f-stack/dpdk/drivers/bus/fslmc/qbman/qbman_portal.c

1426 lines
37 KiB
C

/*-
* BSD LICENSE
*
* Copyright (C) 2014-2016 Freescale Semiconductor, Inc.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
* * Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* * Neither the name of Freescale Semiconductor nor the
* names of its contributors may be used to endorse or promote products
* derived from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY Freescale Semiconductor ``AS IS'' AND ANY
* EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
* WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
* DISCLAIMED. IN NO EVENT SHALL Freescale Semiconductor BE LIABLE FOR ANY
* DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
* (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
* ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
* SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#include "qbman_portal.h"
/* QBMan portal management command codes */
#define QBMAN_MC_ACQUIRE 0x30
#define QBMAN_WQCHAN_CONFIGURE 0x46
/* CINH register offsets */
#define QBMAN_CINH_SWP_EQCR_PI 0x800
#define QBMAN_CINH_SWP_EQCR_CI 0x840
#define QBMAN_CINH_SWP_EQAR 0x8c0
#define QBMAN_CINH_SWP_DQPI 0xa00
#define QBMAN_CINH_SWP_DCAP 0xac0
#define QBMAN_CINH_SWP_SDQCR 0xb00
#define QBMAN_CINH_SWP_RAR 0xcc0
#define QBMAN_CINH_SWP_ISR 0xe00
#define QBMAN_CINH_SWP_IER 0xe40
#define QBMAN_CINH_SWP_ISDR 0xe80
#define QBMAN_CINH_SWP_IIR 0xec0
#define QBMAN_CINH_SWP_DQRR_ITR 0xa80
#define QBMAN_CINH_SWP_ITPR 0xf40
/* CENA register offsets */
#define QBMAN_CENA_SWP_EQCR(n) (0x000 + ((uint32_t)(n) << 6))
#define QBMAN_CENA_SWP_DQRR(n) (0x200 + ((uint32_t)(n) << 6))
#define QBMAN_CENA_SWP_RCR(n) (0x400 + ((uint32_t)(n) << 6))
#define QBMAN_CENA_SWP_CR 0x600
#define QBMAN_CENA_SWP_RR(vb) (0x700 + ((uint32_t)(vb) >> 1))
#define QBMAN_CENA_SWP_VDQCR 0x780
#define QBMAN_CENA_SWP_EQCR_CI 0x840
/* Reverse mapping of QBMAN_CENA_SWP_DQRR() */
#define QBMAN_IDX_FROM_DQRR(p) (((unsigned long)p & 0x1ff) >> 6)
/* QBMan FQ management command codes */
#define QBMAN_FQ_SCHEDULE 0x48
#define QBMAN_FQ_FORCE 0x49
#define QBMAN_FQ_XON 0x4d
#define QBMAN_FQ_XOFF 0x4e
/*******************************/
/* Pre-defined attribute codes */
/*******************************/
#define QBMAN_RESPONSE_VERB_MASK 0x7f
/*************************/
/* SDQCR attribute codes */
/*************************/
#define QB_SDQCR_FC_SHIFT 29
#define QB_SDQCR_FC_MASK 0x1
#define QB_SDQCR_DCT_SHIFT 24
#define QB_SDQCR_DCT_MASK 0x3
#define QB_SDQCR_TOK_SHIFT 16
#define QB_SDQCR_TOK_MASK 0xff
#define QB_SDQCR_SRC_SHIFT 0
#define QB_SDQCR_SRC_MASK 0xffff
/* opaque token for static dequeues */
#define QMAN_SDQCR_TOKEN 0xbb
enum qbman_sdqcr_dct {
qbman_sdqcr_dct_null = 0,
qbman_sdqcr_dct_prio_ics,
qbman_sdqcr_dct_active_ics,
qbman_sdqcr_dct_active
};
enum qbman_sdqcr_fc {
qbman_sdqcr_fc_one = 0,
qbman_sdqcr_fc_up_to_3 = 1
};
/* We need to keep track of which SWP triggered a pull command
* so keep an array of portal IDs and use the token field to
* be able to find the proper portal
*/
#define MAX_QBMAN_PORTALS 64
static struct qbman_swp *portal_idx_map[MAX_QBMAN_PORTALS];
/*********************************/
/* Portal constructor/destructor */
/*********************************/
/* Software portals should always be in the power-on state when we initialise,
* due to the CCSR-based portal reset functionality that MC has.
*
* Erk! Turns out that QMan versions prior to 4.1 do not correctly reset DQRR
* valid-bits, so we need to support a workaround where we don't trust
* valid-bits when detecting new entries until any stale ring entries have been
* overwritten at least once. The idea is that we read PI for the first few
* entries, then switch to valid-bit after that. The trick is to clear the
* bug-work-around boolean once the PI wraps around the ring for the first time.
*
* Note: this still carries a slight additional cost once the decrementer hits
* zero.
*/
struct qbman_swp *qbman_swp_init(const struct qbman_swp_desc *d)
{
int ret;
uint32_t eqcr_pi;
struct qbman_swp *p = malloc(sizeof(*p));
if (!p)
return NULL;
p->desc = *d;
#ifdef QBMAN_CHECKING
p->mc.check = swp_mc_can_start;
#endif
p->mc.valid_bit = QB_VALID_BIT;
p->sdq = 0;
p->sdq |= qbman_sdqcr_dct_prio_ics << QB_SDQCR_DCT_SHIFT;
p->sdq |= qbman_sdqcr_fc_up_to_3 << QB_SDQCR_FC_SHIFT;
p->sdq |= QMAN_SDQCR_TOKEN << QB_SDQCR_TOK_SHIFT;
atomic_set(&p->vdq.busy, 1);
p->vdq.valid_bit = QB_VALID_BIT;
p->dqrr.next_idx = 0;
p->dqrr.valid_bit = QB_VALID_BIT;
qman_version = p->desc.qman_version;
if ((qman_version & 0xFFFF0000) < QMAN_REV_4100) {
p->dqrr.dqrr_size = 4;
p->dqrr.reset_bug = 1;
} else {
p->dqrr.dqrr_size = 8;
p->dqrr.reset_bug = 0;
}
ret = qbman_swp_sys_init(&p->sys, d, p->dqrr.dqrr_size);
if (ret) {
free(p);
pr_err("qbman_swp_sys_init() failed %d\n", ret);
return NULL;
}
/* SDQCR needs to be initialized to 0 when no channels are
* being dequeued from or else the QMan HW will indicate an
* error. The values that were calculated above will be
* applied when dequeues from a specific channel are enabled.
