mirror of https://github.com/F-Stack/f-stack.git
386 lines
8.7 KiB
C
386 lines
8.7 KiB
C
/*-
|
|
* BSD LICENSE
|
|
*
|
|
* Copyright(c) 2010-2015 Intel Corporation. All rights reserved.
|
|
* All rights reserved.
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions
|
|
* are met:
|
|
*
|
|
* * Redistributions of source code must retain the above copyright
|
|
* notice, this list of conditions and the following disclaimer.
|
|
* * Redistributions in binary form must reproduce the above copyright
|
|
* notice, this list of conditions and the following disclaimer in
|
|
* the documentation and/or other materials provided with the
|
|
* distribution.
|
|
* * Neither the name of Intel Corporation nor the names of its
|
|
* contributors may be used to endorse or promote products derived
|
|
* from this software without specific prior written permission.
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
|
|
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
|
|
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
|
|
* A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
|
|
* OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
|
|
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
|
|
* LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
|
|
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
|
|
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
|
|
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
|
|
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
|
*/
|
|
#ifndef __INCLUDE_HASH_FUNC_H__
|
|
#define __INCLUDE_HASH_FUNC_H__
|
|
|
|
static inline uint64_t
|
|
hash_xor_key8(void *key, void *mask, __rte_unused uint32_t key_size,
|
|
uint64_t seed)
|
|
{
|
|
uint64_t *k = key;
|
|
uint64_t *m = mask;
|
|
uint64_t xor0;
|
|
|
|
xor0 = seed ^ (k[0] & m[0]);
|
|
|
|
return (xor0 >> 32) ^ xor0;
|
|
}
|
|
|
|
static inline uint64_t
|
|
hash_xor_key16(void *key, void *mask, __rte_unused uint32_t key_size,
|
|
uint64_t seed)
|
|
{
|
|
uint64_t *k = key;
|
|
uint64_t *m = mask;
|
|
uint64_t xor0;
|
|
|
|
xor0 = ((k[0] & m[0]) ^ seed) ^ (k[1] & m[1]);
|
|
|
|
return (xor0 >> 32) ^ xor0;
|
|
}
|
|
|
|
static inline uint64_t
|
|
hash_xor_key24(void *key, void *mask, __rte_unused uint32_t key_size,
|
|
uint64_t seed)
|
|
{
|
|
uint64_t *k = key;
|
|
uint64_t *m = mask;
|
|
uint64_t xor0;
|
|
|
|
xor0 = ((k[0] & m[0]) ^ seed) ^ (k[1] & m[1]);
|
|
|
|
xor0 ^= k[2] & m[2];
|
|
|
|
return (xor0 >> 32) ^ xor0;
