |
|
|
RTE_PTYPE_L4_SCTP;
|
|
m->ol_flags |= RTE_MBUF_F_RX_IP_CKSUM_GOOD |
|
|
RTE_MBUF_F_RX_L4_CKSUM_BAD;
|
|
return;
|
|
case ENETC_PARSE_ERROR | ENETC_PKT_TYPE_IPV4_ICMP:
|
|
m->packet_type = RTE_PTYPE_L2_ETHER |
|
|
RTE_PTYPE_L3_IPV4 |
|
|
RTE_PTYPE_L4_ICMP;
|
|
m->ol_flags |= RTE_MBUF_F_RX_IP_CKSUM_GOOD |
|
|
RTE_MBUF_F_RX_L4_CKSUM_BAD;
|
|
return;
|
|
case ENETC_PARSE_ERROR | ENETC_PKT_TYPE_IPV6_ICMP:
|
|
m->packet_type = RTE_PTYPE_L2_ETHER |
|
|
RTE_PTYPE_L3_IPV6 |
|
|
RTE_PTYPE_L4_ICMP;
|
|
m->ol_flags |= RTE_MBUF_F_RX_IP_CKSUM_GOOD |
|
|
RTE_MBUF_F_RX_L4_CKSUM_BAD;
|
|
return;
|
|
/* More switch cases can be added */
|
|
default:
|
|
m->packet_type = RTE_PTYPE_UNKNOWN;
|
|
m->ol_flags |= RTE_MBUF_F_RX_IP_CKSUM_UNKNOWN |
|
|
RTE_MBUF_F_RX_L4_CKSUM_UNKNOWN;
|
|
}
|
|
}
|
|
|
|
|
|
static inline void __rte_hot
|
|
enetc_dev_rx_parse(struct rte_mbuf *m, uint16_t parse_results)
|
|
{
|
|
ENETC_PMD_DP_DEBUG("parse summary = 0x%x ", parse_results);
|
|
m->ol_flags |= RTE_MBUF_F_RX_IP_CKSUM_GOOD | RTE_MBUF_F_RX_L4_CKSUM_GOOD;
|
|
|
|
switch (parse_results) {
|
|
case ENETC_PKT_TYPE_ETHER:
|
|
m->packet_type = RTE_PTYPE_L2_ETHER;
|
|
return;
|
|
case ENETC_PKT_TYPE_IPV4:
|
|
m->packet_type = RTE_PTYPE_L2_ETHER |
|
|
RTE_PTYPE_L3_IPV4;
|
|
return;
|
|
case ENETC_PKT_TYPE_IPV6:
|
|
m->packet_type = RTE_PTYPE_L2_ETHER |
|
|
RTE_PTYPE_L3_IPV6;
|
|
return;
|
|
case ENETC_PKT_TYPE_IPV4_TCP:
|
|
m->packet_type = RTE_PTYPE_L2_ETHER |
|
|
RTE_PTYPE_L3_IPV4 |
|
|
RTE_PTYPE_L4_TCP;
|
|
return;
|
|
case ENETC_PKT_TYPE_IPV6_TCP:
|
|
m->packet_type = RTE_PTYPE_L2_ETHER |
|
|
RTE_PTYPE_L3_IPV6 |
|
|
RTE_PTYPE_L4_TCP;
|
|
return;
|
|
case ENETC_PKT_TYPE_IPV4_UDP:
|
|
m->packet_type = RTE_PTYPE_L2_ETHER |
|
|
RTE_PTYPE_L3_IPV4 |
|
|
RTE_PTYPE_L4_UDP;
|
|
return;
|
|
case ENETC_PKT_TYPE_IPV6_UDP:
|
|
m->packet_type = RTE_PTYPE_L2_ETHER |
|
|
RTE_PTYPE_L3_IPV6 |
|
|
RTE_PTYPE_L4_UDP;
|
|
return;
|
|
case ENETC_PKT_TYPE_IPV4_SCTP:
|
|
m->packet_type = RTE_PTYPE_L2_ETHER |
|
|
RTE_PTYPE_L3_IPV4 |
|
|
RTE_PTYPE_L4_SCTP;
|
|
return;
|
|
case ENETC_PKT_TYPE_IPV6_SCTP:
|
|
m->packet_type = RTE_PTYPE_L2_ETHER |
|
|
RTE_PTYPE_L3_IPV6 |
|
|
RTE_PTYPE_L4_SCTP;
|
|
return;
|
|
case ENETC_PKT_TYPE_IPV4_ICMP:
|
|
m->packet_type = RTE_PTYPE_L2_ETHER |
|
|
RTE_PTYPE_L3_IPV4 |
|
|
RTE_PTYPE_L4_ICMP;
|
|
return;
|
|
case ENETC_PKT_TYPE_IPV6_ICMP:
|
|
m->packet_type = RTE_PTYPE_L2_ETHER |
|
|
RTE_PTYPE_L3_IPV6 |
|
|
RTE_PTYPE_L4_ICMP;
|
|
return;
|
|
/* More switch cases can be added */
|
|
default:
|
|
enetc_slow_parsing(m, parse_results);
|
|
}
|
|
|
|
}
|
|
|
|
static int
|
|
