f-stack/dpdk/drivers/net/bnxt/bnxt_rxtx_vec_avx2.c

588 lines
19 KiB
C

/* SPDX-License-Identifier: BSD-3-Clause */
/* Copyright(c) 2019-2021 Broadcom All rights reserved. */
#include <inttypes.h>
#include <stdbool.h>
#include <rte_bitmap.h>
#include <rte_byteorder.h>
#include <rte_malloc.h>
#include <rte_memory.h>
#include <rte_vect.h>
#include "bnxt.h"
#include "bnxt_cpr.h"
#include "bnxt_ring.h"
#include "bnxt_txq.h"
#include "bnxt_txr.h"
#include "bnxt_rxtx_vec_common.h"
#include <unistd.h>
static uint16_t
recv_burst_vec_avx2(void *rx_queue, struct rte_mbuf **rx_pkts, uint16_t nb_pkts)
{
struct bnxt_rx_queue *rxq = rx_queue;
const __m256i mbuf_init =
_mm256_set_epi64x(0, 0, 0, rxq->mbuf_initializer);
struct bnxt_cp_ring_info *cpr = rxq->cp_ring;
struct bnxt_rx_ring_info *rxr = rxq->rx_ring;
uint16_t cp_ring_size = cpr->cp_ring_struct->ring_size;
uint16_t rx_ring_size = rxr->rx_ring_struct->ring_size;
struct cmpl_base *cp_desc_ring = cpr->cp_desc_ring;
uint64_t valid, desc_valid_mask = ~0ULL;
const __m256i info3_v_mask = _mm256_set1_epi32(CMPL_BASE_V);
uint32_t raw_cons = cpr->cp_raw_cons;
uint32_t cons, mbcons;
int nb_rx_pkts = 0;
int i;
const __m256i valid_target =
_mm256_set1_epi32(!!(raw_cons & cp_ring_size));
const __m256i dsc_shuf_msk =
_mm256_set_epi8(0xff, 0xff, 0xff, 0xff, /* Zeroes. */
7, 6, /* metadata type */
9, 8, /* flags2 low 16 */
5, 4, /* vlan_tci */
1, 0, /* errors_v2 */
0xff, 0xff, 0xff, 0xff, /* Zeroes. */
0xff, 0xff, 0xff, 0xff, /* Zeroes. */
7, 6, /* metadata type */
9, 8, /* flags2 low 16 */
5, 4, /* vlan_tci */
1, 0, /* errors_v2 */
0xff, 0xff, 0xff, 0xff); /* Zeroes. */
const __m256i shuf_msk =
_mm256_set_epi8(15, 14, 13, 12, /* rss */
7, 6, /* vlan_tci */
3, 2, /* data_len */
0xFF, 0xFF, 3, 2, /* pkt_len */
0xFF, 0xFF, 0xFF, 0xFF, /* pkt_type (zeroes) */
15, 14, 13, 12, /* rss */
7, 6, /* vlan_tci */
3, 2, /* data_len */
0xFF, 0xFF, 3, 2, /* pkt_len */
0xFF, 0xFF, 0xFF, 0xFF); /* pkt_type (zeroes) */
const __m256i flags_type_mask =
_mm256_set1_epi32(RX_PKT_CMPL_FLAGS_ITYPE_MASK);
const __m256i flags2_mask1 =
_mm256_set1_epi32(CMPL_FLAGS2_VLAN_TUN_MSK);
const __m256i flags2_mask2 =
_mm256_set1_epi32(RX_PKT_CMPL_FLAGS2_IP_TYPE);
const __m256i rss_mask =
_mm256_set1_epi32(RX_PKT_CMPL_FLAGS_RSS_VALID);
__m256i t0, t1, flags_type, flags2, index, errors;
__m256i ptype_idx, ptypes, is_tunnel;
__m256i mbuf01, mbuf23, mbuf45, mbuf67;
__m256i rearm0, rearm1, rearm2, rearm3, rearm4, rearm5, rearm6, rearm7;
__m256i ol_flags, ol_flags_hi;
__m256i rss_flags;
/* Validate ptype table indexing at build time. */
bnxt_check_ptype_constants();
/* If Rx Q was stopped return */
if (unlikely(!rxq->rx_started))
