f-stack/dpdk/drivers/net/mlx5/mlx5_rxtx.c

2062 lines
57 KiB
C

/*-
* BSD LICENSE
*
* Copyright 2015 6WIND S.A.
* Copyright 2015 Mellanox.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* * Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in
* the documentation and/or other materials provided with the
* distribution.
* * Neither the name of 6WIND S.A. nor the names of its
* contributors may be used to endorse or promote products derived
* from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
* A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
* OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
* LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#include <assert.h>
#include <stdint.h>
#include <string.h>
#include <stdlib.h>
/* Verbs header. */
/* ISO C doesn't support unnamed structs/unions, disabling -pedantic. */
#ifdef PEDANTIC
#pragma GCC diagnostic ignored "-Wpedantic"
#endif
#include <infiniband/verbs.h>
#include <infiniband/mlx5dv.h>
#ifdef PEDANTIC
#pragma GCC diagnostic error "-Wpedantic"
#endif
#include <rte_mbuf.h>
#include <rte_mempool.h>
#include <rte_prefetch.h>
#include <rte_common.h>
#include <rte_branch_prediction.h>
#include <rte_ether.h>
#include "mlx5.h"
#include "mlx5_utils.h"
#include "mlx5_rxtx.h"
#include "mlx5_autoconf.h"
#include "mlx5_defs.h"
#include "mlx5_prm.h"
static __rte_always_inline uint32_t
rxq_cq_to_pkt_type(volatile struct mlx5_cqe *cqe);
static __rte_always_inline int
mlx5_rx_poll_len(struct mlx5_rxq_data *rxq, volatile struct mlx5_cqe *cqe,
uint16_t cqe_cnt, uint32_t *rss_hash);
static __rte_always_inline uint32_t
rxq_cq_to_ol_flags(struct mlx5_rxq_data *rxq, volatile struct mlx5_cqe *cqe);
uint32_t mlx5_ptype_table[] __rte_cache_aligned = {
[0xff] = RTE_PTYPE_ALL_MASK, /* Last entry for errored packet. */
};
/**
* Build a table to translate Rx completion flags to packet type.
*
* @note: fix mlx5_dev_supported_ptypes_get() if any change here.
*/
void
mlx5_set_ptype_table(void)
{
unsigned int i;
uint32_t (*p)[RTE_DIM(mlx5_ptype_table)] = &mlx5_ptype_table;
/* Last entry must not be overwritten, reserved for errored packet. */
for (i = 0; i < RTE_DIM(mlx5_ptype_table) - 1; ++i)
(*p)[i] = RTE_PTYPE_UNKNOWN;
/*
* The index to the array should have:
* bit[1:0] = l3_hdr_type
* bit[4:2] = l4_hdr_type
* bit[5] = ip_frag
* bit[6] = tunneled
* bit[7] = outer_l3_type
*/
/* L2 */
(*p)[0x00] = RTE_PTYPE_L2_ETHER;
/* L3 */
(*p)[0x01] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
RTE_PTYPE_L4_NONFRAG;
(*p)[0x02] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
RTE_PTYPE_L4_NONFRAG;
/* Fragmented */
(*p)[0x21] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
RTE_PTYPE_L4_FRAG;
(*p)[0x22] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
RTE_PTYPE_L4_FRAG;
/* TCP */
(*p)[0x05] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
RTE_PTYPE_L4_TCP;
(*p)[0x06] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
RTE_PTYPE_L4_TCP;
(*p)[0x0d] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
RTE_PTYPE_L4_TCP;
(*p)[0x0e] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
RTE_PTYPE_L4_TCP;
(*p)[0x11] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
RTE_PTYPE_L4_TCP;
(*p)[0x12] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
RTE_PTYPE_L4_TCP;
/* UDP */
(*p)[0x09] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
RTE_PTYPE_L4_UDP;
(*p)[0x0a] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
RTE_PTYPE_L4_UDP;
/* Repeat with outer_l3_type being set. Just in case. */
(*p)[0x81] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
RTE_PTYPE_L4_NONFRAG;
(*p)[0x82] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
RTE_PTYPE_L4_NONFRAG;
(*p)[0xa1] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
RTE_PTYPE_L4_FRAG;
(*p)[0xa2] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
RTE_PTYPE_L4_FRAG;
(*p)[0x85] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
RTE_PTYPE_L4_TCP;
(*p)[0x86] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
RTE_PTYPE_L4_TCP;
(*p)[0x8d] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
RTE_PTYPE_L4_TCP;
(*p)[0x8e] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
RTE_PTYPE_L4_TCP;
(*p)[0x91] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
RTE_PTYPE_L4_TCP;
(*p)[0x92] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
RTE_PTYPE_L4_TCP;
(*p)[0x89] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
RTE_PTYPE_L4_UDP;
(*p)[0x8a] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
RTE_PTYPE_L4_UDP;
/* Tunneled - L3 */
(*p)[0x41] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
RTE_PTYPE_INNER_L4_NONFRAG;
(*p)[0x42] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
RTE_PTYPE_INNER_L4_NONFRAG;
(*p)[0xc1] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
RTE_PTYPE_INNER_L4_NONFRAG;
(*p)[0xc2] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
RTE_PTYPE_INNER_L4_NONFRAG;
/* Tunneled - Fragmented */
(*p)[0x61] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
RTE_PTYPE_INNER_L4_FRAG;
(*p)[0x62] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
RTE_PTYPE_INNER_L4_FRAG;
(*p)[0xe1] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
RTE_PTYPE_INNER_L4_FRAG;
(*p)[0xe2] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
RTE_PTYPE_INNER_L4_FRAG;
/* Tunneled - TCP */
(*p)[0x45] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
RTE_PTYPE_INNER_L4_TCP;
(*p)[0x46] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
RTE_PTYPE_INNER_L4_TCP;
(*p)[0x4d] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
RTE_PTYPE_INNER_L4_TCP;
(*p)[0x4e] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
RTE_PTYPE_INNER_L4_TCP;
(*p)[0x51] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
RTE_PTYPE_INNER_L4_TCP;
(*p)[0x52] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
RTE_PTYPE_INNER_L4_TCP;
(*p)[0xc5] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
RTE_PTYPE_INNER_L4_TCP;
(*p)[0xc6] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
RTE_PTYPE_INNER_L4_TCP;
(*p)[0xcd] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
RTE_PTYPE_INNER_L4_TCP;
(*p)[0xce] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
RTE_PTYPE_INNER_L4_TCP;
(*p)[0xd1] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
RTE_PTYPE_INNER_L4_TCP;
(*p)[0xd2] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
RTE_PTYPE_INNER_L4_TCP;
/* Tunneled - UDP */
(*p)[0x49] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
RTE_PTYPE_INNER_L4_UDP;
(*p)[0x4a] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
RTE_PTYPE_INNER_L4_UDP;
(*p)[0xc9] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
RTE_PTYPE_INNER_L4_UDP;
(*p)[0xca] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
RTE_PTYPE_INNER_L4_UDP;
}
/**
* Return the size of tailroom of WQ.
*
* @param txq
* Pointer to TX queue structure.
* @param addr
* Pointer to tail of WQ.
*
* @return
* Size of tailroom.
*/
static inline size_t
tx_mlx5_wq_tailroom(struct mlx5_txq_data *txq, void *addr)
{
size_t tailroom;
tailroom = (uintptr_t)(txq->wqes) +
(1 << txq->wqe_n) * MLX5_WQE_SIZE -
(uintptr_t)addr;
return tailroom;
}
/**
* Copy data to tailroom of circular queue.
*
* @param dst
* Pointer to destination.
* @param src
* Pointer to source.
* @param n
* Number of bytes to copy.
* @param base
* Pointer to head of queue.
* @param tailroom
* Size of tailroom from dst.
*
* @return
* Pointer after copied data.
*/
static inline void *
mlx5_copy_to_wq(void *dst, const void *src, size_t n,
void *base, size_t tailroom)
{
void *ret;
if (n > tailroom) {
rte_memcpy(dst, src, tailroom);
rte_memcpy(base, (void *)((uintptr_t)src + tailroom),
n - tailroom);
ret = (uint8_t *)base + n - tailroom;
} else {
rte_memcpy(dst, src, n);
ret = (n == tailroom) ? base : (uint8_t *)dst + n;
}
return ret;
}
/**
* DPDK callback to check the status of a tx descriptor.
*
* @param tx_queue
* The tx queue.
* @param[in] offset
* The index of the descriptor in the ring.
*
* @return
* The status of the tx descriptor.
*/
int
mlx5_tx_descriptor_status(void *tx_queue, uint16_t offset)
{
struct mlx5_txq_data *txq = tx_queue;
uint16_t used;
mlx5_tx_complete(txq);
used = txq->elts_head - txq->elts_tail;
if (offset < used)
return RTE_ETH_TX_DESC_FULL;
return RTE_ETH_TX_DESC_DONE;
}
/**
* DPDK callback to check the status of a rx descriptor.
*
* @param rx_queue
* The rx queue.
