f-stack/dpdk/lib/ipsec/esp_outb.c

859 lines
21 KiB
C

/* SPDX-License-Identifier: BSD-3-Clause
* Copyright(c) 2018-2020 Intel Corporation
*/
#include <rte_ipsec.h>
#include <rte_esp.h>
#include <rte_ip.h>
#include <rte_udp.h>
#include <rte_errno.h>
#include <rte_cryptodev.h>
#include "sa.h"
#include "ipsec_sqn.h"
#include "crypto.h"
#include "iph.h"
#include "misc.h"
#include "pad.h"
typedef int32_t (*esp_outb_prepare_t)(struct rte_ipsec_sa *sa, rte_be64_t sqc,
const uint64_t ivp[IPSEC_MAX_IV_QWORD], struct rte_mbuf *mb,
union sym_op_data *icv, uint8_t sqh_len, uint8_t tso);
/*
* helper function to fill crypto_sym op for cipher+auth algorithms.
* used by outb_cop_prepare(), see below.
*/
static inline void
sop_ciph_auth_prepare(struct rte_crypto_sym_op *sop,
const struct rte_ipsec_sa *sa, const union sym_op_data *icv,
uint32_t pofs, uint32_t plen)
{
sop->cipher.data.offset = sa->ctp.cipher.offset + pofs;
sop->cipher.data.length = sa->ctp.cipher.length + plen;
sop->auth.data.offset = sa->ctp.auth.offset + pofs;
sop->auth.data.length = sa->ctp.auth.length + plen;
sop->auth.digest.data = icv->va;
sop->auth.digest.phys_addr = icv->pa;
}
/*
* helper function to fill crypto_sym op for cipher+auth algorithms.
* used by outb_cop_prepare(), see below.
*/
static inline void
sop_aead_prepare(struct rte_crypto_sym_op *sop,
const struct rte_ipsec_sa *sa, const union sym_op_data *icv,
uint32_t pofs, uint32_t plen)
{
sop->aead.data.offset = sa->ctp.cipher.offset + pofs;
sop->aead.data.length = sa->ctp.cipher.length + plen;
sop->aead.digest.data = icv->va;
sop->aead.digest.phys_addr = icv->pa;
sop->aead.aad.data = icv->va + sa->icv_len;
sop->aead.aad.phys_addr = icv->pa + sa->icv_len;
}
/*
* setup crypto op and crypto sym op for ESP outbound packet.
*/
static inline void
outb_cop_prepare(struct rte_crypto_op *cop,
const struct rte_ipsec_sa *sa, const uint64_t ivp[IPSEC_MAX_IV_QWORD],
const union sym_op_data *icv, uint32_t hlen, uint32_t plen)
{
struct rte_crypto_sym_op *sop;
struct aead_gcm_iv *gcm;
struct aead_ccm_iv *ccm;
struct aead_chacha20_poly1305_iv *chacha20_poly1305;
struct aesctr_cnt_blk *ctr;
uint32_t algo;
algo = sa->algo_type;
/* fill sym op fields */
sop = cop->sym;
switch (algo) {
case ALGO_TYPE_AES_CBC:
/* Cipher-Auth (AES-CBC *) case */
case ALGO_TYPE_3DES_CBC:
/* Cipher-Auth (3DES-CBC *) case */
case ALGO_TYPE_NULL:
/* NULL case */
sop_ciph_auth_prepare(sop, sa, icv, hlen, plen);
break;
case ALGO_TYPE_AES_GMAC:
/* GMAC case */
sop_ciph_auth_prepare(sop, sa, icv, hlen, plen);
/* fill AAD IV (located inside crypto op) */
gcm = rte_crypto_op_ctod_offset(cop, struct aead_gcm_iv *,
sa->iv_ofs);
aead_gcm_iv_fill(gcm, ivp[0], sa->salt);
break;
case ALGO_TYPE_AES_GCM:
/* AEAD (AES_GCM) case */
sop_aead_prepare(sop, sa, icv, hlen, plen);
/* fill AAD IV (located inside crypto op) */
gcm = rte_crypto_op_ctod_offset(cop, struct aead_gcm_iv *,
sa->iv_ofs);
aead_gcm_iv_fill(gcm, ivp[0], sa->salt);
break;
case ALGO_TYPE_AES_CCM:
/* AEAD (AES_CCM) case */
sop_aead_prepare(sop, sa, icv, hlen, plen);
/* fill AAD IV (located inside crypto op) */
ccm = rte_crypto_op_ctod_offset(cop, struct aead_ccm_iv *,
sa->iv_ofs);
aead_ccm_iv_fill(ccm, ivp[0], sa->salt);
break;
case ALGO_TYPE_CHACHA20_POLY1305:
/* AEAD (CHACHA20_POLY) case */
sop_aead_prepare(sop, sa, icv, hlen, plen);
/* fill AAD IV (located inside crypto op) */
chacha20_poly1305 = rte_crypto_op_ctod_offset(cop,
struct aead_chacha20_poly1305_iv *,
sa->iv_ofs);
aead_chacha20_poly1305_iv_fill(chacha20_poly1305,
ivp[0], sa->salt);
break;
case ALGO_TYPE_AES_CTR:
/* Cipher-Auth (AES-CTR *) case */
sop_ciph_auth_prepare(sop, sa, icv, hlen, plen);
/* fill CTR block (located inside crypto op) */
ctr = rte_crypto_op_ctod_offset(cop, struct aesctr_cnt_blk *,
sa->iv_ofs);
aes_ctr_cnt_blk_fill(ctr, ivp[0], sa->salt);
break;
}
}
/*
* setup/update packet data and metadata for ESP outbound tunnel case.
*/
static inline int32_t
outb_tun_pkt_prepare(struct rte_ipsec_sa *sa, rte_be64_t sqc,
const uint64_t ivp[IPSEC_MAX_IV_QWORD], struct rte_mbuf *mb,
union sym_op_data *icv, uint8_t sqh_len, uint8_t tso)
{
uint32_t clen, hlen, l2len, pdlen, pdofs, plen, tlen;
struct rte_mbuf *ml;
struct rte_esp_hdr *esph;
struct rte_esp_tail *espt;
char *ph, *pt;
uint64_t *iv;
/* calculate extra header space required */
hlen = sa->hdr_len + sa->iv_len + sizeof(*esph);
/* size of ipsec protected data */
l2len = mb->l2_len;
plen = mb->pkt_len - l2len;
/* number of bytes to encrypt */
clen = plen + sizeof(*espt);
if (!tso) {
clen = RTE_ALIGN_CEIL(clen, sa->pad_align);
/* pad length + esp tail */
pdlen = clen - plen;
tlen = pdlen + sa->icv_len + sqh_len;
} else {
/* We don't need to pad/align packet or append ICV length
* when using TSO offload
*/
pdlen = clen - plen;
tlen = pdlen + sqh_len;
}
/* do append and prepend */
ml = rte_pktmbuf_lastseg(mb);
if (tlen + sa->aad_len > rte_pktmbuf_tailroom(ml))
return -ENOSPC;
/* prepend header */
ph = rte_pktmbuf_prepend(mb, hlen - l2len);
if (ph == NULL)
return -ENOSPC;
/* append tail */
pdofs = ml->data_len;
ml->data_len += tlen;
mb->pkt_len += tlen;
pt = rte_pktmbuf_mtod_offset(ml, typeof(pt), pdofs);
/* update pkt l2/l3 len */
mb->tx_offload = (mb->tx_offload & sa->tx_offload.msk) |
sa->tx_offload.val;
/* copy tunnel pkt header */
rte_memcpy(ph, sa->hdr, sa->hdr_len);
/* if UDP encap is enabled update the dgram_len */
if (sa->type & RTE_IPSEC_SATP_NATT_ENABLE) {
struct rte_udp_hdr *udph = (struct rte_udp_hdr *)
(ph + sa->hdr_len - sizeof(struct rte_udp_hdr));
udph->dgram_len = rte_cpu_to_be_16(mb->pkt_len - sqh_len -
sa->hdr_l3_off - sa->hdr_len);
}
/* update original and new ip header fields */
update_tun_outb_l3hdr(sa, ph + sa->hdr_l3_off, ph + hlen,
mb->pkt_len - sqh_len, sa->hdr_l3_off, sqn_low16(sqc));
/* update spi, seqn and iv */
esph = (struct rte_esp_hdr *)(ph + sa->hdr_len);
iv = (uint64_t *)(esph + 1);
copy_iv(iv, ivp, sa->iv_len);
esph->spi = sa->spi;
esph->seq = sqn_low32(sqc);
/* offset for ICV */
pdofs += pdlen + sa->sqh_len;
/* pad length */
pdlen -= sizeof(*espt);
/* copy padding data */
rte_memcpy(pt, esp_pad_bytes, pdlen);
/* update esp trailer */
espt = (struct rte_esp_tail *)(pt + pdlen);
espt->pad_len = pdlen;
espt->next_proto = sa->proto;
/* set icv va/pa value(s) */
icv->va = rte_pktmbuf_mtod_offset(ml, void *, pdofs);
icv->pa = rte_pktmbuf_iova_offset(ml, pdofs);
return clen;
}
/*
* for pure cryptodev (lookaside none) depending on SA settings,
* we might have to write some extra data to the packet.