return 0;
if (rxq->rxrearm_nb >= rxq->rx_free_thresh)
bnxt_rxq_rearm(rxq, rxr);
nb_pkts = RTE_ALIGN_FLOOR(nb_pkts, BNXT_RX_DESCS_PER_LOOP_VEC256);
cons = raw_cons & (cp_ring_size - 1);
mbcons = (raw_cons / 2) & (rx_ring_size - 1);
/* Return immediately if there is not at least one completed packet. */
if (!bnxt_cpr_cmp_valid(&cp_desc_ring[cons], raw_cons, cp_ring_size))
return 0;
/* Ensure that we do not go past the ends of the rings. */
nb_pkts = RTE_MIN(nb_pkts, RTE_MIN(rx_ring_size - mbcons,
(cp_ring_size - cons) / 2));
/*
* If we are at the end of the ring, ensure that descriptors after the
* last valid entry are not treated as valid. Otherwise, force the
* maximum number of packets to receive to be a multiple of the per-
* loop count.
*/
if (nb_pkts < BNXT_RX_DESCS_PER_LOOP_VEC256) {
desc_valid_mask >>=
CHAR_BIT * (BNXT_RX_DESCS_PER_LOOP_VEC256 - nb_pkts);
} else {
nb_pkts =
RTE_ALIGN_FLOOR(nb_pkts, BNXT_RX_DESCS_PER_LOOP_VEC256);
}
/* Handle RX burst request */
for (i = 0; i < nb_pkts; i += BNXT_RX_DESCS_PER_LOOP_VEC256,
cons += BNXT_RX_DESCS_PER_LOOP_VEC256 * 2,
mbcons += BNXT_RX_DESCS_PER_LOOP_VEC256) {
__m256i desc0, desc1, desc2, desc3, desc4, desc5, desc6, desc7;
__m256i rxcmp0_1, rxcmp2_3, rxcmp4_5, rxcmp6_7, info3_v;
__m256i errors_v2;
uint32_t num_valid;
/* Copy eight mbuf pointers to output array. */
t0 = _mm256_loadu_si256((void *)&rxr->rx_buf_ring[mbcons]);
_mm256_storeu_si256((void *)&rx_pkts[i], t0);
#ifdef RTE_ARCH_X86_64
t0 = _mm256_loadu_si256((void *)&rxr->rx_buf_ring[mbcons + 4]);
_mm256_storeu_si256((void *)&rx_pkts[i + 4], t0);
#endif
/*
* Load eight receive completion descriptors into 256-bit
* registers. Loads are issued in reverse order in order to
* ensure consistent state.
*/
desc7 = _mm256_load_si256((void *)&cp_desc_ring[cons + 14]);
rte_compiler_barrier();
desc6 = _mm256_load_si256((void *)&cp_desc_ring[cons + 12]);
rte_compiler_barrier();
desc5 = _mm256_load_si256((void *)&cp_desc_ring[cons + 10]);
rte_compiler_barrier();
desc4 = _mm256_load_si256((void *)&cp_desc_ring[cons + 8]);
rte_compiler_barrier();
desc3 = _mm256_load_si256((void *)&cp_desc_ring[cons + 6]);
rte_compiler_barrier();
desc2 = _mm256_load_si256((void *)&cp_desc_ring[cons + 4]);
rte_compiler_barrier();
desc1 = _mm256_load_si256((void *)&cp_desc_ring[cons + 2]);
rte_compiler_barrier();
desc0 = _mm256_load_si256((void *)&cp_desc_ring[cons + 0]);
/*
* Pack needed fields from each descriptor into a compressed
* 128-bit layout and pair two compressed descriptors into
* 256-bit registers. The 128-bit compressed layout is as
* follows:
* Bits 0-15: flags_type field from low completion record.