|
|
}
|
|
|
|
static inline uint64_t
|
|
hash_xor_key32(void *key, void *mask, __rte_unused uint32_t key_size,
|
|
uint64_t seed)
|
|
{
|
|
uint64_t *k = key;
|
|
uint64_t *m = mask;
|
|
uint64_t xor0, xor1;
|
|
|
|
xor0 = ((k[0] & m[0]) ^ seed) ^ (k[1] & m[1]);
|
|
xor1 = (k[2] & m[2]) ^ (k[3] & m[3]);
|
|
|
|
xor0 ^= xor1;
|
|
|
|
return (xor0 >> 32) ^ xor0;
|
|
}
|
|
|
|
static inline uint64_t
|
|
hash_xor_key40(void *key, void *mask, __rte_unused uint32_t key_size,
|
|
uint64_t seed)
|
|
{
|
|
uint64_t *k = key;
|
|
uint64_t *m = mask;
|
|
uint64_t xor0, xor1;
|
|
|
|
xor0 = ((k[0] & m[0]) ^ seed) ^ (k[1] & m[1]);
|
|
xor1 = (k[2] & m[2]) ^ (k[3] & m[3]);
|
|
|
|
xor0 ^= xor1;
|
|
|
|
xor0 ^= k[4] & m[4];
|
|
|
|
return (xor0 >> 32) ^ xor0;
|
|
}
|
|
|
|
static inline uint64_t
|
|
hash_xor_key48(void *key, void *mask, __rte_unused uint32_t key_size,
|
|
uint64_t seed)
|
|
{
|
|
uint64_t *k = key;
|
|
uint64_t *m = mask;
|
|
uint64_t xor0, xor1, xor2;
|
|
|
|
xor0 = ((k[0] & m[0]) ^ seed) ^ (k[1] & m[1]);
|
|
xor1 = (k[2] & m[2]) ^ (k[3] & m[3]);
|
|
xor2 = (k[4] & m[4]) ^ (k[5] & m[5]);
|
|
|
|
xor0 ^= xor1;
|
|
|
|
xor0 ^= xor2;
|
|
|
|
return (xor0 >> 32) ^ xor0;
|
|
}
|
|
|
|
static inline uint64_t
|
|
hash_xor_key56(void *key, void *mask, __rte_unused uint32_t key_size,
|
|
uint64_t seed)
|
|
{
|
|
uint64_t *k = key;
|
|
uint64_t *m = mask;
|
|
uint64_t xor0, xor1, xor2;
|
|
|
|
xor0 = ((k[0] & m[0]) ^ seed) ^ (k[1] & m[1]);
|
|
xor1 = (k[2] & m[2]) ^ (k[3] & m[3]);
|
|
xor2 = (k[4] & m[4]) ^ (k[5] & m[5]);
|
|
|
|
xor0 ^= xor1;
|
|
xor2 ^= k[6] & m[6];
|
|
|
|
xor0 ^= xor2;
|
|
|
|
return (xor0 >> 32) ^ xor0;
|
|
}
|
|
|
|
static inline uint64_t
|
|
hash_xor_key64(void *key, void *mask, __rte_unused uint32_t key_size,
|
|
uint64_t seed)
|
|
{
|
|
uint64_t *k = key;
|
|
uint64_t *m = mask;
|
|
uint64_t xor0, xor1, xor2, xor3;
|
|
|
|
xor0 = ((k[0] & m[0]) ^ seed) ^ (k[1] & m[1]);
|
|
xor1 = (k[2] & m[2]) ^ (k[3] & m[3]);
|
|
xor2 = (k[4] & m[4]) ^ (k[5] & m[5]);
|
|
xor3 = (k[6] & m[6]) ^ (k[7] & m[7]);
|
|
|
|
xor0 ^= xor1;
|
|
xor2 ^= xor3;
|
|
|
|
xor0 ^= xor2;
|
|
|
|
return (xor0 >> 32) ^ xor0;
|
|
}
|
|
|
|
#if defined(RTE_ARCH_X86_64)
|
|
|
|
#include <x86intrin.h>
|
|
|
|
static inline uint64_t
|
|
hash_crc_key8(void *key, void *mask, __rte_unused uint32_t key_size,
|
|
uint64_t seed)
|
|
{
|
|
uint64_t *k = key;
|
|
uint64_t *m = mask;
|
|
uint64_t crc0;
|
|
|
|
crc0 = _mm_crc32_u64(seed, k[0] & m[0]);