* @param[in] offset
* The index of the descriptor in the ring.
*
* @return
* The status of the tx descriptor.
*/
int
mlx5_rx_descriptor_status(void *rx_queue, uint16_t offset)
{
struct mlx5_rxq_data *rxq = rx_queue;
struct rxq_zip *zip = &rxq->zip;
volatile struct mlx5_cqe *cqe;
const unsigned int cqe_n = (1 << rxq->cqe_n);
const unsigned int cqe_cnt = cqe_n - 1;
unsigned int cq_ci;
unsigned int used;
/* if we are processing a compressed cqe */
if (zip->ai) {
used = zip->cqe_cnt - zip->ca;
cq_ci = zip->cq_ci;
} else {
used = 0;
cq_ci = rxq->cq_ci;
}
cqe = &(*rxq->cqes)[cq_ci & cqe_cnt];
while (check_cqe(cqe, cqe_n, cq_ci) == 0) {
int8_t op_own;
unsigned int n;
op_own = cqe->op_own;
if (MLX5_CQE_FORMAT(op_own) == MLX5_COMPRESSED)
n = rte_be_to_cpu_32(cqe->byte_cnt);
else
n = 1;
cq_ci += n;
used += n;
cqe = &(*rxq->cqes)[cq_ci & cqe_cnt];
}
used = RTE_MIN(used, (1U << rxq->elts_n) - 1);
if (offset < used)
return RTE_ETH_RX_DESC_DONE;
return RTE_ETH_RX_DESC_AVAIL;
}
/**
* DPDK callback for TX.
*
* @param dpdk_txq
* Generic pointer to TX queue structure.
* @param[in] pkts
* Packets to transmit.
* @param pkts_n
* Number of packets in array.
*
* @return
* Number of packets successfully transmitted (<= pkts_n).
*/
uint16_t
mlx5_tx_burst(void *dpdk_txq, struct rte_mbuf **pkts, uint16_t pkts_n)
{
struct mlx5_txq_data *txq = (struct mlx5_txq_data *)dpdk_txq;
uint16_t elts_head = txq->elts_head;
const uint16_t elts_n = 1 << txq->elts_n;
const uint16_t elts_m = elts_n - 1;
unsigned int i = 0;
unsigned int j = 0;
unsigned int k = 0;
uint16_t max_elts;
unsigned int max_inline = txq->max_inline;
const unsigned int inline_en = !!max_inline && txq->inline_en;
uint16_t max_wqe;
unsigned int comp;
volatile struct mlx5_wqe_v *wqe = NULL;
volatile struct mlx5_wqe_ctrl *last_wqe = NULL;
unsigned int segs_n = 0;
struct rte_mbuf *buf = NULL;
uint8_t *raw;
if (unlikely(!pkts_n))
return 0;
/* Prefetch first packet cacheline. */
rte_prefetch0(*pkts);
/* Start processing. */
mlx5_tx_complete(txq);
max_elts = (elts_n - (elts_head - txq->elts_tail));
max_wqe = (1u << txq->wqe_n) - (txq->wqe_ci - txq->wqe_pi);
if (unlikely(!max_wqe))
return 0;
do {
volatile rte_v128u32_t *dseg = NULL;
uint32_t length;
unsigned int ds = 0;
unsigned int sg = 0; /* counter of additional segs attached. */
uintptr_t addr;
uint16_t pkt_inline_sz = MLX5_WQE_DWORD_SIZE + 2;
uint16_t tso_header_sz = 0;
uint16_t ehdr;
uint8_t cs_flags;
uint64_t tso = 0;
uint16_t tso_segsz = 0;
#ifdef MLX5_PMD_SOFT_COUNTERS
uint32_t total_length = 0;
#endif
/* first_seg */
buf = *pkts;
segs_n = buf->nb_segs;
/*
* Make sure there is enough room to store this packet and
* that one ring entry remains unused.
*/
assert(segs_n);
if (max_elts < segs_n)
break;
max_elts -= segs_n;
--segs_n;
if (unlikely(--max_wqe == 0))
break;
wqe = (volatile struct mlx5_wqe_v *)
tx_mlx5_wqe(txq, txq->wqe_ci);
rte_prefetch0(tx_mlx5_wqe(txq, txq->wqe_ci + 1));
if (pkts_n - i > 1)
rte_prefetch0(*(pkts + 1));
addr = rte_pktmbuf_mtod(buf, uintptr_t);
length = DATA_LEN(buf);
ehdr = (((uint8_t *)addr)[1] << 8) |
((uint8_t *)addr)[0];
#ifdef MLX5_PMD_SOFT_COUNTERS
total_length = length;
#endif
if (length < (MLX5_WQE_DWORD_SIZE + 2)) {
txq->stats.oerrors++;
break;
}
/* Update element. */
(*txq->elts)[elts_head & elts_m] = buf;
/* Prefetch next buffer data. */
if (pkts_n - i > 1)
rte_prefetch0(
rte_pktmbuf_mtod(*(pkts + 1), volatile void *));
cs_flags = txq_ol_cksum_to_cs(txq, buf);
raw = ((uint8_t *)(uintptr_t)wqe) + 2 * MLX5_WQE_DWORD_SIZE;
/* Replace the Ethernet type by the VLAN if necessary. */
if (buf->ol_flags & PKT_TX_VLAN_PKT) {
uint32_t vlan = rte_cpu_to_be_32(0x81000000 |
buf->vlan_tci);
unsigned int len = 2 * ETHER_ADDR_LEN - 2;
addr += 2;
length -= 2;
/* Copy Destination and source mac address. */
memcpy((uint8_t *)raw, ((uint8_t *)addr), len);
/* Copy VLAN. */
memcpy((uint8_t *)raw + len, &vlan, sizeof(vlan));
/* Copy missing two bytes to end the DSeg. */
memcpy((uint8_t *)raw + len + sizeof(vlan),
((uint8_t *)addr) + len, 2);
addr += len + 2;
length -= (len + 2);
} else {
memcpy((uint8_t *)raw, ((uint8_t *)addr) + 2,
MLX5_WQE_DWORD_SIZE);
length -= pkt_inline_sz;
addr += pkt_inline_sz;
}
raw += MLX5_WQE_DWORD_SIZE;
if (txq->tso_en) {
tso = buf->ol_flags & PKT_TX_TCP_SEG;
if (tso) {
uintptr_t end = (uintptr_t)
(((uintptr_t)txq->wqes) +
(1 << txq->wqe_n) *
MLX5_WQE_SIZE);
unsigned int copy_b;
uint8_t vlan_sz = (buf->ol_flags &
PKT_TX_VLAN_PKT) ? 4 : 0;
const uint64_t is_tunneled =
buf->ol_flags &
(PKT_TX_TUNNEL_GRE |
PKT_TX_TUNNEL_VXLAN);
tso_header_sz = buf->l2_len + vlan_sz +
buf->l3_len + buf->l4_len;
tso_segsz = buf->tso_segsz;
if (unlikely(tso_segsz == 0)) {
txq->stats.oerrors++;
break;
}
if (is_tunneled && txq->tunnel_en) {
tso_header_sz += buf->outer_l2_len +
buf->outer_l3_len;
cs_flags |= MLX5_ETH_WQE_L4_INNER_CSUM;
} else {
cs_flags |= MLX5_ETH_WQE_L4_CSUM;
}
if (unlikely(tso_header_sz >
MLX5_MAX_TSO_HEADER)) {
txq->stats.oerrors++;
break;
}
copy_b = tso_header_sz - pkt_inline_sz;
/* First seg must contain all headers. */
assert(copy_b <= length);
if (copy_b &&
((end - (uintptr_t)raw) > copy_b)) {
uint16_t n = (MLX5_WQE_DS(copy_b) -
1 + 3) / 4;
if (unlikely(max_wqe < n))
break;
max_wqe -= n;
rte_memcpy((void *)raw,
(void *)addr, copy_b);
addr += copy_b;
length -= copy_b;
/* Include padding for TSO header. */
copy_b = MLX5_WQE_DS(copy_b) *
MLX5_WQE_DWORD_SIZE;
pkt_inline_sz += copy_b;
raw += copy_b;
} else {
/* NOP WQE. */
wqe->ctrl = (rte_v128u32_t){
rte_cpu_to_be_32(
txq->wqe_ci << 8),
rte_cpu_to_be_32(
txq->qp_num_8s | 1),
0,
0,
};
ds = 1;
#ifdef MLX5_PMD_SOFT_COUNTERS
total_length = 0;
#endif
k++;
goto next_wqe;
}
}
}
/* Inline if enough room. */
if (inline_en || tso) {
uint32_t inl;
uintptr_t end = (uintptr_t)
(((uintptr_t)txq->wqes) +
(1 << txq->wqe_n) * MLX5_WQE_SIZE);
unsigned int inline_room = max_inline *
RTE_CACHE_LINE_SIZE -
(pkt_inline_sz - 2) -
!!tso * sizeof(inl);
uintptr_t addr_end = (addr + inline_room) &
~(RTE_CACHE_LINE_SIZE - 1);
unsigned int copy_b = (addr_end > addr) ?