*/
qbman_cinh_write(&p->sys, QBMAN_CINH_SWP_SDQCR, 0);
eqcr_pi = qbman_cinh_read(&p->sys, QBMAN_CINH_SWP_EQCR_PI);
p->eqcr.pi = eqcr_pi & 0xF;
p->eqcr.pi_vb = eqcr_pi & QB_VALID_BIT;
p->eqcr.ci = qbman_cinh_read(&p->sys, QBMAN_CINH_SWP_EQCR_CI) & 0xF;
p->eqcr.available = QBMAN_EQCR_SIZE - qm_cyc_diff(QBMAN_EQCR_SIZE,
p->eqcr.ci, p->eqcr.pi);
portal_idx_map[p->desc.idx] = p;
return p;
}
void qbman_swp_finish(struct qbman_swp *p)
{
#ifdef QBMAN_CHECKING
QBMAN_BUG_ON(p->mc.check != swp_mc_can_start);
#endif
qbman_swp_sys_finish(&p->sys);
portal_idx_map[p->desc.idx] = NULL;
free(p);
}
const struct qbman_swp_desc *qbman_swp_get_desc(struct qbman_swp *p)
{
return &p->desc;
}
/**************/
/* Interrupts */
/**************/
uint32_t qbman_swp_interrupt_get_vanish(struct qbman_swp *p)
{
return qbman_cinh_read(&p->sys, QBMAN_CINH_SWP_ISDR);
}
void qbman_swp_interrupt_set_vanish(struct qbman_swp *p, uint32_t mask)
{
qbman_cinh_write(&p->sys, QBMAN_CINH_SWP_ISDR, mask);
}
uint32_t qbman_swp_interrupt_read_status(struct qbman_swp *p)
{
return qbman_cinh_read(&p->sys, QBMAN_CINH_SWP_ISR);
}
void qbman_swp_interrupt_clear_status(struct qbman_swp *p, uint32_t mask)
{
qbman_cinh_write(&p->sys, QBMAN_CINH_SWP_ISR, mask);
}
uint32_t qbman_swp_dqrr_thrshld_read_status(struct qbman_swp *p)
{
return qbman_cinh_read(&p->sys, QBMAN_CINH_SWP_DQRR_ITR);
}
void qbman_swp_dqrr_thrshld_write(struct qbman_swp *p, uint32_t mask)
{
qbman_cinh_write(&p->sys, QBMAN_CINH_SWP_DQRR_ITR, mask);
}
uint32_t qbman_swp_intr_timeout_read_status(struct qbman_swp *p)
{
return qbman_cinh_read(&p->sys, QBMAN_CINH_SWP_ITPR);
}
void qbman_swp_intr_timeout_write(struct qbman_swp *p, uint32_t mask)
{
qbman_cinh_write(&p->sys, QBMAN_CINH_SWP_ITPR, mask);
}
uint32_t qbman_swp_interrupt_get_trigger(struct qbman_swp *p)
{
return qbman_cinh_read(&p->sys, QBMAN_CINH_SWP_IER);
}
void qbman_swp_interrupt_set_trigger(struct qbman_swp *p, uint32_t mask)
{
qbman_cinh_write(&p->sys, QBMAN_CINH_SWP_IER, mask);
}
int qbman_swp_interrupt_get_inhibit(struct qbman_swp *p)
{
return qbman_cinh_read(&p->sys, QBMAN_CINH_SWP_IIR);
}
void qbman_swp_interrupt_set_inhibit(struct qbman_swp *p, int inhibit)
{
qbman_cinh_write(&p->sys, QBMAN_CINH_SWP_IIR, inhibit ? 0xffffffff : 0);
}
/***********************/
/* Management commands */
/***********************/
/*
* Internal code common to all types of management commands.
*/
void *qbman_swp_mc_start(struct qbman_swp *p)
{
void *ret;
#ifdef QBMAN_CHECKING
QBMAN_BUG_ON(p->mc.check != swp_mc_can_start);
#endif
ret = qbman_cena_write_start(&p->sys, QBMAN_CENA_SWP_CR);
#ifdef QBMAN_CHECKING
if (!ret)
p->mc.check = swp_mc_can_submit;
#endif
return ret;
}
void qbman_swp_mc_submit(struct qbman_swp *p, void *cmd, uint8_t cmd_verb)
{
uint8_t *v = cmd;
#ifdef QBMAN_CHECKING
QBMAN_BUG_ON(!(p->mc.check != swp_mc_can_submit));
#endif
/* TBD: "|=" is going to hurt performance. Need to move as many fields
* out of word zero, and for those that remain, the "OR" needs to occur
* at the caller side. This debug check helps to catch cases where the
* caller wants to OR but has forgotten to do so.