enetc_clean_rx_ring(struct enetc_bdr *rx_ring,
|
|
struct rte_mbuf **rx_pkts,
|
|
int work_limit)
|
|
{
|
|
int rx_frm_cnt = 0;
|
|
int cleaned_cnt, i, bd_count;
|
|
struct enetc_swbd *rx_swbd;
|
|
union enetc_rx_bd *rxbd;
|
|
|
|
/* next descriptor to process */
|
|
i = rx_ring->next_to_clean;
|
|
/* next descriptor to process */
|
|
rxbd = ENETC_RXBD(*rx_ring, i);
|
|
rte_prefetch0(rxbd);
|
|
bd_count = rx_ring->bd_count;
|
|
/* LS1028A does not have platform cache so any software access following
|
|
* a hardware write will go directly to DDR. Latency of such a read is
|
|
* in excess of 100 core cycles, so try to prefetch more in advance to
|
|
* mitigate this.
|
|
* How much is worth prefetching really depends on traffic conditions.
|
|
* With congested Rx this could go up to 4 cache lines or so. But if
|
|
* software keeps up with hardware and follows behind Rx PI by a cache
|
|
* line or less then it's harmful in terms of performance to cache more.
|
|
* We would only prefetch BDs that have yet to be written by ENETC,
|
|
* which will have to be evicted again anyway.
|
|
*/
|
|
rte_prefetch0(ENETC_RXBD(*rx_ring,
|
|
(i + ENETC_CACHE_LINE_RXBDS) % bd_count));
|
|
rte_prefetch0(ENETC_RXBD(*rx_ring,
|
|
(i + ENETC_CACHE_LINE_RXBDS * 2) % bd_count));
|
|
|
|
cleaned_cnt = enetc_bd_unused(rx_ring);
|
|
rx_swbd = &rx_ring->q_swbd[i];
|
|
while (likely(rx_frm_cnt < work_limit)) {
|
|
uint32_t bd_status;
|
|
|
|
bd_status = rte_le_to_cpu_32(rxbd->r.lstatus);
|
|
if (!bd_status)
|
|
break;
|
|
|
|
rx_swbd->buffer_addr->pkt_len = rxbd->r.buf_len -
|
|
rx_ring->crc_len;
|
|
rx_swbd->buffer_addr->data_len = rxbd->r.buf_len -
|
|
rx_ring->crc_len;
|
|
rx_swbd->buffer_addr->hash.rss = rxbd->r.rss_hash;
|
|
rx_swbd->buffer_addr->ol_flags = 0;
|
|
enetc_dev_rx_parse(rx_swbd->buffer_addr,
|
|
rxbd->r.parse_summary);
|
|
rx_pkts[rx_frm_cnt] = rx_swbd->buffer_addr;
|
|
cleaned_cnt++;
|
|
rx_swbd++;
|
|
i++;
|
|
if (unlikely(i == rx_ring->bd_count)) {
|
|
i = 0;
|
|
rx_swbd = &rx_ring->q_swbd[i];
|
|
}
|
|
rxbd = ENETC_RXBD(*rx_ring, i);
|
|
rte_prefetch0(ENETC_RXBD(*rx_ring,
|
|
(i + ENETC_CACHE_LINE_RXBDS) %
|
|
bd_count));
|
|
rte_prefetch0(ENETC_RXBD(*rx_ring,
|
|
(i + ENETC_CACHE_LINE_RXBDS * 2) %
|
|
bd_count));
|
|
|
|
rx_frm_cnt++;
|
|
}
|
|
|
|
rx_ring->next_to_clean = i;
|
|
enetc_refill_rx_ring(rx_ring, cleaned_cnt);
|
|
|
|
return rx_frm_cnt;
|
|
}
|
|
|
|
uint16_t
|
|
enetc_recv_pkts(void *rxq, struct rte_mbuf **rx_pkts,
|
|
uint16_t nb_pkts)
|
|
{
|
|
struct enetc_bdr *rx_ring = (struct enetc_bdr *)rxq;
|
|
|
|
return enetc_clean_rx_ring(rx_ring, rx_pkts, nb_pkts);
|
|
}
|