RTE_MIN((addr_end - addr), length) :
0;
if (copy_b && ((end - (uintptr_t)raw) > copy_b)) {
/*
* One Dseg remains in the current WQE. To
* keep the computation positive, it is
* removed after the bytes to Dseg conversion.
*/
uint16_t n = (MLX5_WQE_DS(copy_b) - 1 + 3) / 4;
if (unlikely(max_wqe < n))
break;
max_wqe -= n;
if (tso) {
inl = rte_cpu_to_be_32(copy_b |
MLX5_INLINE_SEG);
rte_memcpy((void *)raw,
(void *)&inl, sizeof(inl));
raw += sizeof(inl);
pkt_inline_sz += sizeof(inl);
}
rte_memcpy((void *)raw, (void *)addr, copy_b);
addr += copy_b;
length -= copy_b;
pkt_inline_sz += copy_b;
}
/*
* 2 DWORDs consumed by the WQE header + ETH segment +
* the size of the inline part of the packet.
*/
ds = 2 + MLX5_WQE_DS(pkt_inline_sz - 2);
if (length > 0) {
if (ds % (MLX5_WQE_SIZE /
MLX5_WQE_DWORD_SIZE) == 0) {
if (unlikely(--max_wqe == 0))
break;
dseg = (volatile rte_v128u32_t *)
tx_mlx5_wqe(txq, txq->wqe_ci +
ds / 4);
} else {
dseg = (volatile rte_v128u32_t *)
((uintptr_t)wqe +
(ds * MLX5_WQE_DWORD_SIZE));
}
goto use_dseg;
} else if (!segs_n) {
goto next_pkt;
} else {
/* dseg will be advance as part of next_seg */
dseg = (volatile rte_v128u32_t *)
((uintptr_t)wqe +
((ds - 1) * MLX5_WQE_DWORD_SIZE));
goto next_seg;
}
} else {
/*
* No inline has been done in the packet, only the
* Ethernet Header as been stored.
*/
dseg = (volatile rte_v128u32_t *)
((uintptr_t)wqe + (3 * MLX5_WQE_DWORD_SIZE));
ds = 3;
use_dseg:
/* Add the remaining packet as a simple ds. */
addr = rte_cpu_to_be_64(addr);
*dseg = (rte_v128u32_t){
rte_cpu_to_be_32(length),
mlx5_tx_mb2mr(txq, buf),
addr,
addr >> 32,
};
++ds;
if (!segs_n)
goto next_pkt;
}
next_seg:
assert(buf);
assert(ds);
assert(wqe);
/*
* Spill on next WQE when the current one does not have
* enough room left. Size of WQE must a be a multiple
* of data segment size.
*/
assert(!(MLX5_WQE_SIZE % MLX5_WQE_DWORD_SIZE));
if (!(ds % (MLX5_WQE_SIZE / MLX5_WQE_DWORD_SIZE))) {
if (unlikely(--max_wqe == 0))
break;
dseg = (volatile rte_v128u32_t *)
tx_mlx5_wqe(txq, txq->wqe_ci + ds / 4);
rte_prefetch0(tx_mlx5_wqe(txq,
txq->wqe_ci + ds / 4 + 1));
} else {
++dseg;
}
++ds;
buf = buf->next;
assert(buf);
length = DATA_LEN(buf);
#ifdef MLX5_PMD_SOFT_COUNTERS
total_length += length;
#endif
/* Store segment information. */
addr = rte_cpu_to_be_64(rte_pktmbuf_mtod(buf, uintptr_t));
*dseg = (rte_v128u32_t){
rte_cpu_to_be_32(length),
mlx5_tx_mb2mr(txq, buf),
addr,
addr >> 32,
};
(*txq->elts)[++elts_head & elts_m] = buf;
++sg;
/* Advance counter only if all segs are successfully posted. */
if (sg < segs_n)
goto next_seg;
else
j += sg;
next_pkt:
if (ds > MLX5_DSEG_MAX) {
txq->stats.oerrors++;
break;
}
++elts_head;
++pkts;
++i;
/* Initialize known and common part of the WQE structure. */
if (tso) {
wqe->ctrl = (rte_v128u32_t){
rte_cpu_to_be_32((txq->wqe_ci << 8) |
MLX5_OPCODE_TSO),
rte_cpu_to_be_32(txq->qp_num_8s | ds),
0,
0,
};
wqe->eseg = (rte_v128u32_t){
0,
cs_flags | (rte_cpu_to_be_16(tso_segsz) << 16),
0,
(ehdr << 16) | rte_cpu_to_be_16(tso_header_sz),
};
} else {
wqe->ctrl = (rte_v128u32_t){
rte_cpu_to_be_32((txq->wqe_ci << 8) |
MLX5_OPCODE_SEND),
rte_cpu_to_be_32(txq->qp_num_8s | ds),
0,
0,
};
wqe->eseg = (rte_v128u32_t){
0,
cs_flags,
0,
(ehdr << 16) | rte_cpu_to_be_16(pkt_inline_sz),
};
}
next_wqe:
txq->wqe_ci += (ds + 3) / 4;
/* Save the last successful WQE for completion request */
last_wqe = (volatile struct mlx5_wqe_ctrl *)wqe;
#ifdef MLX5_PMD_SOFT_COUNTERS
/* Increment sent bytes counter. */
txq->stats.obytes += total_length;
#endif
} while (i < pkts_n);
/* Take a shortcut if nothing must be sent. */
if (unlikely((i + k) == 0))
return 0;
txq->elts_head += (i + j);
/* Check whether completion threshold has been reached. */
comp = txq->elts_comp + i + j + k;
if (comp >= MLX5_TX_COMP_THRESH) {
/* A CQE slot must always be available. */
assert((1u << txq->cqe_n) - (txq->cq_pi++ - txq->cq_ci));
/* Request completion on last WQE. */
last_wqe->ctrl2 = rte_cpu_to_be_32(8);
/* Save elts_head in unused "immediate" field of WQE. */
last_wqe->ctrl3 = txq->elts_head;
txq->elts_comp = 0;
} else {
txq->elts_comp = comp;
}
#ifdef MLX5_PMD_SOFT_COUNTERS
/* Increment sent packets counter. */
txq->stats.opackets += i;
#endif
/* Ring QP doorbell. */
mlx5_tx_dbrec(txq, (volatile struct mlx5_wqe *)last_wqe);
return i;
}
/**
* Open a MPW session.
*
* @param txq
* Pointer to TX queue structure.
* @param mpw
* Pointer to MPW session structure.
* @param length
* Packet length.
*/
static inline void
mlx5_mpw_new(struct mlx5_txq_data *txq, struct mlx5_mpw *mpw, uint32_t length)
{
uint16_t idx = txq->wqe_ci & ((1 << txq->wqe_n) - 1);
volatile struct mlx5_wqe_data_seg (*dseg)[MLX5_MPW_DSEG_MAX] =
(volatile struct mlx5_wqe_data_seg (*)[])
tx_mlx5_wqe(txq, idx + 1);
mpw->state = MLX5_MPW_STATE_OPENED;
mpw->pkts_n = 0;
mpw->len = length;
mpw->total_len = 0;
mpw->wqe = (volatile struct mlx5_wqe *)tx_mlx5_wqe(txq, idx);
mpw->wqe->eseg.mss = rte_cpu_to_be_16(length);
mpw->wqe->eseg.inline_hdr_sz = 0;
mpw->wqe->eseg.rsvd0 = 0;
mpw->wqe->eseg.rsvd1 = 0;
mpw->wqe->eseg.rsvd2 = 0;
mpw->wqe->ctrl[0] = rte_cpu_to_be_32((MLX5_OPC_MOD_MPW << 24) |
(txq->wqe_ci << 8) |
MLX5_OPCODE_TSO);
mpw->wqe->ctrl[2] = 0;
mpw->wqe->ctrl[3] = 0;
mpw->data.dseg[0] = (volatile struct mlx5_wqe_data_seg *)
(((uintptr_t)mpw->wqe) + (2 * MLX5_WQE_DWORD_SIZE));
mpw->data.dseg[1] = (volatile struct mlx5_wqe_data_seg *)
(((uintptr_t)mpw->wqe) + (3 * MLX5_WQE_DWORD_SIZE));
mpw->data.dseg[2] = &(*dseg)[0];
mpw->data.dseg[3] = &(*dseg)[1];
mpw->data.dseg[4] = &(*dseg)[2];
}
/**
* Close a MPW session.
*
* @param txq
* Pointer to TX queue structure.
* @param mpw
* Pointer to MPW session structure.
*/
static inline void
mlx5_mpw_close(struct mlx5_txq_data *txq, struct mlx5_mpw *mpw)
{
unsigned int num = mpw->pkts_n;
/*
* Store size in multiple of 16 bytes. Control and Ethernet segments
* count as 2.