* Bits 16-31: len field from low completion record.
* Bits 32-47: flags2 (low 16 bits) from high completion.
* Bits 48-79: metadata from high completion record.
* Bits 80-95: errors_v2 from high completion record.
* Bits 96-127: rss hash from low completion record.
*/
t0 = _mm256_permute2f128_si256(desc6, desc7, 0x20);
t1 = _mm256_permute2f128_si256(desc6, desc7, 0x31);
t1 = _mm256_shuffle_epi8(t1, dsc_shuf_msk);
rxcmp6_7 = _mm256_blend_epi32(t0, t1, 0x66);
t0 = _mm256_permute2f128_si256(desc4, desc5, 0x20);
t1 = _mm256_permute2f128_si256(desc4, desc5, 0x31);
t1 = _mm256_shuffle_epi8(t1, dsc_shuf_msk);
rxcmp4_5 = _mm256_blend_epi32(t0, t1, 0x66);
t0 = _mm256_permute2f128_si256(desc2, desc3, 0x20);
t1 = _mm256_permute2f128_si256(desc2, desc3, 0x31);
t1 = _mm256_shuffle_epi8(t1, dsc_shuf_msk);
rxcmp2_3 = _mm256_blend_epi32(t0, t1, 0x66);
t0 = _mm256_permute2f128_si256(desc0, desc1, 0x20);
t1 = _mm256_permute2f128_si256(desc0, desc1, 0x31);
t1 = _mm256_shuffle_epi8(t1, dsc_shuf_msk);
rxcmp0_1 = _mm256_blend_epi32(t0, t1, 0x66);
/* Compute packet type table indices for eight packets. */
t0 = _mm256_unpacklo_epi32(rxcmp0_1, rxcmp2_3);
t1 = _mm256_unpacklo_epi32(rxcmp4_5, rxcmp6_7);
flags_type = _mm256_unpacklo_epi64(t0, t1);
ptype_idx = _mm256_and_si256(flags_type, flags_type_mask);
ptype_idx = _mm256_srli_epi32(ptype_idx,
RX_PKT_CMPL_FLAGS_ITYPE_SFT -
BNXT_PTYPE_TBL_TYPE_SFT);
t0 = _mm256_unpacklo_epi32(rxcmp0_1, rxcmp2_3);
t1 = _mm256_unpacklo_epi32(rxcmp4_5, rxcmp6_7);
flags2 = _mm256_unpackhi_epi64(t0, t1);
t0 = _mm256_srli_epi32(_mm256_and_si256(flags2, flags2_mask1),
RX_PKT_CMPL_FLAGS2_META_FORMAT_SFT -
BNXT_PTYPE_TBL_VLAN_SFT);
ptype_idx = _mm256_or_si256(ptype_idx, t0);
t0 = _mm256_srli_epi32(_mm256_and_si256(flags2, flags2_mask2),
RX_PKT_CMPL_FLAGS2_IP_TYPE_SFT -
BNXT_PTYPE_TBL_IP_VER_SFT);
ptype_idx = _mm256_or_si256(ptype_idx, t0);
/*
* Load ptypes for eight packets using gather. Gather operations
* have extremely high latency (~19 cycles), execution and use
* of result should be separated as much as possible.
*/
ptypes = _mm256_i32gather_epi32((int *)bnxt_ptype_table,
ptype_idx, sizeof(uint32_t));
/*
* Compute ol_flags and checksum error table indices for eight
* packets.
