f-stack/dpdk/drivers/event/octeontx2/otx2_tim_evdev.c

736 lines
18 KiB
C

/* SPDX-License-Identifier: BSD-3-Clause
* Copyright(C) 2019 Marvell International Ltd.
*/
#include <rte_kvargs.h>
#include <rte_malloc.h>
#include <rte_mbuf_pool_ops.h>
#include "otx2_evdev.h"
#include "otx2_tim_evdev.h"
static struct event_timer_adapter_ops otx2_tim_ops;
static inline int
tim_get_msix_offsets(void)
{
struct otx2_tim_evdev *dev = tim_priv_get();
struct otx2_mbox *mbox = dev->mbox;
struct msix_offset_rsp *msix_rsp;
int i, rc;
/* Get TIM MSIX vector offsets */
otx2_mbox_alloc_msg_msix_offset(mbox);
rc = otx2_mbox_process_msg(mbox, (void *)&msix_rsp);
for (i = 0; i < dev->nb_rings; i++)
dev->tim_msixoff[i] = msix_rsp->timlf_msixoff[i];
return rc;
}
static void
tim_set_fp_ops(struct otx2_tim_ring *tim_ring)
{
uint8_t prod_flag = !tim_ring->prod_type_sp;
/* [DFB/FB] [SP][MP]*/
const rte_event_timer_arm_burst_t arm_burst[2][2][2] = {
#define FP(_name, _f3, _f2, _f1, flags) \
[_f3][_f2][_f1] = otx2_tim_arm_burst_##_name,
TIM_ARM_FASTPATH_MODES
#undef FP
};
const rte_event_timer_arm_tmo_tick_burst_t arm_tmo_burst[2][2] = {
#define FP(_name, _f2, _f1, flags) \
[_f2][_f1] = otx2_tim_arm_tmo_tick_burst_##_name,
TIM_ARM_TMO_FASTPATH_MODES
#undef FP
};
otx2_tim_ops.arm_burst =
arm_burst[tim_ring->enable_stats][tim_ring->ena_dfb][prod_flag];
otx2_tim_ops.arm_tmo_tick_burst =
arm_tmo_burst[tim_ring->enable_stats][tim_ring->ena_dfb];
otx2_tim_ops.cancel_burst = otx2_tim_timer_cancel_burst;
}
static void
otx2_tim_ring_info_get(const struct rte_event_timer_adapter *adptr,
struct rte_event_timer_adapter_info *adptr_info)
{
struct otx2_tim_ring *tim_ring = adptr->data->adapter_priv;
adptr_info->max_tmo_ns = tim_ring->max_tout;
adptr_info->min_resolution_ns = tim_ring->ena_periodic ?
tim_ring->max_tout : tim_ring->tck_nsec;
rte_memcpy(&adptr_info->conf, &adptr->data->conf,
sizeof(struct rte_event_timer_adapter_conf));
}
static int
tim_chnk_pool_create(struct otx2_tim_ring *tim_ring,
struct rte_event_timer_adapter_conf *rcfg)
{
unsigned int cache_sz = (tim_ring->nb_chunks / 1.5);
unsigned int mp_flags = 0;
char pool_name[25];
int rc;
cache_sz /= rte_lcore_count();
/* Create chunk pool. */
if (rcfg->flags & RTE_EVENT_TIMER_ADAPTER_F_SP_PUT) {
mp_flags = RTE_MEMPOOL_F_SP_PUT | RTE_MEMPOOL_F_SC_GET;
otx2_tim_dbg("Using single producer mode");
tim_ring->prod_type_sp = true;
}
snprintf(pool_name, sizeof(pool_name), "otx2_tim_chunk_pool%d",
tim_ring->ring_id);
if (cache_sz > RTE_MEMPOOL_CACHE_MAX_SIZE)
cache_sz = RTE_MEMPOOL_CACHE_MAX_SIZE;
cache_sz = cache_sz != 0 ? cache_sz : 2;
tim_ring->nb_chunks += (cache_sz * rte_lcore_count());
if (!tim_ring->disable_npa) {
tim_ring->chunk_pool = rte_mempool_create_empty(pool_name,
tim_ring->nb_chunks, tim_ring->chunk_sz,
cache_sz, 0, rte_socket_id(), mp_flags);
if (tim_ring->chunk_pool == NULL) {
otx2_err("Unable to create chunkpool.");
return -ENOMEM;
}
rc = rte_mempool_set_ops_byname(tim_ring->chunk_pool,
rte_mbuf_platform_mempool_ops(),
NULL);
if (rc < 0) {
otx2_err("Unable to set chunkpool ops");
goto free;
}
rc = rte_mempool_populate_default(tim_ring->chunk_pool);
if (rc < 0) {
otx2_err("Unable to set populate chunkpool.");
goto free;
}
tim_ring->aura = npa_lf_aura_handle_to_aura(
tim_ring->chunk_pool->pool_id);
tim_ring->ena_dfb = tim_ring->ena_periodic ? 1 : 0;
} else {
tim_ring->chunk_pool = rte_mempool_create(pool_name,
tim_ring->nb_chunks, tim_ring->chunk_sz,
cache_sz, 0, NULL, NULL, NULL, NULL,
rte_socket_id(),
mp_flags);
if (tim_ring->chunk_pool == NULL) {
otx2_err("Unable to create chunkpool.");
return -ENOMEM;
}
tim_ring->ena_dfb = 1;
}
return 0;
free:
rte_mempool_free(tim_ring->chunk_pool);
return rc;
}
static void
tim_err_desc(int rc)
{
switch (rc) {