*/
mpw->wqe->ctrl[1] = rte_cpu_to_be_32(txq->qp_num_8s | (2 + num));
mpw->state = MLX5_MPW_STATE_CLOSED;
if (num < 3)
++txq->wqe_ci;
else
txq->wqe_ci += 2;
rte_prefetch0(tx_mlx5_wqe(txq, txq->wqe_ci));
rte_prefetch0(tx_mlx5_wqe(txq, txq->wqe_ci + 1));
}
/**
* DPDK callback for TX with MPW support.
*
* @param dpdk_txq
* Generic pointer to TX queue structure.
* @param[in] pkts
* Packets to transmit.
* @param pkts_n
* Number of packets in array.
*
* @return
* Number of packets successfully transmitted (<= pkts_n).
*/
uint16_t
mlx5_tx_burst_mpw(void *dpdk_txq, struct rte_mbuf **pkts, uint16_t pkts_n)
{
struct mlx5_txq_data *txq = (struct mlx5_txq_data *)dpdk_txq;
uint16_t elts_head = txq->elts_head;
const uint16_t elts_n = 1 << txq->elts_n;
const uint16_t elts_m = elts_n - 1;
unsigned int i = 0;
unsigned int j = 0;
uint16_t max_elts;
uint16_t max_wqe;
unsigned int comp;
struct mlx5_mpw mpw = {
.state = MLX5_MPW_STATE_CLOSED,
};
if (unlikely(!pkts_n))
return 0;
/* Prefetch first packet cacheline. */
rte_prefetch0(tx_mlx5_wqe(txq, txq->wqe_ci));
rte_prefetch0(tx_mlx5_wqe(txq, txq->wqe_ci + 1));
/* Start processing. */
mlx5_tx_complete(txq);
max_elts = (elts_n - (elts_head - txq->elts_tail));
max_wqe = (1u << txq->wqe_n) - (txq->wqe_ci - txq->wqe_pi);
if (unlikely(!max_wqe))
return 0;
do {
struct rte_mbuf *buf = *(pkts++);
uint32_t length;
unsigned int segs_n = buf->nb_segs;
uint32_t cs_flags;
/*
* Make sure there is enough room to store this packet and
* that one ring entry remains unused.
*/
assert(segs_n);
if (max_elts < segs_n)
break;
/* Do not bother with large packets MPW cannot handle. */
if (segs_n > MLX5_MPW_DSEG_MAX) {
txq->stats.oerrors++;
break;
}
max_elts -= segs_n;
--pkts_n;
cs_flags = txq_ol_cksum_to_cs(txq, buf);
/* Retrieve packet information. */
length = PKT_LEN(buf);
assert(length);
/* Start new session if packet differs. */
if ((mpw.state == MLX5_MPW_STATE_OPENED) &&
((mpw.len != length) ||
(segs_n != 1) ||
(mpw.wqe->eseg.cs_flags != cs_flags)))
mlx5_mpw_close(txq, &mpw);
if (mpw.state == MLX5_MPW_STATE_CLOSED) {
/*
* Multi-Packet WQE consumes at most two WQE.
* mlx5_mpw_new() expects to be able to use such
* resources.
*/
if (unlikely(max_wqe < 2))
break;
max_wqe -= 2;
mlx5_mpw_new(txq, &mpw, length);
mpw.wqe->eseg.cs_flags = cs_flags;
}
/* Multi-segment packets must be alone in their MPW. */
assert((segs_n == 1) || (mpw.pkts_n == 0));
#if defined(MLX5_PMD_SOFT_COUNTERS) || !defined(NDEBUG)
length = 0;
#endif
do {
volatile struct mlx5_wqe_data_seg *dseg;
uintptr_t addr;
assert(buf);
(*txq->elts)[elts_head++ & elts_m] = buf;
dseg = mpw.data.dseg[mpw.pkts_n];
addr = rte_pktmbuf_mtod(buf, uintptr_t);
*dseg = (struct mlx5_wqe_data_seg){
.byte_count = rte_cpu_to_be_32(DATA_LEN(buf)),
.lkey = mlx5_tx_mb2mr(txq, buf),
.addr = rte_cpu_to_be_64(addr),
};
#if defined(MLX5_PMD_SOFT_COUNTERS) || !defined(NDEBUG)
length += DATA_LEN(buf);
#endif
buf = buf->next;
++mpw.pkts_n;
++j;
} while (--segs_n);
assert(length == mpw.len);
if (mpw.pkts_n == MLX5_MPW_DSEG_MAX)
mlx5_mpw_close(txq, &mpw);
#ifdef MLX5_PMD_SOFT_COUNTERS
/* Increment sent bytes counter. */
txq->stats.obytes += length;
#endif
++i;
} while (pkts_n);
/* Take a shortcut if nothing must be sent. */
if (unlikely(i == 0))
return 0;
/* Check whether completion threshold has been reached. */
/* "j" includes both packets and segments. */
comp = txq->elts_comp + j;
if (comp >= MLX5_TX_COMP_THRESH) {
volatile struct mlx5_wqe *wqe = mpw.wqe;
/* A CQE slot must always be available. */
assert((1u << txq->cqe_n) - (txq->cq_pi++ - txq->cq_ci));
/* Request completion on last WQE. */
wqe->ctrl[2] = rte_cpu_to_be_32(8);
/* Save elts_head in unused "immediate" field of WQE. */
wqe->ctrl[3] = elts_head;
txq->elts_comp = 0;
} else {
txq->elts_comp = comp;
}
#ifdef MLX5_PMD_SOFT_COUNTERS
/* Increment sent packets counter. */
txq->stats.opackets += i;
#endif
/* Ring QP doorbell. */
if (mpw.state == MLX5_MPW_STATE_OPENED)
mlx5_mpw_close(txq, &mpw);
mlx5_tx_dbrec(txq, mpw.wqe);
txq->elts_head = elts_head;
return i;
}
/**
* Open a MPW inline session.
*
* @param txq
* Pointer to TX queue structure.
* @param mpw
* Pointer to MPW session structure.
* @param length
* Packet length.
*/
static inline void
mlx5_mpw_inline_new(struct mlx5_txq_data *txq, struct mlx5_mpw *mpw,
uint32_t length)
{
uint16_t idx = txq->wqe_ci & ((1 << txq->wqe_n) - 1);
struct mlx5_wqe_inl_small *inl;
mpw->state = MLX5_MPW_INL_STATE_OPENED;
mpw->pkts_n = 0;
mpw->len = length;
mpw->total_len = 0;
mpw->wqe = (volatile struct mlx5_wqe *)tx_mlx5_wqe(txq, idx);
mpw->wqe->ctrl[0] = rte_cpu_to_be_32((MLX5_OPC_MOD_MPW << 24) |
(txq->wqe_ci << 8) |
MLX5_OPCODE_TSO);
mpw->wqe->ctrl[2] = 0;
mpw->wqe->ctrl[3] = 0;
mpw->wqe->eseg.mss = rte_cpu_to_be_16(length);
mpw->wqe->eseg.inline_hdr_sz = 0;
mpw->wqe->eseg.cs_flags = 0;
mpw->wqe->eseg.rsvd0 = 0;
mpw->wqe->eseg.rsvd1 = 0;
mpw->wqe->eseg.rsvd2 = 0;
inl = (struct mlx5_wqe_inl_small *)
(((uintptr_t)mpw->wqe) + 2 * MLX5_WQE_DWORD_SIZE);
mpw->data.raw = (uint8_t *)&inl->raw;
}
/**
* Close a MPW inline session.
*
* @param txq
* Pointer to TX queue structure.
* @param mpw
* Pointer to MPW session structure.
*/
static inline void
mlx5_mpw_inline_close(struct mlx5_txq_data *txq, struct mlx5_mpw *mpw)
{
unsigned int size;
struct mlx5_wqe_inl_small *inl = (struct mlx5_wqe_inl_small *)
(((uintptr_t)mpw->wqe) + (2 * MLX5_WQE_DWORD_SIZE));
size = MLX5_WQE_SIZE - MLX5_MWQE64_INL_DATA + mpw->total_len;
/*
* Store size in multiple of 16 bytes. Control and Ethernet segments
* count as 2.
*/
mpw->wqe->ctrl[1] = rte_cpu_to_be_32(txq->qp_num_8s |
MLX5_WQE_DS(size));
mpw->state = MLX5_MPW_STATE_CLOSED;
inl->byte_cnt = rte_cpu_to_be_32(mpw->total_len | MLX5_INLINE_SEG);
txq->wqe_ci += (size + (MLX5_WQE_SIZE - 1)) / MLX5_WQE_SIZE;
}
/**
* DPDK callback for TX with MPW inline support.
*
* @param dpdk_txq
* Generic pointer to TX queue structure.
* @param[in] pkts
* Packets to transmit.
* @param pkts_n
* Number of packets in array.
*
* @return
* Number of packets successfully transmitted (<= pkts_n).