*/
static inline void
outb_pkt_xprepare(const struct rte_ipsec_sa *sa, rte_be64_t sqc,
const union sym_op_data *icv)
{
uint32_t *psqh;
struct aead_gcm_aad *gaad;
struct aead_ccm_aad *caad;
struct aead_chacha20_poly1305_aad *chacha20_poly1305_aad;
/* insert SQN.hi between ESP trailer and ICV */
if (sa->sqh_len != 0) {
psqh = (uint32_t *)(icv->va - sa->sqh_len);
psqh[0] = sqn_hi32(sqc);
}
/*
* fill IV and AAD fields, if any (aad fields are placed after icv),
* right now we support only one AEAD algorithm: AES-GCM .
*/
switch (sa->algo_type) {
case ALGO_TYPE_AES_GCM:
if (sa->aad_len != 0) {
gaad = (struct aead_gcm_aad *)(icv->va + sa->icv_len);
aead_gcm_aad_fill(gaad, sa->spi, sqc, IS_ESN(sa));
}
break;
case ALGO_TYPE_AES_CCM:
if (sa->aad_len != 0) {
caad = (struct aead_ccm_aad *)(icv->va + sa->icv_len);
aead_ccm_aad_fill(caad, sa->spi, sqc, IS_ESN(sa));
}
break;
case ALGO_TYPE_CHACHA20_POLY1305:
if (sa->aad_len != 0) {
chacha20_poly1305_aad = (struct aead_chacha20_poly1305_aad *)
(icv->va + sa->icv_len);
aead_chacha20_poly1305_aad_fill(chacha20_poly1305_aad,
sa->spi, sqc, IS_ESN(sa));
}
break;
default:
break;
}
}
/*
* setup/update packets and crypto ops for ESP outbound tunnel case.
*/
uint16_t
esp_outb_tun_prepare(const struct rte_ipsec_session *ss, struct rte_mbuf *mb[],
struct rte_crypto_op *cop[], uint16_t num)
{
int32_t rc;
uint32_t i, k, n;
uint64_t sqn;
rte_be64_t sqc;
struct rte_ipsec_sa *sa;
struct rte_cryptodev_sym_session *cs;
union sym_op_data icv;
uint64_t iv[IPSEC_MAX_IV_QWORD];
uint32_t dr[num];
sa = ss->sa;
cs = ss->crypto.ses;
n = num;
sqn = esn_outb_update_sqn(sa, &n);
if (n != num)
rte_errno = EOVERFLOW;
k = 0;
for (i = 0; i != n; i++) {
sqc = rte_cpu_to_be_64(sqn + i);
gen_iv(iv, sqc);
/* try to update the packet itself */
rc = outb_tun_pkt_prepare(sa, sqc, iv, mb[i], &icv,
sa->sqh_len, 0);
/* success, setup crypto op */
if (rc >= 0) {
outb_pkt_xprepare(sa, sqc, &icv);
lksd_none_cop_prepare(cop[k], cs, mb[i]);
outb_cop_prepare(cop[k], sa, iv, &icv, 0, rc);
k++;
/* failure, put packet into the death-row */
} else {
dr[i - k] = i;
rte_errno = -rc;
}
}
/* copy not prepared mbufs beyond good ones */
if (k != n && k != 0)
move_bad_mbufs(mb, dr, n, n - k);
return k;
}
/*
* setup/update packet data and metadata for ESP outbound transport case.