|
|
|
|
return crc0;
|
|
}
|
|
|
|
static inline uint64_t
|
|
hash_crc_key16(void *key, void *mask, __rte_unused uint32_t key_size,
|
|
uint64_t seed)
|
|
{
|
|
uint64_t *k = key;
|
|
uint64_t *m = mask;
|
|
uint64_t k0, crc0, crc1;
|
|
|
|
k0 = k[0] & m[0];
|
|
|
|
crc0 = _mm_crc32_u64(k0, seed);
|
|
crc1 = _mm_crc32_u64(k0 >> 32, k[1] & m[1]);
|
|
|
|
crc0 ^= crc1;
|
|
|
|
return crc0;
|
|
}
|
|
|
|
static inline uint64_t
|
|
hash_crc_key24(void *key, void *mask, __rte_unused uint32_t key_size,
|
|
uint64_t seed)
|
|
{
|
|
uint64_t *k = key;
|
|
uint64_t *m = mask;
|
|
uint64_t k0, k2, crc0, crc1;
|
|
|
|
k0 = k[0] & m[0];
|
|
k2 = k[2] & m[2];
|
|
|
|
crc0 = _mm_crc32_u64(k0, seed);
|
|
crc1 = _mm_crc32_u64(k0 >> 32, k[1] & m[1]);
|
|
|
|
crc0 = _mm_crc32_u64(crc0, k2);
|
|
|
|
crc0 ^= crc1;
|
|
|
|
return crc0;
|
|
}
|
|
|
|
static inline uint64_t
|
|
hash_crc_key32(void *key, void *mask, __rte_unused uint32_t key_size,
|
|
uint64_t seed)
|
|
{
|
|
uint64_t *k = key;
|
|
uint64_t *m = mask;
|
|
uint64_t k0, k2, crc0, crc1, crc2, crc3;
|
|
|
|
k0 = k[0] & m[0];
|
|
k2 = k[2] & m[2];
|
|
|
|
crc0 = _mm_crc32_u64(k0, seed);
|
|
crc1 = _mm_crc32_u64(k0 >> 32, k[1] & m[1]);
|
|
|
|
crc2 = _mm_crc32_u64(k2, k[3] & m[3]);
|
|
crc3 = k2 >> 32;
|
|
|
|
crc0 = _mm_crc32_u64(crc0, crc1);
|
|
crc1 = _mm_crc32_u64(crc2, crc3);
|
|
|
|
crc0 ^= crc1;
|
|
|
|
return crc0;
|
|
}
|
|
|
|
static inline uint64_t
|
|
hash_crc_key40(void *key, void *mask, __rte_unused uint32_t key_size,
|
|
uint64_t seed)
|
|
{
|
|
uint64_t *k = key;
|
|
uint64_t *m = mask;
|
|
uint64_t k0, k2, crc0, crc1, crc2, crc3;
|
|
|
|
k0 = k[0] & m[0];
|
|
k2 = k[2] & m[2];
|
|
|
|
crc0 = _mm_crc32_u64(k0, seed);
|
|
crc1 = _mm_crc32_u64(k0 >> 32, k[1] & m[1]);
|
|
|
|
crc2 = _mm_crc32_u64(k2, k[3] & m[3]);
|
|
crc3 = _mm_crc32_u64(k2 >> 32, k[4] & m[4]);
|
|
|
|
crc0 = _mm_crc32_u64(crc0, crc1);
|
|
crc1 = _mm_crc32_u64(crc2, crc3);
|
|
|
|
crc0 ^= crc1;
|
|
|
|
return crc0;
|
|
}
|
|
|
|
static inline uint64_t
|
|
hash_crc_key48(void *key, void *mask, __rte_unused uint32_t key_size,
|
|
uint64_t seed)
|
|
{
|
|
uint64_t *k = key;
|
|
uint64_t *m = mask;
|
|
uint64_t k0, k2, k5, crc0, crc1, crc2, crc3;
|
|
|
|
k0 = k[0] & m[0];
|
|
k2 = k[2] & m[2];
|
|
k5 = k[5] & m[5];
|
|
|
|
crc0 = _mm_crc32_u64(k0, seed);
|
|
crc1 = _mm_crc32_u64(k0 >> 32, k[1] & m[1]);
|
|
|
|
crc2 = _mm_crc32_u64(k2, k[3] & m[3]);
|
|
crc3 = _mm_crc32_u64(k2 >> 32, k[4] & m[4]);