*/
is_tunnel = _mm256_and_si256(flags2, _mm256_set1_epi32(4));
is_tunnel = _mm256_slli_epi32(is_tunnel, 3);
flags2 = _mm256_and_si256(flags2, _mm256_set1_epi32(0x1F));
/* Extract errors_v2 fields for eight packets. */
t0 = _mm256_unpackhi_epi32(rxcmp0_1, rxcmp2_3);
t1 = _mm256_unpackhi_epi32(rxcmp4_5, rxcmp6_7);
errors_v2 = _mm256_unpacklo_epi64(t0, t1);
errors = _mm256_srli_epi32(errors_v2, 4);
errors = _mm256_and_si256(errors, _mm256_set1_epi32(0xF));
errors = _mm256_and_si256(errors, flags2);
index = _mm256_andnot_si256(errors, flags2);
errors = _mm256_or_si256(errors,
_mm256_srli_epi32(is_tunnel, 1));
index = _mm256_or_si256(index, is_tunnel);
/*
* Load ol_flags for eight packets using gather. Gather
* operations have extremely high latency (~19 cycles),
* execution and use of result should be separated as much
* as possible.
*/
ol_flags = _mm256_i32gather_epi32((int *)rxr->ol_flags_table,
index, sizeof(uint32_t));
errors = _mm256_i32gather_epi32((int *)rxr->ol_flags_err_table,
errors, sizeof(uint32_t));
/*
* Pack the 128-bit array of valid descriptor flags into 64
* bits and count the number of set bits in order to determine
* the number of valid descriptors.
*/
const __m256i perm_msk =
_mm256_set_epi32(7, 3, 6, 2, 5, 1, 4, 0);
info3_v = _mm256_permutevar8x32_epi32(errors_v2, perm_msk);
info3_v = _mm256_and_si256(errors_v2, info3_v_mask);
info3_v = _mm256_xor_si256(info3_v, valid_target);
info3_v = _mm256_packs_epi32(info3_v, _mm256_setzero_si256());
valid = _mm_cvtsi128_si64(_mm256_extracti128_si256(info3_v, 1));
valid = (valid << CHAR_BIT) |
_mm_cvtsi128_si64(_mm256_castsi256_si128(info3_v));
num_valid = __builtin_popcountll(valid & desc_valid_mask);
if (num_valid == 0)
break;
/* Update mbuf rearm_data for eight packets. */
mbuf01 = _mm256_shuffle_epi8(rxcmp0_1, shuf_msk);
mbuf23 = _mm256_shuffle_epi8(rxcmp2_3, shuf_msk);
mbuf45 = _mm256_shuffle_epi8(rxcmp4_5, shuf_msk);
mbuf67 = _mm256_shuffle_epi8(rxcmp6_7, shuf_msk);
/* Blend in ptype field for two mbufs at a time. */
mbuf01 = _mm256_blend_epi32(mbuf01, ptypes, 0x11);
mbuf23 = _mm256_blend_epi32(mbuf23,
_mm256_srli_si256(ptypes, 4), 0x11);
mbuf45 = _mm256_blend_epi32(mbuf45,
_mm256_srli_si256(ptypes, 8), 0x11);
mbuf67 = _mm256_blend_epi32(mbuf67,
_mm256_srli_si256(ptypes, 12), 0x11);
/* Unpack rearm data, set fixed fields for first four mbufs. */
rearm0 = _mm256_permute2f128_si256(mbuf_init, mbuf01, 0x20);