*/
static inline int32_t
outb_trs_pkt_prepare(struct rte_ipsec_sa *sa, rte_be64_t sqc,
const uint64_t ivp[IPSEC_MAX_IV_QWORD], struct rte_mbuf *mb,
union sym_op_data *icv, uint8_t sqh_len, uint8_t tso)
{
uint8_t np;
uint32_t clen, hlen, pdlen, pdofs, plen, tlen, uhlen;
struct rte_mbuf *ml;
struct rte_esp_hdr *esph;
struct rte_esp_tail *espt;
char *ph, *pt;
uint64_t *iv;
uint32_t l2len, l3len;
l2len = mb->l2_len;
l3len = mb->l3_len;
uhlen = l2len + l3len;
plen = mb->pkt_len - uhlen;
/* calculate extra header space required */
hlen = sa->iv_len + sizeof(*esph);
/* number of bytes to encrypt */
clen = plen + sizeof(*espt);
if (!tso) {
clen = RTE_ALIGN_CEIL(clen, sa->pad_align);
/* pad length + esp tail */
pdlen = clen - plen;
tlen = pdlen + sa->icv_len + sqh_len;
} else {
/* We don't need to pad/align packet or append ICV length
* when using TSO offload
*/
pdlen = clen - plen;
tlen = pdlen + sqh_len;
}
/* do append and insert */
ml = rte_pktmbuf_lastseg(mb);
if (tlen + sa->aad_len > rte_pktmbuf_tailroom(ml))
return -ENOSPC;
/* prepend space for ESP header */
ph = rte_pktmbuf_prepend(mb, hlen);
if (ph == NULL)
return -ENOSPC;
/* append tail */
pdofs = ml->data_len;
ml->data_len += tlen;
mb->pkt_len += tlen;
pt = rte_pktmbuf_mtod_offset(ml, typeof(pt), pdofs);
/* shift L2/L3 headers */
insert_esph(ph, ph + hlen, uhlen);
/* update ip header fields */
np = update_trs_l3hdr(sa, ph + l2len, mb->pkt_len - sqh_len, l2len,
l3len, IPPROTO_ESP);
/* update spi, seqn and iv */
esph = (struct rte_esp_hdr *)(ph + uhlen);
iv = (uint64_t *)(esph + 1);
copy_iv(iv, ivp, sa->iv_len);
esph->spi = sa->spi;
esph->seq = sqn_low32(sqc);
/* offset for ICV */
pdofs += pdlen + sa->sqh_len;
/* pad length */
pdlen -= sizeof(*espt);
/* copy padding data */
rte_memcpy(pt, esp_pad_bytes, pdlen);
/* update esp trailer */
espt = (struct rte_esp_tail *)(pt + pdlen);
espt->pad_len = pdlen;
espt->next_proto = np;
/* set icv va/pa value(s) */
icv->va = rte_pktmbuf_mtod_offset(ml, void *, pdofs);
icv->pa = rte_pktmbuf_iova_offset(ml, pdofs);
return clen;
}
/*
* setup/update packets and crypto ops for ESP outbound transport case.