*/
QBMAN_BUG_ON((*v & cmd_verb) != *v);
*v = cmd_verb | p->mc.valid_bit;
qbman_cena_write_complete(&p->sys, QBMAN_CENA_SWP_CR, cmd);
#ifdef QBMAN_CHECKING
p->mc.check = swp_mc_can_poll;
#endif
}
void *qbman_swp_mc_result(struct qbman_swp *p)
{
uint32_t *ret, verb;
#ifdef QBMAN_CHECKING
QBMAN_BUG_ON(p->mc.check != swp_mc_can_poll);
#endif
qbman_cena_invalidate_prefetch(&p->sys,
QBMAN_CENA_SWP_RR(p->mc.valid_bit));
ret = qbman_cena_read(&p->sys, QBMAN_CENA_SWP_RR(p->mc.valid_bit));
/* Remove the valid-bit - command completed if the rest is non-zero */
verb = ret[0] & ~QB_VALID_BIT;
if (!verb)
return NULL;
#ifdef QBMAN_CHECKING
p->mc.check = swp_mc_can_start;
#endif
p->mc.valid_bit ^= QB_VALID_BIT;
return ret;
}
/***********/
/* Enqueue */
/***********/
#define QB_ENQUEUE_CMD_OPTIONS_SHIFT 0
enum qb_enqueue_commands {
enqueue_empty = 0,
enqueue_response_always = 1,
enqueue_rejects_to_fq = 2
};
#define QB_ENQUEUE_CMD_EC_OPTION_MASK 0x3
#define QB_ENQUEUE_CMD_ORP_ENABLE_SHIFT 2
#define QB_ENQUEUE_CMD_IRQ_ON_DISPATCH_SHIFT 3
#define QB_ENQUEUE_CMD_TARGET_TYPE_SHIFT 4
#define QB_ENQUEUE_CMD_DCA_PK_SHIFT 6
#define QB_ENQUEUE_CMD_DCA_EN_SHIFT 7
#define QB_ENQUEUE_CMD_NLIS_SHIFT 14
#define QB_ENQUEUE_CMD_IS_NESN_SHIFT 15
void qbman_eq_desc_clear(struct qbman_eq_desc *d)
{
memset(d, 0, sizeof(*d));
}
void qbman_eq_desc_set_no_orp(struct qbman_eq_desc *d, int respond_success)
{
d->eq.verb &= ~(1 << QB_ENQUEUE_CMD_ORP_ENABLE_SHIFT);
if (respond_success)
d->eq.verb |= enqueue_response_always;
else
d->eq.verb |= enqueue_rejects_to_fq;
}
void qbman_eq_desc_set_orp(struct qbman_eq_desc *d, int respond_success,
uint16_t opr_id, uint16_t seqnum, int incomplete)
{
d->eq.verb |= 1 << QB_ENQUEUE_CMD_ORP_ENABLE_SHIFT;
if (respond_success)
d->eq.verb |= enqueue_response_always;
else
d->eq.verb |= enqueue_rejects_to_fq;
d->eq.orpid = opr_id;
d->eq.seqnum = seqnum;
if (incomplete)
d->eq.seqnum |= 1 << QB_ENQUEUE_CMD_NLIS_SHIFT;
else
d->eq.seqnum &= ~(1 << QB_ENQUEUE_CMD_NLIS_SHIFT);
}
void qbman_eq_desc_set_orp_hole(struct qbman_eq_desc *d, uint16_t opr_id,
uint16_t seqnum)
{
d->eq.verb |= 1 << QB_ENQUEUE_CMD_ORP_ENABLE_SHIFT;
d->eq.verb &= ~QB_ENQUEUE_CMD_EC_OPTION_MASK;
d->eq.orpid = opr_id;
d->eq.seqnum = seqnum;
d->eq.seqnum &= ~(1 << QB_ENQUEUE_CMD_NLIS_SHIFT);
d->eq.seqnum &= ~(1 << QB_ENQUEUE_CMD_IS_NESN_SHIFT);
}
void qbman_eq_desc_set_orp_nesn(struct qbman_eq_desc *d, uint16_t opr_id,
uint16_t seqnum)
{
d->eq.verb |= 1 << QB_ENQUEUE_CMD_ORP_ENABLE_SHIFT;
d->eq.verb &= ~QB_ENQUEUE_CMD_EC_OPTION_MASK;
d->eq.orpid = opr_id;
d->eq.seqnum = seqnum;
d->eq.seqnum &= ~(1 << QB_ENQUEUE_CMD_NLIS_SHIFT);
d->eq.seqnum |= 1 << QB_ENQUEUE_CMD_IS_NESN_SHIFT;
}
void qbman_eq_desc_set_response(struct qbman_eq_desc *d,
dma_addr_t storage_phys,
int stash)
{
d->eq.rsp_addr = storage_phys;
d->eq.wae = stash;
}
void qbman_eq_desc_set_token(struct qbman_eq_desc *d, uint8_t token)
{
d->eq.rspid = token;
}
void qbman_eq_desc_set_fq(struct qbman_eq_desc *d, uint32_t fqid)
{
d->eq.verb &= ~(1 << QB_ENQUEUE_CMD_TARGET_TYPE_SHIFT);
d->eq.tgtid = fqid;
}
void qbman_eq_desc_set_qd(struct qbman_eq_desc *d, uint32_t qdid,
uint16_t qd_bin, uint8_t qd_prio)
{
d->eq.verb |= 1 << QB_ENQUEUE_CMD_TARGET_TYPE_SHIFT;
d->eq.tgtid = qdid;
d->eq.qdbin = qd_bin;
d->eq.qpri = qd_prio;
}
void qbman_eq_desc_set_eqdi(struct qbman_eq_desc *d, int enable)
{
if (enable)
d->eq.verb |= 1 << QB_ENQUEUE_CMD_IRQ_ON_DISPATCH_SHIFT;
else
d->eq.verb &= ~(1 << QB_ENQUEUE_CMD_IRQ_ON_DISPATCH_SHIFT);
}
void qbman_eq_desc_set_dca(struct qbman_eq_desc *d, int enable,
uint8_t dqrr_idx, int park)
{
if (enable) {
d->eq.dca = dqrr_idx;
if (park)
d->eq.dca |= 1 << QB_ENQUEUE_CMD_DCA_PK_SHIFT;
else
d->eq.dca &= ~(1 << QB_ENQUEUE_CMD_DCA_PK_SHIFT);
d->eq.dca |= 1 << QB_ENQUEUE_CMD_DCA_EN_SHIFT;
} else {
d->eq.dca &= ~(1 << QB_ENQUEUE_CMD_DCA_EN_SHIFT);
}
}
#define EQAR_IDX(eqar) ((eqar) & 0x7)