rearm1 = _mm256_blend_epi32(mbuf_init, mbuf01, 0xF0);
rearm2 = _mm256_permute2f128_si256(mbuf_init, mbuf23, 0x20);
rearm3 = _mm256_blend_epi32(mbuf_init, mbuf23, 0xF0);
/* Compute final ol_flags values for eight packets. */
rss_flags = _mm256_and_si256(flags_type, rss_mask);
rss_flags = _mm256_srli_epi32(rss_flags, 9);
ol_flags = _mm256_or_si256(ol_flags, errors);
ol_flags = _mm256_or_si256(ol_flags, rss_flags);
ol_flags_hi = _mm256_permute2f128_si256(ol_flags,
ol_flags, 0x11);
/* Set ol_flags fields for first four packets. */
rearm0 = _mm256_blend_epi32(rearm0,
_mm256_slli_si256(ol_flags, 8),
0x04);
rearm1 = _mm256_blend_epi32(rearm1,
_mm256_slli_si256(ol_flags_hi, 8),
0x04);
rearm2 = _mm256_blend_epi32(rearm2,
_mm256_slli_si256(ol_flags, 4),
0x04);
rearm3 = _mm256_blend_epi32(rearm3,
_mm256_slli_si256(ol_flags_hi, 4),
0x04);
/* Store all mbuf fields for first four packets. */
_mm256_storeu_si256((void *)&rx_pkts[i + 0]->rearm_data,
rearm0);
_mm256_storeu_si256((void *)&rx_pkts[i + 1]->rearm_data,
rearm1);
_mm256_storeu_si256((void *)&rx_pkts[i + 2]->rearm_data,
rearm2);
_mm256_storeu_si256((void *)&rx_pkts[i + 3]->rearm_data,
rearm3);
/* Unpack rearm data, set fixed fields for final four mbufs. */
rearm4 = _mm256_permute2f128_si256(mbuf_init, mbuf45, 0x20);
rearm5 = _mm256_blend_epi32(mbuf_init, mbuf45, 0xF0);
rearm6 = _mm256_permute2f128_si256(mbuf_init, mbuf67, 0x20);
rearm7 = _mm256_blend_epi32(mbuf_init, mbuf67, 0xF0);
/* Set ol_flags fields for final four packets. */
rearm4 = _mm256_blend_epi32(rearm4, ol_flags, 0x04);
rearm5 = _mm256_blend_epi32(rearm5, ol_flags_hi, 0x04);
rearm6 = _mm256_blend_epi32(rearm6,
_mm256_srli_si256(ol_flags, 4),
0x04);
rearm7 = _mm256_blend_epi32(rearm7,
_mm256_srli_si256(ol_flags_hi, 4),
0x04);
/* Store all mbuf fields for final four packets. */
_mm256_storeu_si256((void *)&rx_pkts[i + 4]->rearm_data,
rearm4);
_mm256_storeu_si256((void *)&rx_pkts[i + 5]->rearm_data,
rearm5);
_mm256_storeu_si256((void *)&rx_pkts[i + 6]->rearm_data,
rearm6);
_mm256_storeu_si256((void *)&rx_pkts[i + 7]->rearm_data,
rearm7);
nb_rx_pkts += num_valid;
if (num_valid < BNXT_RX_DESCS_PER_LOOP_VEC256)
break;
}
if (nb_rx_pkts) {
rxr->rx_raw_prod = RING_ADV(rxr->rx_raw_prod, nb_rx_pkts);
rxq->rxrearm_nb += nb_rx_pkts;
cpr->cp_raw_cons += 2 * nb_rx_pkts;
bnxt_db_cq(cpr);
}
return nb_rx_pkts;
}
uint16_t
bnxt_recv_pkts_vec_avx2(void *rx_queue, struct rte_mbuf **rx_pkts,
uint16_t nb_pkts)