*/
uint16_t
mlx5_tx_burst_mpw_inline(void *dpdk_txq, struct rte_mbuf **pkts,
uint16_t pkts_n)
{
struct mlx5_txq_data *txq = (struct mlx5_txq_data *)dpdk_txq;
uint16_t elts_head = txq->elts_head;
const uint16_t elts_n = 1 << txq->elts_n;
const uint16_t elts_m = elts_n - 1;
unsigned int i = 0;
unsigned int j = 0;
uint16_t max_elts;
uint16_t max_wqe;
unsigned int comp;
unsigned int inline_room = txq->max_inline * RTE_CACHE_LINE_SIZE;
struct mlx5_mpw mpw = {
.state = MLX5_MPW_STATE_CLOSED,
};
/*
* Compute the maximum number of WQE which can be consumed by inline
* code.
* - 2 DSEG for:
* - 1 control segment,
* - 1 Ethernet segment,
* - N Dseg from the inline request.
*/
const unsigned int wqe_inl_n =
((2 * MLX5_WQE_DWORD_SIZE +
txq->max_inline * RTE_CACHE_LINE_SIZE) +
RTE_CACHE_LINE_SIZE - 1) / RTE_CACHE_LINE_SIZE;
if (unlikely(!pkts_n))
return 0;
/* Prefetch first packet cacheline. */
rte_prefetch0(tx_mlx5_wqe(txq, txq->wqe_ci));
rte_prefetch0(tx_mlx5_wqe(txq, txq->wqe_ci + 1));
/* Start processing. */
mlx5_tx_complete(txq);
max_elts = (elts_n - (elts_head - txq->elts_tail));
do {
struct rte_mbuf *buf = *(pkts++);
uintptr_t addr;
uint32_t length;
unsigned int segs_n = buf->nb_segs;
uint8_t cs_flags;
/*
* Make sure there is enough room to store this packet and
* that one ring entry remains unused.
*/
assert(segs_n);
if (max_elts < segs_n)
break;
/* Do not bother with large packets MPW cannot handle. */
if (segs_n > MLX5_MPW_DSEG_MAX) {
txq->stats.oerrors++;
break;
}
max_elts -= segs_n;
--pkts_n;
/*
* Compute max_wqe in case less WQE were consumed in previous
* iteration.
*/
max_wqe = (1u << txq->wqe_n) - (txq->wqe_ci - txq->wqe_pi);
cs_flags = txq_ol_cksum_to_cs(txq, buf);
/* Retrieve packet information. */
length = PKT_LEN(buf);
/* Start new session if packet differs. */
if (mpw.state == MLX5_MPW_STATE_OPENED) {
if ((mpw.len != length) ||
(segs_n != 1) ||
(mpw.wqe->eseg.cs_flags != cs_flags))
mlx5_mpw_close(txq, &mpw);
} else if (mpw.state == MLX5_MPW_INL_STATE_OPENED) {
if ((mpw.len != length) ||
(segs_n != 1) ||
(length > inline_room) ||
(mpw.wqe->eseg.cs_flags != cs_flags)) {
mlx5_mpw_inline_close(txq, &mpw);
inline_room =
txq->max_inline * RTE_CACHE_LINE_SIZE;
}
}
if (mpw.state == MLX5_MPW_STATE_CLOSED) {
if ((segs_n != 1) ||
(length > inline_room)) {
/*
* Multi-Packet WQE consumes at most two WQE.
* mlx5_mpw_new() expects to be able to use
* such resources.
*/
if (unlikely(max_wqe < 2))
break;
max_wqe -= 2;
mlx5_mpw_new(txq, &mpw, length);
mpw.wqe->eseg.cs_flags = cs_flags;
} else {
if (unlikely(max_wqe < wqe_inl_n))
break;
max_wqe -= wqe_inl_n;
mlx5_mpw_inline_new(txq, &mpw, length);
mpw.wqe->eseg.cs_flags = cs_flags;
}
}
/* Multi-segment packets must be alone in their MPW. */
assert((segs_n == 1) || (mpw.pkts_n == 0));
if (mpw.state == MLX5_MPW_STATE_OPENED) {
assert(inline_room ==
txq->max_inline * RTE_CACHE_LINE_SIZE);
#if defined(MLX5_PMD_SOFT_COUNTERS) || !defined(NDEBUG)
length = 0;
#endif
do {
volatile struct mlx5_wqe_data_seg *dseg;
assert(buf);
(*txq->elts)[elts_head++ & elts_m] = buf;
dseg = mpw.data.dseg[mpw.pkts_n];
addr = rte_pktmbuf_mtod(buf, uintptr_t);
*dseg = (struct mlx5_wqe_data_seg){
.byte_count =
rte_cpu_to_be_32(DATA_LEN(buf)),
.lkey = mlx5_tx_mb2mr(txq, buf),
.addr = rte_cpu_to_be_64(addr),
};
#if defined(MLX5_PMD_SOFT_COUNTERS) || !defined(NDEBUG)
length += DATA_LEN(buf);
#endif
buf = buf->next;
++mpw.pkts_n;
++j;
} while (--segs_n);
assert(length == mpw.len);
if (mpw.pkts_n == MLX5_MPW_DSEG_MAX)
mlx5_mpw_close(txq, &mpw);
} else {
unsigned int max;
assert(mpw.state == MLX5_MPW_INL_STATE_OPENED);
assert(length <= inline_room);
assert(length == DATA_LEN(buf));
addr = rte_pktmbuf_mtod(buf, uintptr_t);
(*txq->elts)[elts_head++ & elts_m] = buf;
/* Maximum number of bytes before wrapping. */
max = ((((uintptr_t)(txq->wqes)) +
(1 << txq->wqe_n) *
MLX5_WQE_SIZE) -
(uintptr_t)mpw.data.raw);
if (length > max) {
rte_memcpy((void *)(uintptr_t)mpw.data.raw,
(void *)addr,
max);
mpw.data.raw = (volatile void *)txq->wqes;
rte_memcpy((void *)(uintptr_t)mpw.data.raw,
(void *)(addr + max),
length - max);
mpw.data.raw += length - max;
} else {
rte_memcpy((void *)(uintptr_t)mpw.data.raw,
(void *)addr,
length);
if (length == max)
mpw.data.raw =
(volatile void *)txq->wqes;
else
mpw.data.raw += length;
}
++mpw.pkts_n;
mpw.total_len += length;
++j;
if (mpw.pkts_n == MLX5_MPW_DSEG_MAX) {
mlx5_mpw_inline_close(txq, &mpw);
inline_room =
txq->max_inline * RTE_CACHE_LINE_SIZE;
} else {
inline_room -= length;
}
}
#ifdef MLX5_PMD_SOFT_COUNTERS
/* Increment sent bytes counter. */
txq->stats.obytes += length;
#endif
++i;
} while (pkts_n);
/* Take a shortcut if nothing must be sent. */
if (unlikely(i == 0))
return 0;
/* Check whether completion threshold has been reached. */
/* "j" includes both packets and segments. */
comp = txq->elts_comp + j;
if (comp >= MLX5_TX_COMP_THRESH) {
volatile struct mlx5_wqe *wqe = mpw.wqe;
/* A CQE slot must always be available. */
assert((1u << txq->cqe_n) - (txq->cq_pi++ - txq->cq_ci));
/* Request completion on last WQE. */
wqe->ctrl[2] = rte_cpu_to_be_32(8);
/* Save elts_head in unused "immediate" field of WQE. */
wqe->ctrl[3] = elts_head;
txq->elts_comp = 0;
} else {
txq->elts_comp = comp;
}
#ifdef MLX5_PMD_SOFT_COUNTERS
/* Increment sent packets counter. */
txq->stats.opackets += i;
#endif
/* Ring QP doorbell. */
if (mpw.state == MLX5_MPW_INL_STATE_OPENED)
mlx5_mpw_inline_close(txq, &mpw);
else if (mpw.state == MLX5_MPW_STATE_OPENED)
mlx5_mpw_close(txq, &mpw);
mlx5_tx_dbrec(txq, mpw.wqe);
txq->elts_head = elts_head;
return i;
}
/**
* Open an Enhanced MPW session.
*
* @param txq
* Pointer to TX queue structure.
* @param mpw
* Pointer to MPW session structure.
* @param length
* Packet length.
*/
static inline void
mlx5_empw_new(struct mlx5_txq_data *txq, struct mlx5_mpw *mpw, int padding)
{
uint16_t idx = txq->wqe_ci & ((1 << txq->wqe_n) - 1);
mpw->state = MLX5_MPW_ENHANCED_STATE_OPENED;
mpw->pkts_n = 0;
mpw->total_len = sizeof(struct mlx5_wqe);
mpw->wqe = (volatile struct mlx5_wqe *)tx_mlx5_wqe(txq, idx);
mpw->wqe->ctrl[0] =
rte_cpu_to_be_32((MLX5_OPC_MOD_ENHANCED_MPSW << 24) |
(txq->wqe_ci << 8) |
MLX5_OPCODE_ENHANCED_MPSW);
mpw->wqe->ctrl[2] = 0;
mpw->wqe->ctrl[3] = 0;
memset((void *)(uintptr_t)&mpw->wqe->eseg, 0, MLX5_WQE_DWORD_SIZE);
if (unlikely(padding)) {
uintptr_t addr = (uintptr_t)(mpw->wqe + 1);
/* Pad the first 2 DWORDs with zero-length inline header. */
*(volatile uint32_t *)addr = rte_cpu_to_be_32(MLX5_INLINE_SEG);
*(volatile uint32_t *)(addr + MLX5_WQE_DWORD_SIZE) =
rte_cpu_to_be_32(MLX5_INLINE_SEG);
mpw->total_len += 2 * MLX5_WQE_DWORD_SIZE;
/* Start from the next WQEBB. */
mpw->data.raw = (volatile void *)(tx_mlx5_wqe(txq, idx + 1));
} else {
mpw->data.raw = (volatile void *)(mpw->wqe + 1);
}
}
/**
* Close an Enhanced MPW session.