*/
uint16_t
esp_outb_trs_prepare(const struct rte_ipsec_session *ss, struct rte_mbuf *mb[],
struct rte_crypto_op *cop[], uint16_t num)
{
int32_t rc;
uint32_t i, k, n, l2, l3;
uint64_t sqn;
rte_be64_t sqc;
struct rte_ipsec_sa *sa;
struct rte_cryptodev_sym_session *cs;
union sym_op_data icv;
uint64_t iv[IPSEC_MAX_IV_QWORD];
uint32_t dr[num];
sa = ss->sa;
cs = ss->crypto.ses;
n = num;
sqn = esn_outb_update_sqn(sa, &n);
if (n != num)
rte_errno = EOVERFLOW;
k = 0;
for (i = 0; i != n; i++) {
l2 = mb[i]->l2_len;
l3 = mb[i]->l3_len;
sqc = rte_cpu_to_be_64(sqn + i);
gen_iv(iv, sqc);
/* try to update the packet itself */
rc = outb_trs_pkt_prepare(sa, sqc, iv, mb[i], &icv,
sa->sqh_len, 0);
/* success, setup crypto op */
if (rc >= 0) {
outb_pkt_xprepare(sa, sqc, &icv);
lksd_none_cop_prepare(cop[k], cs, mb[i]);
outb_cop_prepare(cop[k], sa, iv, &icv, l2 + l3, rc);
k++;
/* failure, put packet into the death-row */
} else {
dr[i - k] = i;
rte_errno = -rc;
}
}
/* copy not prepared mbufs beyond good ones */
if (k != n && k != 0)
move_bad_mbufs(mb, dr, n, n - k);
return k;
}
static inline uint32_t
outb_cpu_crypto_prepare(const struct rte_ipsec_sa *sa, uint32_t *pofs,
uint32_t plen, void *iv)
{
uint64_t *ivp = iv;
struct aead_gcm_iv *gcm;
struct aead_ccm_iv *ccm;
struct aead_chacha20_poly1305_iv *chacha20_poly1305;
struct aesctr_cnt_blk *ctr;
uint32_t clen;
switch (sa->algo_type) {
case ALGO_TYPE_AES_GCM:
gcm = iv;
aead_gcm_iv_fill(gcm, ivp[0], sa->salt);
break;
case ALGO_TYPE_AES_CCM:
ccm = iv;
aead_ccm_iv_fill(ccm, ivp[0], sa->salt);
break;
case ALGO_TYPE_CHACHA20_POLY1305:
chacha20_poly1305 = iv;
aead_chacha20_poly1305_iv_fill(chacha20_poly1305,
ivp[0], sa->salt);
break;
case ALGO_TYPE_AES_CTR:
ctr = iv;
aes_ctr_cnt_blk_fill(ctr, ivp[0], sa->salt);
break;
}
*pofs += sa->ctp.auth.offset;
clen = plen + sa->ctp.auth.length;
return clen;
}
static uint16_t
cpu_outb_pkt_prepare(const struct rte_ipsec_session *ss,
struct rte_mbuf *mb[], uint16_t num,
esp_outb_prepare_t prepare, uint32_t cofs_mask)
{
int32_t rc;
uint64_t sqn;
rte_be64_t sqc;
struct rte_ipsec_sa *sa;
uint32_t i, k, n;
uint32_t l2, l3;
union sym_op_data icv;
struct rte_crypto_va_iova_ptr iv[num];
struct rte_crypto_va_iova_ptr aad[num];
struct rte_crypto_va_iova_ptr dgst[num];
uint32_t dr[num];
uint32_t l4ofs[num];
uint32_t clen[num];
uint64_t ivbuf[num][IPSEC_MAX_IV_QWORD];
sa = ss->sa;
n = num;
sqn = esn_outb_update_sqn(sa, &n);
if (n != num)
rte_errno = EOVERFLOW;
for (i = 0, k = 0; i != n; i++) {
l2 = mb[i]->l2_len;
l3 = mb[i]->l3_len;
/* calculate ESP header offset */
l4ofs[k] = (l2 + l3) & cofs_mask;
sqc = rte_cpu_to_be_64(sqn + i);
gen_iv(ivbuf[k], sqc);
/* try to update the packet itself */
rc = prepare(sa, sqc, ivbuf[k], mb[i], &icv, sa->sqh_len, 0);
/* success, proceed with preparations */
if (rc >= 0) {
outb_pkt_xprepare(sa, sqc, &icv);
/* get encrypted data offset and length */
clen[k] = outb_cpu_crypto_prepare(sa, l4ofs + k, rc,
ivbuf[k]);
/* fill iv, digest and aad */
iv[k].va = ivbuf[k];
aad[k].va = icv.va + sa->icv_len;
dgst[k++].va = icv.va;
} else {
dr[i - k] = i;
rte_errno = -rc;
}
}
/* copy not prepared mbufs beyond good ones */
if (k != n && k != 0)
move_bad_mbufs(mb, dr, n, n - k);
/* convert mbufs to iovecs and do actual crypto/auth processing */
if (k != 0)
cpu_crypto_bulk(ss, sa->cofs, mb, iv, aad, dgst,
l4ofs, clen, k);
return k;
}
uint16_t
cpu_outb_tun_pkt_prepare(const struct rte_ipsec_session *ss,
struct rte_mbuf *mb[], uint16_t num)
{
return cpu_outb_pkt_prepare(ss, mb, num, outb_tun_pkt_prepare, 0);
}
uint16_t
cpu_outb_trs_pkt_prepare(const struct rte_ipsec_session *ss,
struct rte_mbuf *mb[], uint16_t num)
{
return cpu_outb_pkt_prepare(ss, mb, num, outb_trs_pkt_prepare,
UINT32_MAX);
}
/*
* process outbound packets for SA with ESN support,
* for algorithms that require SQN.hibits to be implicitly included
* into digest computation.