#define EQAR_VB(eqar) ((eqar) & 0x80)
#define EQAR_SUCCESS(eqar) ((eqar) & 0x100)
static int qbman_swp_enqueue_array_mode(struct qbman_swp *s,
const struct qbman_eq_desc *d,
const struct qbman_fd *fd)
{
uint32_t *p;
const uint32_t *cl = qb_cl(d);
uint32_t eqar = qbman_cinh_read(&s->sys, QBMAN_CINH_SWP_EQAR);
pr_debug("EQAR=%08x\n", eqar);
if (!EQAR_SUCCESS(eqar))
return -EBUSY;
p = qbman_cena_write_start_wo_shadow(&s->sys,
QBMAN_CENA_SWP_EQCR(EQAR_IDX(eqar)));
memcpy(&p[1], &cl[1], 28);
memcpy(&p[8], fd, sizeof(*fd));
/* Set the verb byte, have to substitute in the valid-bit */
lwsync();
p[0] = cl[0] | EQAR_VB(eqar);
qbman_cena_write_complete_wo_shadow(&s->sys,
QBMAN_CENA_SWP_EQCR(EQAR_IDX(eqar)));
return 0;
}
static int qbman_swp_enqueue_ring_mode(struct qbman_swp *s,
const struct qbman_eq_desc *d,
const struct qbman_fd *fd)
{
uint32_t *p;
const uint32_t *cl = qb_cl(d);
uint32_t eqcr_ci;
uint8_t diff;
if (!s->eqcr.available) {
eqcr_ci = s->eqcr.ci;
s->eqcr.ci = qbman_cena_read_reg(&s->sys,
QBMAN_CENA_SWP_EQCR_CI) & 0xF;
diff = qm_cyc_diff(QBMAN_EQCR_SIZE,
eqcr_ci, s->eqcr.ci);
s->eqcr.available += diff;
if (!diff)
return -EBUSY;
}
p = qbman_cena_write_start_wo_shadow(&s->sys,
QBMAN_CENA_SWP_EQCR(s->eqcr.pi & 7));
memcpy(&p[1], &cl[1], 28);
memcpy(&p[8], fd, sizeof(*fd));
lwsync();
/* Set the verb byte, have to substitute in the valid-bit */
p[0] = cl[0] | s->eqcr.pi_vb;
qbman_cena_write_complete_wo_shadow(&s->sys,
QBMAN_CENA_SWP_EQCR(s->eqcr.pi & 7));
s->eqcr.pi++;
s->eqcr.pi &= 0xF;
s->eqcr.available--;
if (!(s->eqcr.pi & 7))
s->eqcr.pi_vb ^= QB_VALID_BIT;
return 0;
}
int qbman_swp_enqueue(struct qbman_swp *s, const struct qbman_eq_desc *d,
const struct qbman_fd *fd)
{
if (s->sys.eqcr_mode == qman_eqcr_vb_array)
return qbman_swp_enqueue_array_mode(s, d, fd);
else /* Use ring mode by default */
return qbman_swp_enqueue_ring_mode(s, d, fd);
}
int qbman_swp_enqueue_multiple(struct qbman_swp *s,
const struct qbman_eq_desc *d,
const struct qbman_fd *fd,
int num_frames)
{
uint32_t *p;
const uint32_t *cl = qb_cl(d);
uint32_t eqcr_ci, eqcr_pi;
uint8_t diff;
int i, num_enqueued = 0;
uint64_t addr_cena;
if (!s->eqcr.available) {
eqcr_ci = s->eqcr.ci;
s->eqcr.ci = qbman_cena_read_reg(&s->sys,
QBMAN_CENA_SWP_EQCR_CI) & 0xF;
diff = qm_cyc_diff(QBMAN_EQCR_SIZE,
eqcr_ci, s->eqcr.ci);
s->eqcr.available += diff;
if (!diff)
return 0;
}
eqcr_pi = s->eqcr.pi;
num_enqueued = (s->eqcr.available < num_frames) ?
s->eqcr.available : num_frames;
s->eqcr.available -= num_enqueued;
/* Fill in the EQCR ring */
for (i = 0; i < num_enqueued; i++) {
p = qbman_cena_write_start_wo_shadow(&s->sys,
QBMAN_CENA_SWP_EQCR(eqcr_pi & 7));
memcpy(&p[1], &cl[1], 28);
memcpy(&p[8], &fd[i], sizeof(*fd));
eqcr_pi++;
eqcr_pi &= 0xF;
}
lwsync();
/* Set the verb byte, have to substitute in the valid-bit */
eqcr_pi = s->eqcr.pi;
for (i = 0; i < num_enqueued; i++) {
p = qbman_cena_write_start_wo_shadow(&s->sys,
QBMAN_CENA_SWP_EQCR(eqcr_pi & 7));
p[0] = cl[0] | s->eqcr.pi_vb;
eqcr_pi++;
eqcr_pi &= 0xF;
if (!(eqcr_pi & 7))
s->eqcr.pi_vb ^= QB_VALID_BIT;
}
/* Flush all the cacheline without load/store in between */
eqcr_pi = s->eqcr.pi;
addr_cena = (uint64_t)s->sys.addr_cena;
for (i = 0; i < num_enqueued; i++) {
dcbf((uint64_t *)(addr_cena +
QBMAN_CENA_SWP_EQCR(eqcr_pi & 7)));
eqcr_pi++;
eqcr_pi &= 0xF;
}
s->eqcr.pi = eqcr_pi;
return num_enqueued;
}
int qbman_swp_enqueue_multiple_desc(struct qbman_swp *s,
const struct qbman_eq_desc *d,
const struct qbman_fd *fd,
int num_frames)
{
uint32_t *p;
const uint32_t *cl;
uint32_t eqcr_ci, eqcr_pi;
uint8_t diff;
int i, num_enqueued = 0;
uint64_t addr_cena;
if (!s->eqcr.available) {
eqcr_ci = s->eqcr.ci;
s->eqcr.ci = qbman_cena_read_reg(&s->sys,
QBMAN_CENA_SWP_EQCR_CI) & 0xF;
diff = qm_cyc_diff(QBMAN_EQCR_SIZE,
eqcr_ci, s->eqcr.ci);
s->eqcr.available += diff;
if (!diff)
return 0;
}
eqcr_pi = s->eqcr.pi;
num_enqueued = (s->eqcr.available < num_frames) ?