*
* @param txq
* Pointer to TX queue structure.
* @param mpw
* Pointer to MPW session structure.
*
* @return
* Number of consumed WQEs.
*/
static inline uint16_t
mlx5_empw_close(struct mlx5_txq_data *txq, struct mlx5_mpw *mpw)
{
uint16_t ret;
/* Store size in multiple of 16 bytes. Control and Ethernet segments
* count as 2.
*/
mpw->wqe->ctrl[1] = rte_cpu_to_be_32(txq->qp_num_8s |
MLX5_WQE_DS(mpw->total_len));
mpw->state = MLX5_MPW_STATE_CLOSED;
ret = (mpw->total_len + (MLX5_WQE_SIZE - 1)) / MLX5_WQE_SIZE;
txq->wqe_ci += ret;
return ret;
}
/**
* DPDK callback for TX with Enhanced MPW support.
*
* @param dpdk_txq
* Generic pointer to TX queue structure.
* @param[in] pkts
* Packets to transmit.
* @param pkts_n
* Number of packets in array.
*
* @return
* Number of packets successfully transmitted (<= pkts_n).
*/
uint16_t
mlx5_tx_burst_empw(void *dpdk_txq, struct rte_mbuf **pkts, uint16_t pkts_n)
{
struct mlx5_txq_data *txq = (struct mlx5_txq_data *)dpdk_txq;
uint16_t elts_head = txq->elts_head;
const uint16_t elts_n = 1 << txq->elts_n;
const uint16_t elts_m = elts_n - 1;
unsigned int i = 0;
unsigned int j = 0;
uint16_t max_elts;
uint16_t max_wqe;
unsigned int max_inline = txq->max_inline * RTE_CACHE_LINE_SIZE;
unsigned int mpw_room = 0;
unsigned int inl_pad = 0;
uint32_t inl_hdr;
struct mlx5_mpw mpw = {
.state = MLX5_MPW_STATE_CLOSED,
};
if (unlikely(!pkts_n))
return 0;
/* Start processing. */
mlx5_tx_complete(txq);
max_elts = (elts_n - (elts_head - txq->elts_tail));
max_wqe = (1u << txq->wqe_n) - (txq->wqe_ci - txq->wqe_pi);
if (unlikely(!max_wqe))
return 0;
do {
struct rte_mbuf *buf = *(pkts++);
uintptr_t addr;
unsigned int do_inline = 0; /* Whether inline is possible. */
uint32_t length;
unsigned int segs_n = buf->nb_segs;
uint8_t cs_flags;
/*
* Make sure there is enough room to store this packet and
* that one ring entry remains unused.
*/
assert(segs_n);
if (max_elts - j < segs_n)
break;
/* Do not bother with large packets MPW cannot handle. */
if (segs_n > MLX5_MPW_DSEG_MAX) {
txq->stats.oerrors++;
break;
}
cs_flags = txq_ol_cksum_to_cs(txq, buf);
/* Retrieve packet information. */
length = PKT_LEN(buf);
/* Start new session if:
* - multi-segment packet
* - no space left even for a dseg
* - next packet can be inlined with a new WQE
* - cs_flag differs
* It can't be MLX5_MPW_STATE_OPENED as always have a single
* segmented packet.
*/
if (mpw.state == MLX5_MPW_ENHANCED_STATE_OPENED) {
if ((segs_n != 1) ||
(inl_pad + sizeof(struct mlx5_wqe_data_seg) >
mpw_room) ||
(length <= txq->inline_max_packet_sz &&
inl_pad + sizeof(inl_hdr) + length >
mpw_room) ||
(mpw.wqe->eseg.cs_flags != cs_flags))
max_wqe -= mlx5_empw_close(txq, &mpw);
}
if (unlikely(mpw.state == MLX5_MPW_STATE_CLOSED)) {
if (unlikely(segs_n != 1)) {
/* Fall back to legacy MPW.
* A MPW session consumes 2 WQEs at most to
* include MLX5_MPW_DSEG_MAX pointers.
*/
if (unlikely(max_wqe < 2))
break;
mlx5_mpw_new(txq, &mpw, length);
} else {
/* In Enhanced MPW, inline as much as the budget
* is allowed. The remaining space is to be
* filled with dsegs. If the title WQEBB isn't
* padded, it will have 2 dsegs there.
*/
mpw_room = RTE_MIN(MLX5_WQE_SIZE_MAX,
(max_inline ? max_inline :
pkts_n * MLX5_WQE_DWORD_SIZE) +
MLX5_WQE_SIZE);
if (unlikely(max_wqe * MLX5_WQE_SIZE <
mpw_room))
break;
/* Don't pad the title WQEBB to not waste WQ. */
mlx5_empw_new(txq, &mpw, 0);
mpw_room -= mpw.total_len;
inl_pad = 0;
do_inline =
length <= txq->inline_max_packet_sz &&
sizeof(inl_hdr) + length <= mpw_room &&
!txq->mpw_hdr_dseg;
}
mpw.wqe->eseg.cs_flags = cs_flags;
} else {
/* Evaluate whether the next packet can be inlined.
* Inlininig is possible when:
* - length is less than configured value
* - length fits for remaining space
* - not required to fill the title WQEBB with dsegs
*/
do_inline =
length <= txq->inline_max_packet_sz &&
inl_pad + sizeof(inl_hdr) + length <=
mpw_room &&
(!txq->mpw_hdr_dseg ||
mpw.total_len >= MLX5_WQE_SIZE);
}
/* Multi-segment packets must be alone in their MPW. */
assert((segs_n == 1) || (mpw.pkts_n == 0));
if (unlikely(mpw.state == MLX5_MPW_STATE_OPENED)) {
#if defined(MLX5_PMD_SOFT_COUNTERS) || !defined(NDEBUG)
length = 0;
#endif
do {
volatile struct mlx5_wqe_data_seg *dseg;
assert(buf);
(*txq->elts)[elts_head++ & elts_m] = buf;
dseg = mpw.data.dseg[mpw.pkts_n];
addr = rte_pktmbuf_mtod(buf, uintptr_t);
*dseg = (struct mlx5_wqe_data_seg){
.byte_count = rte_cpu_to_be_32(
DATA_LEN(buf)),
.lkey = mlx5_tx_mb2mr(txq, buf),
.addr = rte_cpu_to_be_64(addr),
};
#if defined(MLX5_PMD_SOFT_COUNTERS) || !defined(NDEBUG)
length += DATA_LEN(buf);
#endif
buf = buf->next;
++j;
++mpw.pkts_n;
} while (--segs_n);
/* A multi-segmented packet takes one MPW session.
* TODO: Pack more multi-segmented packets if possible.
*/
mlx5_mpw_close(txq, &mpw);
if (mpw.pkts_n < 3)
max_wqe--;
else
max_wqe -= 2;
} else if (max_inline && do_inline) {
/* Inline packet into WQE. */
unsigned int max;
assert(mpw.state == MLX5_MPW_ENHANCED_STATE_OPENED);
assert(length == DATA_LEN(buf));
inl_hdr = rte_cpu_to_be_32(length | MLX5_INLINE_SEG);
addr = rte_pktmbuf_mtod(buf, uintptr_t);
mpw.data.raw = (volatile void *)
((uintptr_t)mpw.data.raw + inl_pad);
max = tx_mlx5_wq_tailroom(txq,
(void *)(uintptr_t)mpw.data.raw);
/* Copy inline header. */
mpw.data.raw = (volatile void *)
mlx5_copy_to_wq(
(void *)(uintptr_t)mpw.data.raw,
&inl_hdr,
sizeof(inl_hdr),
(void *)(uintptr_t)txq->wqes,
max);
max = tx_mlx5_wq_tailroom(txq,
(void *)(uintptr_t)mpw.data.raw);
/* Copy packet data. */
mpw.data.raw = (volatile void *)
mlx5_copy_to_wq(
(void *)(uintptr_t)mpw.data.raw,
(void *)addr,
length,
(void *)(uintptr_t)txq->wqes,
max);
++mpw.pkts_n;
mpw.total_len += (inl_pad + sizeof(inl_hdr) + length);
/* No need to get completion as the entire packet is
* copied to WQ. Free the buf right away.