* In that case we have to move ICV bytes back to their proper place.
*/
uint16_t
esp_outb_sqh_process(const struct rte_ipsec_session *ss, struct rte_mbuf *mb[],
uint16_t num)
{
uint32_t i, k, icv_len, *icv, bytes;
struct rte_mbuf *ml;
struct rte_ipsec_sa *sa;
uint32_t dr[num];
sa = ss->sa;
k = 0;
icv_len = sa->icv_len;
bytes = 0;
for (i = 0; i != num; i++) {
if ((mb[i]->ol_flags & RTE_MBUF_F_RX_SEC_OFFLOAD_FAILED) == 0) {
ml = rte_pktmbuf_lastseg(mb[i]);
/* remove high-order 32 bits of esn from packet len */
mb[i]->pkt_len -= sa->sqh_len;
ml->data_len -= sa->sqh_len;
icv = rte_pktmbuf_mtod_offset(ml, void *,
ml->data_len - icv_len);
remove_sqh(icv, icv_len);
bytes += mb[i]->pkt_len;
k++;
} else
dr[i - k] = i;
}
sa->statistics.count += k;
sa->statistics.bytes += bytes;
/* handle unprocessed mbufs */
if (k != num) {
rte_errno = EBADMSG;
if (k != 0)
move_bad_mbufs(mb, dr, num, num - k);
}
return k;
}
/*
* prepare packets for inline ipsec processing:
* set ol_flags and attach metadata.
*/
static inline void
inline_outb_mbuf_prepare(const struct rte_ipsec_session *ss,
struct rte_mbuf *mb[], uint16_t num)
{
uint32_t i, ol_flags, bytes;
ol_flags = ss->security.ol_flags & RTE_SECURITY_TX_OLOAD_NEED_MDATA;
bytes = 0;
for (i = 0; i != num; i++) {
mb[i]->ol_flags |= RTE_MBUF_F_TX_SEC_OFFLOAD;
bytes += mb[i]->pkt_len;
if (ol_flags != 0)
rte_security_set_pkt_metadata(ss->security.ctx,
ss->security.ses, mb[i], NULL);
}
ss->sa->statistics.count += num;
ss->sa->statistics.bytes += bytes;
}
static inline int
esn_outb_nb_segments(struct rte_mbuf *m)
{
if (m->ol_flags & (RTE_MBUF_F_TX_TCP_SEG | RTE_MBUF_F_TX_UDP_SEG)) {
uint16_t pkt_l3len = m->pkt_len - m->l2_len;
uint16_t segments =
(m->tso_segsz > 0 && pkt_l3len > m->tso_segsz) ?
(pkt_l3len + m->tso_segsz - 1) / m->tso_segsz : 1;
return segments;
}
return 1; /* no TSO */
}
/* Compute how many packets can be sent before overflow occurs */
static inline uint16_t
esn_outb_nb_valid_packets(uint16_t num, uint32_t n_sqn, uint16_t nb_segs[])
{
uint16_t i;
uint32_t seg_cnt = 0;
for (i = 0; i < num && seg_cnt < n_sqn; i++)
seg_cnt += nb_segs[i];
return i - 1;
}
/*
* process group of ESP outbound tunnel packets destined for
* INLINE_CRYPTO type of device.