{
uint16_t cnt = 0;
while (nb_pkts > RTE_BNXT_MAX_RX_BURST) {
uint16_t burst;
burst = recv_burst_vec_avx2(rx_queue, rx_pkts + cnt,
RTE_BNXT_MAX_RX_BURST);
cnt += burst;
nb_pkts -= burst;
if (burst < RTE_BNXT_MAX_RX_BURST)
return cnt;
}
return cnt + recv_burst_vec_avx2(rx_queue, rx_pkts + cnt, nb_pkts);
}
static void
bnxt_handle_tx_cp_vec(struct bnxt_tx_queue *txq)
{
struct bnxt_cp_ring_info *cpr = txq->cp_ring;
uint32_t raw_cons = cpr->cp_raw_cons;
uint32_t cons;
uint32_t nb_tx_pkts = 0;
struct tx_cmpl *txcmp;
struct cmpl_base *cp_desc_ring = cpr->cp_desc_ring;
struct bnxt_ring *cp_ring_struct = cpr->cp_ring_struct;
uint32_t ring_mask = cp_ring_struct->ring_mask;
do {
cons = RING_CMPL(ring_mask, raw_cons);
txcmp = (struct tx_cmpl *)&cp_desc_ring[cons];
if (!bnxt_cpr_cmp_valid(txcmp, raw_cons, ring_mask + 1))
break;
nb_tx_pkts += txcmp->opaque;
raw_cons = NEXT_RAW_CMP(raw_cons);
} while (nb_tx_pkts < ring_mask);
if (nb_tx_pkts) {
if (txq->offloads & RTE_ETH_TX_OFFLOAD_MBUF_FAST_FREE)
bnxt_tx_cmp_vec_fast(txq, nb_tx_pkts);
else
bnxt_tx_cmp_vec(txq, nb_tx_pkts);
cpr->cp_raw_cons = raw_cons;
bnxt_db_cq(cpr);
}
}
static inline void
bnxt_xmit_one(struct rte_mbuf *mbuf, struct tx_bd_long *txbd,
struct rte_mbuf **tx_buf)
{
uint64_t dsc_hi, dsc_lo;
__m128i desc;
*tx_buf = mbuf;
dsc_hi = mbuf->buf_iova + mbuf->data_off;
dsc_lo = (mbuf->data_len << 16) |
bnxt_xmit_flags_len(mbuf->data_len, TX_BD_FLAGS_NOCMPL);
desc = _mm_set_epi64x(dsc_hi, dsc_lo);
_mm_store_si128((void *)txbd, desc);
}
static uint16_t
bnxt_xmit_fixed_burst_vec(struct bnxt_tx_queue *txq, struct rte_mbuf **pkts,
uint16_t nb_pkts)
{
struct bnxt_tx_ring_info *txr = txq->tx_ring;
uint16_t tx_prod, tx_raw_prod = txr->tx_raw_prod;
struct tx_bd_long *txbd;
struct rte_mbuf **tx_buf;
uint16_t to_send;
tx_prod = RING_IDX(txr->tx_ring_struct, tx_raw_prod);
txbd = &txr->tx_desc_ring[tx_prod];
tx_buf = &txr->tx_buf_ring[tx_prod];
/* Prefetch next transmit buffer descriptors. */
rte_prefetch0(txbd);
rte_prefetch0(txbd + 3);
nb_pkts = RTE_MIN(nb_pkts, bnxt_tx_avail(txq));
if (unlikely(nb_pkts == 0))
return 0;
/* Handle TX burst request */
to_send = nb_pkts;
/*
* If current descriptor is not on a 32-byte boundary, send one packet
* to align for 32-byte stores.
*/
if (tx_prod & 1) {
bnxt_xmit_one(pkts[0], txbd++, tx_buf++);
to_send--;
pkts++;
}
/*
* Send four packets per loop, with a single store for each pair
* of descriptors.