*/
rte_pktmbuf_free_seg(buf);
mpw_room -= (inl_pad + sizeof(inl_hdr) + length);
/* Add pad in the next packet if any. */
inl_pad = (((uintptr_t)mpw.data.raw +
(MLX5_WQE_DWORD_SIZE - 1)) &
~(MLX5_WQE_DWORD_SIZE - 1)) -
(uintptr_t)mpw.data.raw;
} else {
/* No inline. Load a dseg of packet pointer. */
volatile rte_v128u32_t *dseg;
assert(mpw.state == MLX5_MPW_ENHANCED_STATE_OPENED);
assert((inl_pad + sizeof(*dseg)) <= mpw_room);
assert(length == DATA_LEN(buf));
if (!tx_mlx5_wq_tailroom(txq,
(void *)((uintptr_t)mpw.data.raw
+ inl_pad)))
dseg = (volatile void *)txq->wqes;
else
dseg = (volatile void *)
((uintptr_t)mpw.data.raw +
inl_pad);
(*txq->elts)[elts_head++ & elts_m] = buf;
addr = rte_cpu_to_be_64(rte_pktmbuf_mtod(buf,
uintptr_t));
*dseg = (rte_v128u32_t) {
rte_cpu_to_be_32(length),
mlx5_tx_mb2mr(txq, buf),
addr,
addr >> 32,
};
mpw.data.raw = (volatile void *)(dseg + 1);
mpw.total_len += (inl_pad + sizeof(*dseg));
++j;
++mpw.pkts_n;
mpw_room -= (inl_pad + sizeof(*dseg));
inl_pad = 0;
}
#ifdef MLX5_PMD_SOFT_COUNTERS
/* Increment sent bytes counter. */
txq->stats.obytes += length;
#endif
++i;
} while (i < pkts_n);
/* Take a shortcut if nothing must be sent. */
if (unlikely(i == 0))
return 0;
/* Check whether completion threshold has been reached. */
if (txq->elts_comp + j >= MLX5_TX_COMP_THRESH ||
(uint16_t)(txq->wqe_ci - txq->mpw_comp) >=
(1 << txq->wqe_n) / MLX5_TX_COMP_THRESH_INLINE_DIV) {
volatile struct mlx5_wqe *wqe = mpw.wqe;
/* A CQE slot must always be available. */
assert((1u << txq->cqe_n) - (txq->cq_pi++ - txq->cq_ci));
/* Request completion on last WQE. */
wqe->ctrl[2] = rte_cpu_to_be_32(8);
/* Save elts_head in unused "immediate" field of WQE. */
wqe->ctrl[3] = elts_head;
txq->elts_comp = 0;
txq->mpw_comp = txq->wqe_ci;
} else {
txq->elts_comp += j;
}
#ifdef MLX5_PMD_SOFT_COUNTERS
/* Increment sent packets counter. */
txq->stats.opackets += i;
#endif
if (mpw.state == MLX5_MPW_ENHANCED_STATE_OPENED)
mlx5_empw_close(txq, &mpw);
else if (mpw.state == MLX5_MPW_STATE_OPENED)
mlx5_mpw_close(txq, &mpw);
/* Ring QP doorbell. */
mlx5_tx_dbrec(txq, mpw.wqe);
txq->elts_head = elts_head;
return i;
}
/**
* Translate RX completion flags to packet type.
*
* @param[in] cqe
* Pointer to CQE.
*
* @note: fix mlx5_dev_supported_ptypes_get() if any change here.
*
* @return
* Packet type for struct rte_mbuf.
*/
static inline uint32_t
rxq_cq_to_pkt_type(volatile struct mlx5_cqe *cqe)
{
uint8_t idx;
uint8_t pinfo = cqe->pkt_info;
uint16_t ptype = cqe->hdr_type_etc;
/*
* The index to the array should have:
* bit[1:0] = l3_hdr_type
* bit[4:2] = l4_hdr_type
* bit[5] = ip_frag
* bit[6] = tunneled
* bit[7] = outer_l3_type
*/
idx = ((pinfo & 0x3) << 6) | ((ptype & 0xfc00) >> 10);
return mlx5_ptype_table[idx];
}
/**
* Get size of the next packet for a given CQE. For compressed CQEs, the
* consumer index is updated only once all packets of the current one have
* been processed.
*
* @param rxq
* Pointer to RX queue.
* @param cqe
* CQE to process.
* @param[out] rss_hash
* Packet RSS Hash result.
*
* @return
* Packet size in bytes (0 if there is none), -1 in case of completion
* with error.
*/
static inline int
mlx5_rx_poll_len(struct mlx5_rxq_data *rxq, volatile struct mlx5_cqe *cqe,
uint16_t cqe_cnt, uint32_t *rss_hash)
{
struct rxq_zip *zip = &rxq->zip;
uint16_t cqe_n = cqe_cnt + 1;
int len = 0;
uint16_t idx, end;
/* Process compressed data in the CQE and mini arrays. */
if (zip->ai) {
volatile struct mlx5_mini_cqe8 (*mc)[8] =
(volatile struct mlx5_mini_cqe8 (*)[8])
(uintptr_t)(&(*rxq->cqes)[zip->ca & cqe_cnt].pkt_info);
len = rte_be_to_cpu_32((*mc)[zip->ai & 7].byte_cnt);
*rss_hash = rte_be_to_cpu_32((*mc)[zip->ai & 7].rx_hash_result);
if ((++zip->ai & 7) == 0) {
/* Invalidate consumed CQEs */
idx = zip->ca;
end = zip->na;
while (idx != end) {
(*rxq->cqes)[idx & cqe_cnt].op_own =
MLX5_CQE_INVALIDATE;
++idx;
}
/*
* Increment consumer index to skip the number of
* CQEs consumed. Hardware leaves holes in the CQ
* ring for software use.
*/
zip->ca = zip->na;
zip->na += 8;
}
if (unlikely(rxq->zip.ai == rxq->zip.cqe_cnt)) {
/* Invalidate the rest */
idx = zip->ca;
end = zip->cq_ci;
while (idx != end) {
(*rxq->cqes)[idx & cqe_cnt].op_own =
MLX5_CQE_INVALIDATE;
++idx;
}
rxq->cq_ci = zip->cq_ci;
zip->ai = 0;
}
/* No compressed data, get next CQE and verify if it is compressed. */
} else {
int ret;
int8_t op_own;
ret = check_cqe(cqe, cqe_n, rxq->cq_ci);
if (unlikely(ret == 1))
return 0;
++rxq->cq_ci;
op_own = cqe->op_own;
rte_io_rmb();
if (MLX5_CQE_FORMAT(op_own) == MLX5_COMPRESSED) {
volatile struct mlx5_mini_cqe8 (*mc)[8] =
(volatile struct mlx5_mini_cqe8 (*)[8])
(uintptr_t)(&(*rxq->cqes)[rxq->cq_ci &
cqe_cnt].pkt_info);
/* Fix endianness. */
zip->cqe_cnt = rte_be_to_cpu_32(cqe->byte_cnt);
/*
* Current mini array position is the one returned by
* check_cqe64().
*
* If completion comprises several mini arrays, as a
* special case the second one is located 7 CQEs after
* the initial CQE instead of 8 for subsequent ones.
*/
zip->ca = rxq->cq_ci;
zip->na = zip->ca + 7;
/* Compute the next non compressed CQE. */
--rxq->cq_ci;
zip->cq_ci = rxq->cq_ci + zip->cqe_cnt;
/* Get packet size to return. */
len = rte_be_to_cpu_32((*mc)[0].byte_cnt);
*rss_hash = rte_be_to_cpu_32((*mc)[0].rx_hash_result);
zip->ai = 1;
/* Prefetch all the entries to be invalidated */
idx = zip->ca;
end = zip->cq_ci;
while (idx != end) {
rte_prefetch0(&(*rxq->cqes)[(idx) & cqe_cnt]);
++idx;
}
} else {
len = rte_be_to_cpu_32(cqe->byte_cnt);
*rss_hash = rte_be_to_cpu_32(cqe->rx_hash_res);
}
/* Error while receiving packet. */
if (unlikely(MLX5_CQE_OPCODE(op_own) == MLX5_CQE_RESP_ERR))
return -1;
}
return len;
}
/**
* Translate RX completion flags to offload flags.
*
* @param[in] rxq
* Pointer to RX queue structure.
* @param[in] cqe
* Pointer to CQE.
*
* @return
* Offload flags (ol_flags) for struct rte_mbuf.
*/
static inline uint32_t
rxq_cq_to_ol_flags(struct mlx5_rxq_data *rxq, volatile struct mlx5_cqe *cqe)
{
uint32_t ol_flags = 0;
uint16_t flags = rte_be_to_cpu_16(cqe->hdr_type_etc);
ol_flags =
TRANSPOSE(flags,
MLX5_CQE_RX_L3_HDR_VALID,
PKT_RX_IP_CKSUM_GOOD) |
TRANSPOSE(flags,
MLX5_CQE_RX_L4_HDR_VALID,
PKT_RX_L4_CKSUM_GOOD);
if ((cqe->pkt_info & MLX5_CQE_RX_TUNNEL_PACKET) && (rxq->csum_l2tun))
ol_flags |=
TRANSPOSE(flags,
MLX5_CQE_RX_L3_HDR_VALID,
PKT_RX_IP_CKSUM_GOOD) |
TRANSPOSE(flags,
MLX5_CQE_RX_L4_HDR_VALID,
PKT_RX_L4_CKSUM_GOOD);
return ol_flags;
}
/**
* DPDK callback for RX.