*/
uint16_t
inline_outb_tun_pkt_process(const struct rte_ipsec_session *ss,
struct rte_mbuf *mb[], uint16_t num)
{
int32_t rc;
uint32_t i, k, nb_segs_total, n_sqn;
uint64_t sqn;
rte_be64_t sqc;
struct rte_ipsec_sa *sa;
union sym_op_data icv;
uint64_t iv[IPSEC_MAX_IV_QWORD];
uint32_t dr[num];
uint16_t nb_segs[num];
sa = ss->sa;
nb_segs_total = 0;
/* Calculate number of segments */
for (i = 0; i != num; i++) {
nb_segs[i] = esn_outb_nb_segments(mb[i]);
nb_segs_total += nb_segs[i];
}
n_sqn = nb_segs_total;
sqn = esn_outb_update_sqn(sa, &n_sqn);
if (n_sqn != nb_segs_total) {
rte_errno = EOVERFLOW;
/* if there are segmented packets find out how many can be
* sent until overflow occurs
*/
if (nb_segs_total > num) /* there is at least 1 */
num = esn_outb_nb_valid_packets(num, n_sqn, nb_segs);
else
num = n_sqn; /* no segmented packets */
}
k = 0;
for (i = 0; i != num; i++) {
sqc = rte_cpu_to_be_64(sqn);
gen_iv(iv, sqc);
sqn += nb_segs[i];
/* try to update the packet itself */
rc = outb_tun_pkt_prepare(sa, sqc, iv, mb[i], &icv, 0,
(mb[i]->ol_flags &
(RTE_MBUF_F_TX_TCP_SEG | RTE_MBUF_F_TX_UDP_SEG)) != 0);
k += (rc >= 0);
/* failure, put packet into the death-row */
if (rc < 0) {
dr[i - k] = i;
rte_errno = -rc;
}
}
/* copy not processed mbufs beyond good ones */
if (k != num && k != 0)
move_bad_mbufs(mb, dr, num, num - k);
inline_outb_mbuf_prepare(ss, mb, k);
return k;
}
/*
* process group of ESP outbound transport packets destined for
* INLINE_CRYPTO type of device.
*/
uint16_t
inline_outb_trs_pkt_process(const struct rte_ipsec_session *ss,
struct rte_mbuf *mb[], uint16_t num)
{
int32_t rc;
uint32_t i, k, nb_segs_total, n_sqn;
uint64_t sqn;
rte_be64_t sqc;
struct rte_ipsec_sa *sa;
union sym_op_data icv;
uint64_t iv[IPSEC_MAX_IV_QWORD];
uint32_t dr[num];
uint16_t nb_segs[num];
sa = ss->sa;
nb_segs_total = 0;
/* Calculate number of segments */
for (i = 0; i != num; i++) {
nb_segs[i] = esn_outb_nb_segments(mb[i]);
nb_segs_total += nb_segs[i];
}
n_sqn = nb_segs_total;
sqn = esn_outb_update_sqn(sa, &n_sqn);
if (n_sqn != nb_segs_total) {
rte_errno = EOVERFLOW;
/* if there are segmented packets find out how many can be
* sent until overflow occurs
*/
if (nb_segs_total > num) /* there is at least 1 */
num = esn_outb_nb_valid_packets(num, n_sqn, nb_segs);
else
num = n_sqn; /* no segmented packets */
}
k = 0;
for (i = 0; i != num; i++) {
sqc = rte_cpu_to_be_64(sqn);
gen_iv(iv, sqc);
sqn += nb_segs[i];
/* try to update the packet itself */
rc = outb_trs_pkt_prepare(sa, sqc, iv, mb[i], &icv, 0,
(mb[i]->ol_flags &
(RTE_MBUF_F_TX_TCP_SEG | RTE_MBUF_F_TX_UDP_SEG)) != 0);
k += (rc >= 0);
/* failure, put packet into the death-row */
if (rc < 0) {
dr[i - k] = i;
rte_errno = -rc;
}
}
/* copy not processed mbufs beyond good ones */
if (k != num && k != 0)
move_bad_mbufs(mb, dr, num, num - k);
inline_outb_mbuf_prepare(ss, mb, k);
return k;
}
/*
* outbound for RTE_SECURITY_ACTION_TYPE_INLINE_PROTOCOL:
* actual processing is done by HW/PMD, just set flags and metadata.
*/
uint16_t
inline_proto_outb_pkt_process(const struct rte_ipsec_session *ss,
struct rte_mbuf *mb[], uint16_t num)
{
inline_outb_mbuf_prepare(ss, mb, num);
return num;
}