*/
while (to_send >= BNXT_TX_DESCS_PER_LOOP) {
uint64_t dsc0_hi, dsc0_lo, dsc1_hi, dsc1_lo;
uint64_t dsc2_hi, dsc2_lo, dsc3_hi, dsc3_lo;
__m256i dsc01, dsc23;
/* Prefetch next transmit buffer descriptors. */
rte_prefetch0(txbd + 4);
rte_prefetch0(txbd + 7);
/* Copy four mbuf pointers to tx buf ring. */
#ifdef RTE_ARCH_X86_64
__m256i tmp = _mm256_loadu_si256((void *)pkts);
_mm256_storeu_si256((void *)tx_buf, tmp);
#else
__m128i tmp = _mm_loadu_si128((void *)pkts);
_mm_storeu_si128((void *)tx_buf, tmp);
#endif
dsc0_hi = tx_buf[0]->buf_iova + tx_buf[0]->data_off;
dsc0_lo = (tx_buf[0]->data_len << 16) |
bnxt_xmit_flags_len(tx_buf[0]->data_len,
TX_BD_FLAGS_NOCMPL);
dsc1_hi = tx_buf[1]->buf_iova + tx_buf[1]->data_off;
dsc1_lo = (tx_buf[1]->data_len << 16) |
bnxt_xmit_flags_len(tx_buf[1]->data_len,
TX_BD_FLAGS_NOCMPL);
dsc01 = _mm256_set_epi64x(dsc1_hi, dsc1_lo, dsc0_hi, dsc0_lo);
dsc2_hi = tx_buf[2]->buf_iova + tx_buf[2]->data_off;
dsc2_lo = (tx_buf[2]->data_len << 16) |
bnxt_xmit_flags_len(tx_buf[2]->data_len,
TX_BD_FLAGS_NOCMPL);
dsc3_hi = tx_buf[3]->buf_iova + tx_buf[3]->data_off;
dsc3_lo = (tx_buf[3]->data_len << 16) |
bnxt_xmit_flags_len(tx_buf[3]->data_len,
TX_BD_FLAGS_NOCMPL);
dsc23 = _mm256_set_epi64x(dsc3_hi, dsc3_lo, dsc2_hi, dsc2_lo);
_mm256_store_si256((void *)txbd, dsc01);
_mm256_store_si256((void *)(txbd + 2), dsc23);
to_send -= BNXT_TX_DESCS_PER_LOOP;
pkts += BNXT_TX_DESCS_PER_LOOP;
txbd += BNXT_TX_DESCS_PER_LOOP;
tx_buf += BNXT_TX_DESCS_PER_LOOP;
}
/* Send any remaining packets, writing each descriptor individually. */
while (to_send) {
bnxt_xmit_one(pkts[0], txbd++, tx_buf++);
to_send--;
pkts++;
}
/* Request a completion for the final packet of the burst. */
txbd[-1].opaque = nb_pkts;
txbd[-1].flags_type &= ~TX_BD_LONG_FLAGS_NO_CMPL;
tx_raw_prod += nb_pkts;
bnxt_db_write(&txr->tx_db, tx_raw_prod);
txr->tx_raw_prod = tx_raw_prod;
return nb_pkts;
}
uint16_t
bnxt_xmit_pkts_vec_avx2(void *tx_queue, struct rte_mbuf **tx_pkts,
uint16_t nb_pkts)
{
int nb_sent = 0;
struct bnxt_tx_queue *txq = tx_queue;
struct bnxt_tx_ring_info *txr = txq->tx_ring;
uint16_t ring_size = txr->tx_ring_struct->ring_size;
/* Tx queue was stopped; wait for it to be restarted */
if (unlikely(!txq->tx_started)) {
PMD_DRV_LOG(DEBUG, "Tx q stopped;return\n");
return 0;
}
/* Handle TX completions */
if (bnxt_tx_bds_in_hw(txq) >= txq->tx_free_thresh)
bnxt_handle_tx_cp_vec(txq);
while (nb_pkts) {
uint16_t ret, num;
/*
* Ensure that no more than RTE_BNXT_MAX_TX_BURST packets
* are transmitted before the next completion.
*/
num = RTE_MIN(nb_pkts, RTE_BNXT_MAX_TX_BURST);
/*
* Ensure that a ring wrap does not occur within a call to
* bnxt_xmit_fixed_burst_vec().
*/
num = RTE_MIN(num, ring_size -
(txr->tx_raw_prod & (ring_size - 1)));
ret = bnxt_xmit_fixed_burst_vec(txq, &tx_pkts[nb_sent], num);
nb_sent += ret;
nb_pkts -= ret;
if (ret < num)
break;
}
return nb_sent;
}