*
* @param dpdk_rxq
* Generic pointer to RX queue structure.
* @param[out] pkts
* Array to store received packets.
* @param pkts_n
* Maximum number of packets in array.
*
* @return
* Number of packets successfully received (<= pkts_n).
*/
uint16_t
mlx5_rx_burst(void *dpdk_rxq, struct rte_mbuf **pkts, uint16_t pkts_n)
{
struct mlx5_rxq_data *rxq = dpdk_rxq;
const unsigned int wqe_cnt = (1 << rxq->elts_n) - 1;
const unsigned int cqe_cnt = (1 << rxq->cqe_n) - 1;
const unsigned int sges_n = rxq->sges_n;
struct rte_mbuf *pkt = NULL;
struct rte_mbuf *seg = NULL;
volatile struct mlx5_cqe *cqe =
&(*rxq->cqes)[rxq->cq_ci & cqe_cnt];
unsigned int i = 0;
unsigned int rq_ci = rxq->rq_ci << sges_n;
int len = 0; /* keep its value across iterations. */
while (pkts_n) {
unsigned int idx = rq_ci & wqe_cnt;
volatile struct mlx5_wqe_data_seg *wqe = &(*rxq->wqes)[idx];
struct rte_mbuf *rep = (*rxq->elts)[idx];
uint32_t rss_hash_res = 0;
if (pkt)
NEXT(seg) = rep;
seg = rep;
rte_prefetch0(seg);
rte_prefetch0(cqe);
rte_prefetch0(wqe);
rep = rte_mbuf_raw_alloc(rxq->mp);
if (unlikely(rep == NULL)) {
++rxq->stats.rx_nombuf;
if (!pkt) {
/*
* no buffers before we even started,
* bail out silently.
*/
break;
}
while (pkt != seg) {
assert(pkt != (*rxq->elts)[idx]);
rep = NEXT(pkt);
NEXT(pkt) = NULL;
NB_SEGS(pkt) = 1;
rte_mbuf_raw_free(pkt);
pkt = rep;
}
break;
}
if (!pkt) {
cqe = &(*rxq->cqes)[rxq->cq_ci & cqe_cnt];
len = mlx5_rx_poll_len(rxq, cqe, cqe_cnt,
&rss_hash_res);
if (!len) {
rte_mbuf_raw_free(rep);
break;
}
if (unlikely(len == -1)) {
/* RX error, packet is likely too large. */
rte_mbuf_raw_free(rep);
++rxq->stats.idropped;
goto skip;
}
pkt = seg;
assert(len >= (rxq->crc_present << 2));
/* Update packet information. */
pkt->packet_type = rxq_cq_to_pkt_type(cqe);
pkt->ol_flags = 0;
if (rss_hash_res && rxq->rss_hash) {
pkt->hash.rss = rss_hash_res;
pkt->ol_flags = PKT_RX_RSS_HASH;
}
if (rxq->mark &&
MLX5_FLOW_MARK_IS_VALID(cqe->sop_drop_qpn)) {
pkt->ol_flags |= PKT_RX_FDIR;
if (cqe->sop_drop_qpn !=
rte_cpu_to_be_32(MLX5_FLOW_MARK_DEFAULT)) {
uint32_t mark = cqe->sop_drop_qpn;
pkt->ol_flags |= PKT_RX_FDIR_ID;
pkt->hash.fdir.hi =
mlx5_flow_mark_get(mark);
}
}
if (rxq->csum | rxq->csum_l2tun)
pkt->ol_flags |= rxq_cq_to_ol_flags(rxq, cqe);
if (rxq->vlan_strip &&
(cqe->hdr_type_etc &
rte_cpu_to_be_16(MLX5_CQE_VLAN_STRIPPED))) {
pkt->ol_flags |= PKT_RX_VLAN |
PKT_RX_VLAN_STRIPPED;
pkt->vlan_tci =
rte_be_to_cpu_16(cqe->vlan_info);
}
if (rxq->hw_timestamp) {
pkt->timestamp =
rte_be_to_cpu_64(cqe->timestamp);
pkt->ol_flags |= PKT_RX_TIMESTAMP;
}
if (rxq->crc_present)
len -= ETHER_CRC_LEN;
PKT_LEN(pkt) = len;
}
DATA_LEN(rep) = DATA_LEN(seg);
PKT_LEN(rep) = PKT_LEN(seg);
SET_DATA_OFF(rep, DATA_OFF(seg));
PORT(rep) = PORT(seg);
(*rxq->elts)[idx] = rep;
/*
* Fill NIC descriptor with the new buffer. The lkey and size
* of the buffers are already known, only the buffer address
* changes.
*/
wqe->addr = rte_cpu_to_be_64(rte_pktmbuf_mtod(rep, uintptr_t));
if (len > DATA_LEN(seg)) {
len -= DATA_LEN(seg);
++NB_SEGS(pkt);
++rq_ci;
continue;
}
DATA_LEN(seg) = len;
#ifdef MLX5_PMD_SOFT_COUNTERS
/* Increment bytes counter. */
rxq->stats.ibytes += PKT_LEN(pkt);
#endif
/* Return packet. */
*(pkts++) = pkt;
pkt = NULL;
--pkts_n;
++i;
skip:
/* Align consumer index to the next stride. */
rq_ci >>= sges_n;
++rq_ci;
rq_ci <<= sges_n;
}
if (unlikely((i == 0) && ((rq_ci >> sges_n) == rxq->rq_ci)))
return 0;
/* Update the consumer index. */
rxq->rq_ci = rq_ci >> sges_n;
rte_io_wmb();
*rxq->cq_db = rte_cpu_to_be_32(rxq->cq_ci);
rte_io_wmb();
*rxq->rq_db = rte_cpu_to_be_32(rxq->rq_ci);
#ifdef MLX5_PMD_SOFT_COUNTERS
/* Increment packets counter. */
rxq->stats.ipackets += i;
#endif
return i;
}
/**
* Dummy DPDK callback for TX.
*
* This function is used to temporarily replace the real callback during
* unsafe control operations on the queue, or in case of error.
*
* @param dpdk_txq
* Generic pointer to TX queue structure.
* @param[in] pkts
* Packets to transmit.
* @param pkts_n
* Number of packets in array.
*
* @return
* Number of packets successfully transmitted (<= pkts_n).
*/
uint16_t
removed_tx_burst(void *dpdk_txq __rte_unused,
struct rte_mbuf **pkts __rte_unused,
uint16_t pkts_n __rte_unused)
{
return 0;
}
/**
* Dummy DPDK callback for RX.
*
* This function is used to temporarily replace the real callback during
* unsafe control operations on the queue, or in case of error.
*
* @param dpdk_rxq
* Generic pointer to RX queue structure.
* @param[out] pkts
* Array to store received packets.
* @param pkts_n
* Maximum number of packets in array.
*
* @return
* Number of packets successfully received (<= pkts_n).
*/
uint16_t
removed_rx_burst(void *dpdk_txq __rte_unused,
struct rte_mbuf **pkts __rte_unused,
uint16_t pkts_n __rte_unused)
{
return 0;
}
/*
* Vectorized Rx/Tx routines are not compiled in when required vector
* instructions are not supported on a target architecture. The following null
* stubs are needed for linkage when those are not included outside of this file
* (e.g. mlx5_rxtx_vec_sse.c for x86).
*/
uint16_t __attribute__((weak))
mlx5_tx_burst_raw_vec(void *dpdk_txq __rte_unused,
struct rte_mbuf **pkts __rte_unused,
uint16_t pkts_n __rte_unused)
{
return 0;
}
uint16_t __attribute__((weak))
mlx5_tx_burst_vec(void *dpdk_txq __rte_unused,
struct rte_mbuf **pkts __rte_unused,
uint16_t pkts_n __rte_unused)
{
return 0;
}
uint16_t __attribute__((weak))
mlx5_rx_burst_vec(void *dpdk_txq __rte_unused,
struct rte_mbuf **pkts __rte_unused,
uint16_t pkts_n __rte_unused)
{
return 0;
}
int __attribute__((weak))
mlx5_check_raw_vec_tx_support(struct rte_eth_dev *dev __rte_unused)
{
return -ENOTSUP;
}
int __attribute__((weak))
mlx5_check_vec_tx_support(struct rte_eth_dev *dev __rte_unused)
{
return -ENOTSUP;
}
int __attribute__((weak))
mlx5_rxq_check_vec_support(struct mlx5_rxq_data *rxq __rte_unused)
{
return -ENOTSUP;
}
int __attribute__((weak))
mlx5_check_vec_rx_support(struct rte_eth_dev *dev __rte_unused)
{
return -ENOTSUP;
}