s->eqcr.available : num_frames;
s->eqcr.available -= num_enqueued;
/* Fill in the EQCR ring */
for (i = 0; i < num_enqueued; i++) {
p = qbman_cena_write_start_wo_shadow(&s->sys,
QBMAN_CENA_SWP_EQCR(eqcr_pi & 7));
cl = qb_cl(&d[i]);
memcpy(&p[1], &cl[1], 28);
memcpy(&p[8], &fd[i], sizeof(*fd));
eqcr_pi++;
eqcr_pi &= 0xF;
}
lwsync();
/* Set the verb byte, have to substitute in the valid-bit */
eqcr_pi = s->eqcr.pi;
for (i = 0; i < num_enqueued; i++) {
p = qbman_cena_write_start_wo_shadow(&s->sys,
QBMAN_CENA_SWP_EQCR(eqcr_pi & 7));
cl = qb_cl(&d[i]);
p[0] = cl[0] | s->eqcr.pi_vb;
eqcr_pi++;
eqcr_pi &= 0xF;
if (!(eqcr_pi & 7))
s->eqcr.pi_vb ^= QB_VALID_BIT;
}
/* Flush all the cacheline without load/store in between */
eqcr_pi = s->eqcr.pi;
addr_cena = (uint64_t)s->sys.addr_cena;
for (i = 0; i < num_enqueued; i++) {
dcbf((uint64_t *)(addr_cena +
QBMAN_CENA_SWP_EQCR(eqcr_pi & 7)));
eqcr_pi++;
eqcr_pi &= 0xF;
}
s->eqcr.pi = eqcr_pi;
return num_enqueued;
}
/*************************/
/* Static (push) dequeue */
/*************************/
void qbman_swp_push_get(struct qbman_swp *s, uint8_t channel_idx, int *enabled)
{
uint16_t src = (s->sdq >> QB_SDQCR_SRC_SHIFT) & QB_SDQCR_SRC_MASK;
QBMAN_BUG_ON(channel_idx > 15);
*enabled = src | (1 << channel_idx);
}
void qbman_swp_push_set(struct qbman_swp *s, uint8_t channel_idx, int enable)
{
uint16_t dqsrc;
QBMAN_BUG_ON(channel_idx > 15);
if (enable)
s->sdq |= 1 << channel_idx;
else
s->sdq &= ~(1 << channel_idx);
/* Read make the complete src map. If no channels are enabled
* the SDQCR must be 0 or else QMan will assert errors
*/
dqsrc = (s->sdq >> QB_SDQCR_SRC_SHIFT) & QB_SDQCR_SRC_MASK;
if (dqsrc != 0)
qbman_cinh_write(&s->sys, QBMAN_CINH_SWP_SDQCR, s->sdq);
else
qbman_cinh_write(&s->sys, QBMAN_CINH_SWP_SDQCR, 0);
}
/***************************/
/* Volatile (pull) dequeue */
/***************************/
/* These should be const, eventually */
#define QB_VDQCR_VERB_DCT_SHIFT 0
#define QB_VDQCR_VERB_DT_SHIFT 2
#define QB_VDQCR_VERB_RLS_SHIFT 4
#define QB_VDQCR_VERB_WAE_SHIFT 5
enum qb_pull_dt_e {
qb_pull_dt_channel,
qb_pull_dt_workqueue,
qb_pull_dt_framequeue
};
void qbman_pull_desc_clear(struct qbman_pull_desc *d)
{
memset(d, 0, sizeof(*d));
}
void qbman_pull_desc_set_storage(struct qbman_pull_desc *d,
struct qbman_result *storage,
dma_addr_t storage_phys,
int stash)
{
d->pull.rsp_addr_virt = (uint64_t)storage;
if (!storage) {
d->pull.verb &= ~(1 << QB_VDQCR_VERB_RLS_SHIFT);
return;
}
d->pull.verb |= 1 << QB_VDQCR_VERB_RLS_SHIFT;
if (stash)
d->pull.verb |= 1 << QB_VDQCR_VERB_WAE_SHIFT;
else
d->pull.verb &= ~(1 << QB_VDQCR_VERB_WAE_SHIFT);
d->pull.rsp_addr = storage_phys;
}
void qbman_pull_desc_set_numframes(struct qbman_pull_desc *d, uint8_t numframes)
{
d->pull.numf = numframes - 1;
}
void qbman_pull_desc_set_token(struct qbman_pull_desc *d, uint8_t token)
{
d->pull.tok = token;
}
void qbman_pull_desc_set_fq(struct qbman_pull_desc *d, uint32_t fqid)
{
d->pull.verb |= 1 << QB_VDQCR_VERB_DCT_SHIFT;
d->pull.verb |= qb_pull_dt_framequeue << QB_VDQCR_VERB_DT_SHIFT;
d->pull.dq_src = fqid;
}
void qbman_pull_desc_set_wq(struct qbman_pull_desc *d, uint32_t wqid,
enum qbman_pull_type_e dct)
{
d->pull.verb |= dct << QB_VDQCR_VERB_DCT_SHIFT;
d->pull.verb |= qb_pull_dt_workqueue << QB_VDQCR_VERB_DT_SHIFT;
d->pull.dq_src = wqid;
}
void qbman_pull_desc_set_channel(struct qbman_pull_desc *d, uint32_t chid,
enum qbman_pull_type_e dct)
{
d->pull.verb |= dct << QB_VDQCR_VERB_DCT_SHIFT;
d->pull.verb |= qb_pull_dt_channel << QB_VDQCR_VERB_DT_SHIFT;
d->pull.dq_src = chid;
}
int qbman_swp_pull(struct qbman_swp *s, struct qbman_pull_desc *d)
{
uint32_t *p;
uint32_t *cl = qb_cl(d);
if (!atomic_dec_and_test(&s->vdq.busy)) {
atomic_inc(&s->vdq.busy);
return -EBUSY;
}
d->pull.tok = s->sys.idx + 1;
s->vdq.storage = (void *)d->pull.rsp_addr_virt;
p = qbman_cena_write_start_wo_shadow(&s->sys, QBMAN_CENA_SWP_VDQCR);
memcpy(&p[1], &cl[1], 12);
/* Set the verb byte, have to substitute in the valid-bit */
lwsync();
p[0] = cl[0] | s->vdq.valid_bit;
s->vdq.valid_bit ^= QB_VALID_BIT;
qbman_cena_write_complete_wo_shadow(&s->sys, QBMAN_CENA_SWP_VDQCR);
return 0;
}
/****************/
/* Polling DQRR */
/****************/
#define QMAN_DQRR_PI_MASK 0xf
#define QBMAN_RESULT_DQ 0x60
#define QBMAN_RESULT_FQRN 0x21
#define QBMAN_RESULT_FQRNI 0x22
#define QBMAN_RESULT_FQPN 0x24
#define QBMAN_RESULT_FQDAN 0x25
#define QBMAN_RESULT_CDAN 0x26
#define QBMAN_RESULT_CSCN_MEM 0x27
#define QBMAN_RESULT_CGCU 0x28
#define QBMAN_RESULT_BPSCN 0x29
#define QBMAN_RESULT_CSCN_WQ 0x2a
/* NULL return if there are no unconsumed DQRR entries. Returns a DQRR entry
* only once, so repeated calls can return a sequence of DQRR entries, without
* requiring they be consumed immediately or in any particular order.
*/
const struct qbman_result *qbman_swp_dqrr_next(struct qbman_swp *s)
{
uint32_t verb;
uint32_t response_verb;
uint32_t flags;
const struct qbman_result *p;
/* Before using valid-bit to detect if something is there, we have to
* handle the case of the DQRR reset bug...