|
|
|
|
crc0 = _mm_crc32_u64(crc0, (crc1 << 32) ^ crc2);
|
|
crc1 = _mm_crc32_u64(crc3, k5);
|
|
|
|
crc0 ^= crc1;
|
|
|
|
return crc0;
|
|
}
|
|
|
|
static inline uint64_t
|
|
hash_crc_key56(void *key, void *mask, __rte_unused uint32_t key_size,
|
|
uint64_t seed)
|
|
{
|
|
uint64_t *k = key;
|
|
uint64_t *m = mask;
|
|
uint64_t k0, k2, k5, crc0, crc1, crc2, crc3, crc4, crc5;
|
|
|
|
k0 = k[0] & m[0];
|
|
k2 = k[2] & m[2];
|
|
k5 = k[5] & m[5];
|
|
|
|
crc0 = _mm_crc32_u64(k0, seed);
|
|
crc1 = _mm_crc32_u64(k0 >> 32, k[1] & m[1]);
|
|
|
|
crc2 = _mm_crc32_u64(k2, k[3] & m[3]);
|
|
crc3 = _mm_crc32_u64(k2 >> 32, k[4] & m[4]);
|
|
|
|
crc4 = _mm_crc32_u64(k5, k[6] & m[6]);
|
|
crc5 = k5 >> 32;
|
|
|
|
crc0 = _mm_crc32_u64(crc0, (crc1 << 32) ^ crc2);
|
|
crc1 = _mm_crc32_u64(crc3, (crc4 << 32) ^ crc5);
|
|
|
|
crc0 ^= crc1;
|
|
|
|
return crc0;
|
|
}
|
|
|
|
static inline uint64_t
|
|
hash_crc_key64(void *key, void *mask, __rte_unused uint32_t key_size,
|
|
uint64_t seed)
|
|
{
|
|
uint64_t *k = key;
|
|
uint64_t *m = mask;
|
|
uint64_t k0, k2, k5, crc0, crc1, crc2, crc3, crc4, crc5;
|
|
|
|
k0 = k[0] & m[0];
|
|
k2 = k[2] & m[2];
|
|
k5 = k[5] & m[5];
|
|
|
|
crc0 = _mm_crc32_u64(k0, seed);
|
|
crc1 = _mm_crc32_u64(k0 >> 32, k[1] & m[1]);
|
|
|
|
crc2 = _mm_crc32_u64(k2, k[3] & m[3]);
|
|
crc3 = _mm_crc32_u64(k2 >> 32, k[4] & m[4]);
|
|
|
|
crc4 = _mm_crc32_u64(k5, k[6] & m[6]);
|
|
crc5 = _mm_crc32_u64(k5 >> 32, k[7] & m[7]);
|
|
|
|
crc0 = _mm_crc32_u64(crc0, (crc1 << 32) ^ crc2);
|
|
crc1 = _mm_crc32_u64(crc3, (crc4 << 32) ^ crc5);
|
|
|
|
crc0 ^= crc1;
|
|
|
|
return crc0;
|
|
}
|
|
|
|
#define hash_default_key8 hash_crc_key8
|
|
#define hash_default_key16 hash_crc_key16
|
|
#define hash_default_key24 hash_crc_key24
|
|
#define hash_default_key32 hash_crc_key32
|
|
#define hash_default_key40 hash_crc_key40
|
|
#define hash_default_key48 hash_crc_key48
|
|
#define hash_default_key56 hash_crc_key56
|
|
#define hash_default_key64 hash_crc_key64
|
|
|
|
#elif defined(RTE_ARCH_ARM64)
|
|
#include "hash_func_arm64.h"
|
|
#else
|
|
|
|
#define hash_default_key8 hash_xor_key8
|
|
#define hash_default_key16 hash_xor_key16
|
|
#define hash_default_key24 hash_xor_key24
|
|
#define hash_default_key32 hash_xor_key32
|
|
#define hash_default_key40 hash_xor_key40
|
|
#define hash_default_key48 hash_xor_key48
|
|
#define hash_default_key56 hash_xor_key56
|
|
#define hash_default_key64 hash_xor_key64
|
|
|
|
#endif
|
|
|
|
#endif
|