*/
if (unlikely(s->dqrr.reset_bug)) {
/* We pick up new entries by cache-inhibited producer index,
* which means that a non-coherent mapping would require us to
* invalidate and read *only* once that PI has indicated that
* there's an entry here. The first trip around the DQRR ring
* will be much less efficient than all subsequent trips around
* it...
*/
uint8_t pi = qbman_cinh_read(&s->sys, QBMAN_CINH_SWP_DQPI) &
QMAN_DQRR_PI_MASK;
/* there are new entries if pi != next_idx */
if (pi == s->dqrr.next_idx)
return NULL;
/* if next_idx is/was the last ring index, and 'pi' is
* different, we can disable the workaround as all the ring
* entries have now been DMA'd to so valid-bit checking is
* repaired. Note: this logic needs to be based on next_idx
* (which increments one at a time), rather than on pi (which
* can burst and wrap-around between our snapshots of it).
*/
QBMAN_BUG_ON((s->dqrr.dqrr_size - 1) < 0);
if (s->dqrr.next_idx == (s->dqrr.dqrr_size - 1u)) {
pr_debug("DEBUG: next_idx=%d, pi=%d, clear reset bug\n",
s->dqrr.next_idx, pi);
s->dqrr.reset_bug = 0;
}
qbman_cena_invalidate_prefetch(&s->sys,
QBMAN_CENA_SWP_DQRR(s->dqrr.next_idx));
}
p = qbman_cena_read_wo_shadow(&s->sys,
QBMAN_CENA_SWP_DQRR(s->dqrr.next_idx));
verb = p->dq.verb;
/* If the valid-bit isn't of the expected polarity, nothing there. Note,
* in the DQRR reset bug workaround, we shouldn't need to skip these
* check, because we've already determined that a new entry is available
* and we've invalidated the cacheline before reading it, so the
* valid-bit behaviour is repaired and should tell us what we already
* knew from reading PI.
*/
if ((verb & QB_VALID_BIT) != s->dqrr.valid_bit)
return NULL;
/* There's something there. Move "next_idx" attention to the next ring
* entry (and prefetch it) before returning what we found.
*/
s->dqrr.next_idx++;
if (s->dqrr.next_idx == s->dqrr.dqrr_size) {
s->dqrr.next_idx = 0;
s->dqrr.valid_bit ^= QB_VALID_BIT;
}
/* If this is the final response to a volatile dequeue command
* indicate that the vdq is no longer busy
*/
flags = p->dq.stat;
response_verb = verb & QBMAN_RESPONSE_VERB_MASK;
if ((response_verb == QBMAN_RESULT_DQ) &&
(flags & QBMAN_DQ_STAT_VOLATILE) &&
(flags & QBMAN_DQ_STAT_EXPIRED))
atomic_inc(&s->vdq.busy);
return p;
}
/* Consume DQRR entries previously returned from qbman_swp_dqrr_next(). */
void qbman_swp_dqrr_consume(struct qbman_swp *s,
const struct qbman_result *dq)
{
qbman_cinh_write(&s->sys, QBMAN_CINH_SWP_DCAP, QBMAN_IDX_FROM_DQRR(dq));
}
/*********************************/
/* Polling user-provided storage */
/*********************************/
int qbman_result_has_new_result(struct qbman_swp *s,
struct qbman_result *dq)
{
if (dq->dq.tok == 0)
return 0;
/*
* Set token to be 0 so we will detect change back to 1
* next time the looping is traversed. Const is cast away here
* as we want users to treat the dequeue responses as read only.
*/
((struct qbman_result *)dq)->dq.tok = 0;
/*
* VDQCR "no longer busy" hook - not quite the same as DQRR, because the
* fact "VDQCR" shows busy doesn't mean that we hold the result that
* makes it available. Eg. we may be looking at our 10th dequeue result,
* having released VDQCR after the 1st result and it is now busy due to
* some other command!
*/
if (s->vdq.storage == dq) {
s->vdq.storage = NULL;
atomic_inc(&s->vdq.busy);
}
return 1;
}
int qbman_check_new_result(struct qbman_result *dq)
{
if (dq->dq.tok == 0)
return 0;
/*
* Set token to be 0 so we will detect change back to 1
* next time the looping is traversed. Const is cast away here
* as we want users to treat the dequeue responses as read only.
*/
((struct qbman_result *)dq)->dq.tok = 0;
return 1;
}
int qbman_check_command_complete(struct qbman_result *dq)
{
struct qbman_swp *s;
if (dq->dq.tok == 0)
return 0;
s = portal_idx_map[dq->dq.tok - 1];
/*
* VDQCR "no longer busy" hook - not quite the same as DQRR, because the
* fact "VDQCR" shows busy doesn't mean that we hold the result that
* makes it available. Eg. we may be looking at our 10th dequeue result,
* having released VDQCR after the 1st result and it is now busy due to
* some other command!
*/
if (s->vdq.storage == dq) {
s->vdq.storage = NULL;
atomic_inc(&s->vdq.busy);
}
return 1;
}
/********************************/
/* Categorising qbman results */
/********************************/
static inline int __qbman_result_is_x(const struct qbman_result *dq,
uint8_t x)
{
uint8_t response_verb = dq->dq.verb & QBMAN_RESPONSE_VERB_MASK;
return (response_verb == x);
}
int qbman_result_is_DQ(const struct qbman_result *dq)
{
return __qbman_result_is_x(dq, QBMAN_RESULT_DQ);
}
int qbman_result_is_FQDAN(const struct qbman_result *dq)
{
return __qbman_result_is_x(dq, QBMAN_RESULT_FQDAN);
}
int qbman_result_is_CDAN(const struct qbman_result *dq)
{
return __qbman_result_is_x(dq, QBMAN_RESULT_CDAN);
}
int qbman_result_is_CSCN(const struct qbman_result *dq)
{
return __qbman_result_is_x(dq, QBMAN_RESULT_CSCN_MEM) ||
__qbman_result_is_x(dq, QBMAN_RESULT_CSCN_WQ);
}
int qbman_result_is_BPSCN(const struct qbman_result *dq)
{
return __qbman_result_is_x(dq, QBMAN_RESULT_BPSCN);
}
int qbman_result_is_CGCU(const struct qbman_result *dq)
{
return __qbman_result_is_x(dq, QBMAN_RESULT_CGCU);
}
int qbman_result_is_FQRN(const struct qbman_result *dq)
{
return __qbman_result_is_x(dq, QBMAN_RESULT_FQRN);
}
int qbman_result_is_FQRNI(const struct qbman_result *dq)
{
return __qbman_result_is_x(dq, QBMAN_RESULT_FQRNI);
}
int qbman_result_is_FQPN(const struct qbman_result *dq)
{
return __qbman_result_is_x(dq, QBMAN_RESULT_FQPN);
}
/*********************************/
/* Parsing frame dequeue results */
/*********************************/
/* These APIs assume qbman_result_is_DQ() is TRUE */
uint8_t qbman_result_DQ_flags(const struct qbman_result *dq)
{
return dq->dq.stat;
}
uint16_t qbman_result_DQ_seqnum(const struct qbman_result *dq)
{
return dq->dq.seqnum;
}
uint16_t qbman_result_DQ_odpid(const struct qbman_result *dq)
{
return dq->dq.oprid;
}
uint32_t qbman_result_DQ_fqid(const struct qbman_result *dq)
{
return dq->dq.fqid;
}
uint32_t qbman_result_DQ_byte_count(const struct qbman_result *dq)
{
return dq->dq.fq_byte_cnt;
}
uint32_t qbman_result_DQ_frame_count(const struct qbman_result *dq)
{
return dq->dq.fq_frm_cnt;
}
uint64_t qbman_result_DQ_fqd_ctx(const struct qbman_result *dq)
{
return dq->dq.fqd_ctx;
}
const struct qbman_fd *qbman_result_DQ_fd(const struct qbman_result *dq)
{
return (const struct qbman_fd *)&dq->dq.fd[0];
}
/**************************************/
/* Parsing state-change notifications */
/**************************************/
uint8_t qbman_result_SCN_state(const struct qbman_result *scn)
{
return scn->scn.state;
}
uint32_t qbman_result_SCN_rid(const struct qbman_result *scn)
{
return scn->scn.rid_tok;
}
uint64_t qbman_result_SCN_ctx(const struct qbman_result *scn)
{
return scn->scn.ctx;
}
/*****************/
/* Parsing BPSCN */
/*****************/
uint16_t qbman_result_bpscn_bpid(const struct qbman_result *scn)
{
return (uint16_t)qbman_result_SCN_rid(scn) & 0x3FFF;
}
int qbman_result_bpscn_has_free_bufs(const struct qbman_result *scn)
{
return !(int)(qbman_result_SCN_state(scn) & 0x1);
}
int qbman_result_bpscn_is_depleted(const struct qbman_result *scn)
{
return (int)(qbman_result_SCN_state(scn) & 0x2);
}
int qbman_result_bpscn_is_surplus(const struct qbman_result *scn)
{
return (int)(qbman_result_SCN_state(scn) & 0x4);
}
uint64_t qbman_result_bpscn_ctx(const struct qbman_result *scn)
{
return qbman_result_SCN_ctx(scn);
}
/*****************/
/* Parsing CGCU */
/*****************/
uint16_t qbman_result_cgcu_cgid(const struct qbman_result *scn)
{
return (uint16_t)qbman_result_SCN_rid(scn) & 0xFFFF;
}
uint64_t qbman_result_cgcu_icnt(const struct qbman_result *scn)
{
return qbman_result_SCN_ctx(scn);
}
/******************/
/* Buffer release */
/******************/
#define QB_BR_RC_VALID_SHIFT 5
#define QB_BR_RCDI_SHIFT 6
void qbman_release_desc_clear(struct qbman_release_desc *d)
{
memset(d, 0, sizeof(*d));
d->br.verb = 1 << QB_BR_RC_VALID_SHIFT;
}
void qbman_release_desc_set_bpid(struct qbman_release_desc *d, uint16_t bpid)
{
d->br.bpid = bpid;
}
void qbman_release_desc_set_rcdi(struct qbman_release_desc *d, int enable)
{
if (enable)
d->br.verb |= 1 << QB_BR_RCDI_SHIFT;
else
d->br.verb &= ~(1 << QB_BR_RCDI_SHIFT);
}
#define RAR_IDX(rar) ((rar) & 0x7)
#define RAR_VB(rar) ((rar) & 0x80)
#define RAR_SUCCESS(rar) ((rar) & 0x100)
int qbman_swp_release(struct qbman_swp *s, const struct qbman_release_desc *d,
const uint64_t *buffers, unsigned int num_buffers)
{
uint32_t *p;
const uint32_t *cl = qb_cl(d);
uint32_t rar = qbman_cinh_read(&s->sys, QBMAN_CINH_SWP_RAR);
pr_debug("RAR=%08x\n", rar);
if (!RAR_SUCCESS(rar))
return -EBUSY;
QBMAN_BUG_ON(!num_buffers || (num_buffers > 7));
/* Start the release command */
p = qbman_cena_write_start_wo_shadow(&s->sys,
QBMAN_CENA_SWP_RCR(RAR_IDX(rar)));
/* Copy the caller's buffer pointers to the command */
u64_to_le32_copy(&p[2], buffers, num_buffers);
/* Set the verb byte, have to substitute in the valid-bit and the number
* of buffers.
*/
lwsync();
p[0] = cl[0] | RAR_VB(rar) | num_buffers;
qbman_cena_write_complete_wo_shadow(&s->sys,
QBMAN_CENA_SWP_RCR(RAR_IDX(rar)));
return 0;
}
/*******************/
/* Buffer acquires */
/*******************/
struct qbman_acquire_desc {
uint8_t verb;
uint8_t reserved;
uint16_t bpid;
uint8_t num;
uint8_t reserved2[59];
};
struct qbman_acquire_rslt {
uint8_t verb;
uint8_t rslt;
uint16_t reserved;
uint8_t num;
uint8_t reserved2[3];
uint64_t buf[7];
};
int qbman_swp_acquire(struct qbman_swp *s, uint16_t bpid, uint64_t *buffers,
unsigned int num_buffers)
{
struct qbman_acquire_desc *p;
struct qbman_acquire_rslt *r;
if (!num_buffers || (num_buffers > 7))
return -EINVAL;
/* Start the management command */
p = qbman_swp_mc_start(s);
if (!p)
return -EBUSY;
/* Encode the caller-provided attributes */
p->bpid = bpid;
p->num = num_buffers;
/* Complete the management command */
r = qbman_swp_mc_complete(s, p, QBMAN_MC_ACQUIRE);
if (unlikely(!r)) {
pr_err("qbman: acquire from BPID %d failed, no response\n",
bpid);
return -EIO;
}
/* Decode the outcome */
QBMAN_BUG_ON((r->verb & QBMAN_RESPONSE_VERB_MASK) != QBMAN_MC_ACQUIRE);
/* Determine success or failure */
if (unlikely(r->rslt != QBMAN_MC_RSLT_OK)) {
pr_err("Acquire buffers from BPID 0x%x failed, code=0x%02x\n",
bpid, r->rslt);
return -EIO;
}
QBMAN_BUG_ON(r->num > num_buffers);
/* Copy the acquired buffers to the caller's array */
u64_from_le32_copy(buffers, &r->buf[0], r->num);
return (int)r->num;
}
/*****************/
/* FQ management */
/*****************/
struct qbman_alt_fq_state_desc {
uint8_t verb;
uint8_t reserved[3];
uint32_t fqid;
uint8_t reserved2[56];
};
struct qbman_alt_fq_state_rslt {
uint8_t verb;
uint8_t rslt;
uint8_t reserved[62];
};
#define ALT_FQ_FQID_MASK 0x00FFFFFF
static int qbman_swp_alt_fq_state(struct qbman_swp *s, uint32_t fqid,
uint8_t alt_fq_verb)
{
struct qbman_alt_fq_state_desc *p;
struct qbman_alt_fq_state_rslt *r;
/* Start the management command */
p = qbman_swp_mc_start(s);
if (!p)
return -EBUSY;
p->fqid = fqid & ALT_FQ_FQID_MASK;
/* Complete the management command */
r = qbman_swp_mc_complete(s, p, alt_fq_verb);
if (unlikely(!r)) {
pr_err("qbman: mgmt cmd failed, no response (verb=0x%x)\n",
alt_fq_verb);
return -EIO;
}
/* Decode the outcome */
QBMAN_BUG_ON((r->verb & QBMAN_RESPONSE_VERB_MASK) != alt_fq_verb);
/* Determine success or failure */
if (unlikely(r->rslt != QBMAN_MC_RSLT_OK)) {
pr_err("ALT FQID %d failed: verb = 0x%08x, code = 0x%02x\n",
fqid, alt_fq_verb, r->rslt);
return -EIO;
}
return 0;
}
int qbman_swp_fq_schedule(struct qbman_swp *s, uint32_t fqid)
{
return qbman_swp_alt_fq_state(s, fqid, QBMAN_FQ_SCHEDULE);
}
int qbman_swp_fq_force(struct qbman_swp *s, uint32_t fqid)
{
return qbman_swp_alt_fq_state(s, fqid, QBMAN_FQ_FORCE);
}
int qbman_swp_fq_xon(struct qbman_swp *s, uint32_t fqid)
{
return qbman_swp_alt_fq_state(s, fqid, QBMAN_FQ_XON);
}
int qbman_swp_fq_xoff(struct qbman_swp *s, uint32_t fqid)
{
return qbman_swp_alt_fq_state(s, fqid, QBMAN_FQ_XOFF);
}
/**********************/
/* Channel management */
/**********************/
struct qbman_cdan_ctrl_desc {
uint8_t verb;
uint8_t reserved;
uint16_t ch;
uint8_t we;
uint8_t ctrl;
uint16_t reserved2;
uint64_t cdan_ctx;
uint8_t reserved3[48];
};
struct qbman_cdan_ctrl_rslt {
uint8_t verb;
uint8_t rslt;
uint16_t ch;
uint8_t reserved[60];
};
/* Hide "ICD" for now as we don't use it, don't set it, and don't test it, so it
* would be irresponsible to expose it.
*/
#define CODE_CDAN_WE_EN 0x1
#define CODE_CDAN_WE_CTX 0x4
static int qbman_swp_CDAN_set(struct qbman_swp *s, uint16_t channelid,
uint8_t we_mask, uint8_t cdan_en,
uint64_t ctx)
{
struct qbman_cdan_ctrl_desc *p;
struct qbman_cdan_ctrl_rslt *r;
/* Start the management command */
p = qbman_swp_mc_start(s);
if (!p)
return -EBUSY;
/* Encode the caller-provided attributes */
p->ch = channelid;
p->we = we_mask;
if (cdan_en)
p->ctrl = 1;
else
p->ctrl = 0;
p->cdan_ctx = ctx;
/* Complete the management command */
r = qbman_swp_mc_complete(s, p, QBMAN_WQCHAN_CONFIGURE);
if (unlikely(!r)) {
pr_err("qbman: wqchan config failed, no response\n");
return -EIO;
}
/* Decode the outcome */
QBMAN_BUG_ON((r->verb & QBMAN_RESPONSE_VERB_MASK)
!= QBMAN_WQCHAN_CONFIGURE);
/* Determine success or failure */
if (unlikely(r->rslt != QBMAN_MC_RSLT_OK)) {
pr_err("CDAN cQID %d failed: code = 0x%02x\n",
channelid, r->rslt);
return -EIO;
}
return 0;
}
int qbman_swp_CDAN_set_context(struct qbman_swp *s, uint16_t channelid,
uint64_t ctx)
{
return qbman_swp_CDAN_set(s, channelid,
CODE_CDAN_WE_CTX,
0, ctx);
}
int qbman_swp_CDAN_enable(struct qbman_swp *s, uint16_t channelid)
{
return qbman_swp_CDAN_set(s, channelid,
CODE_CDAN_WE_EN,
1, 0);
}
int qbman_swp_CDAN_disable(struct qbman_swp *s, uint16_t channelid)
{
return qbman_swp_CDAN_set(s, channelid,
CODE_CDAN_WE_EN,
0, 0);
}
int qbman_swp_CDAN_set_context_enable(struct qbman_swp *s, uint16_t channelid,
uint64_t ctx)
{
return qbman_swp_CDAN_set(s, channelid,
CODE_CDAN_WE_EN | CODE_CDAN_WE_CTX,
1, ctx);
}
uint8_t qbman_get_dqrr_idx(const struct qbman_result *dqrr)
{
return QBMAN_IDX_FROM_DQRR(dqrr);
}
struct qbman_result *qbman_get_dqrr_from_idx(struct qbman_swp *s, uint8_t idx)
{
struct qbman_result *dq;
dq = qbman_cena_read(&s->sys, QBMAN_CENA_SWP_DQRR(idx));
return dq;
}