case TIM_AF_NO_RINGS_LEFT:
otx2_err("Unable to allocat new TIM ring.");
break;
case TIM_AF_INVALID_NPA_PF_FUNC:
otx2_err("Invalid NPA pf func.");
break;
case TIM_AF_INVALID_SSO_PF_FUNC:
otx2_err("Invalid SSO pf func.");
break;
case TIM_AF_RING_STILL_RUNNING:
otx2_tim_dbg("Ring busy.");
break;
case TIM_AF_LF_INVALID:
otx2_err("Invalid Ring id.");
break;
case TIM_AF_CSIZE_NOT_ALIGNED:
otx2_err("Chunk size specified needs to be multiple of 16.");
break;
case TIM_AF_CSIZE_TOO_SMALL:
otx2_err("Chunk size too small.");
break;
case TIM_AF_CSIZE_TOO_BIG:
otx2_err("Chunk size too big.");
break;
case TIM_AF_INTERVAL_TOO_SMALL:
otx2_err("Bucket traversal interval too small.");
break;
case TIM_AF_INVALID_BIG_ENDIAN_VALUE:
otx2_err("Invalid Big endian value.");
break;
case TIM_AF_INVALID_CLOCK_SOURCE:
otx2_err("Invalid Clock source specified.");
break;
case TIM_AF_GPIO_CLK_SRC_NOT_ENABLED:
otx2_err("GPIO clock source not enabled.");
break;
case TIM_AF_INVALID_BSIZE:
otx2_err("Invalid bucket size.");
break;
case TIM_AF_INVALID_ENABLE_PERIODIC:
otx2_err("Invalid bucket size.");
break;
case TIM_AF_INVALID_ENABLE_DONTFREE:
otx2_err("Invalid Don't free value.");
break;
case TIM_AF_ENA_DONTFRE_NSET_PERIODIC:
otx2_err("Don't free bit not set when periodic is enabled.");
break;
case TIM_AF_RING_ALREADY_DISABLED:
otx2_err("Ring already stopped");
break;
default:
otx2_err("Unknown Error.");
}
}
static int
otx2_tim_ring_create(struct rte_event_timer_adapter *adptr)
{
struct rte_event_timer_adapter_conf *rcfg = &adptr->data->conf;
struct otx2_tim_evdev *dev = tim_priv_get();
struct otx2_tim_ring *tim_ring;
struct tim_config_req *cfg_req;
struct tim_ring_req *free_req;
struct tim_lf_alloc_req *req;
struct tim_lf_alloc_rsp *rsp;
uint8_t is_periodic;
int i, rc;
if (dev == NULL)
return -ENODEV;
if (adptr->data->id >= dev->nb_rings)
return -ENODEV;
req = otx2_mbox_alloc_msg_tim_lf_alloc(dev->mbox);
req->npa_pf_func = otx2_npa_pf_func_get();
req->sso_pf_func = otx2_sso_pf_func_get();
req->ring = adptr->data->id;
rc = otx2_mbox_process_msg(dev->mbox, (void **)&rsp);
if (rc < 0) {
tim_err_desc(rc);
return -ENODEV;
}
if (NSEC2TICK(RTE_ALIGN_MUL_CEIL(rcfg->timer_tick_ns, 10),
rsp->tenns_clk) < OTX2_TIM_MIN_TMO_TKS) {
if (rcfg->flags & RTE_EVENT_TIMER_ADAPTER_F_ADJUST_RES)
rcfg->timer_tick_ns = TICK2NSEC(OTX2_TIM_MIN_TMO_TKS,
rsp->tenns_clk);
else {
rc = -ERANGE;
goto rng_mem_err;
}
}
is_periodic = 0;
if (rcfg->flags & RTE_EVENT_TIMER_ADAPTER_F_PERIODIC) {
if (rcfg->max_tmo_ns &&
rcfg->max_tmo_ns != rcfg->timer_tick_ns) {
rc = -ERANGE;
goto rng_mem_err;
}
/* Use 2 buckets to avoid contention */
rcfg->max_tmo_ns = rcfg->timer_tick_ns;
rcfg->timer_tick_ns /= 2;
is_periodic = 1;
}
tim_ring = rte_zmalloc("otx2_tim_prv", sizeof(struct otx2_tim_ring), 0);
if (tim_ring == NULL) {
rc = -ENOMEM;
goto rng_mem_err;
}
adptr->data->adapter_priv = tim_ring;
tim_ring->tenns_clk_freq = rsp->tenns_clk;
tim_ring->clk_src = (int)rcfg->clk_src;
tim_ring->ring_id = adptr->data->id;
tim_ring->tck_nsec = RTE_ALIGN_MUL_CEIL(rcfg->timer_tick_ns, 10);
tim_ring->max_tout = is_periodic ?
rcfg->timer_tick_ns * 2 : rcfg->max_tmo_ns;
tim_ring->nb_bkts = (tim_ring->max_tout / tim_ring->tck_nsec);
tim_ring->chunk_sz = dev->chunk_sz;
tim_ring->nb_timers = rcfg->nb_timers;
tim_ring->disable_npa = dev->disable_npa;
tim_ring->ena_periodic = is_periodic;
tim_ring->enable_stats = dev->enable_stats;
for (i = 0; i < dev->ring_ctl_cnt ; i++) {
struct otx2_tim_ctl *ring_ctl = &dev->ring_ctl_data[i];
if (ring_ctl->ring == tim_ring->ring_id) {
tim_ring->chunk_sz = ring_ctl->chunk_slots ?
((uint32_t)(ring_ctl->chunk_slots + 1) *
OTX2_TIM_CHUNK_ALIGNMENT) : tim_ring->chunk_sz;
tim_ring->enable_stats = ring_ctl->enable_stats;
tim_ring->disable_npa = ring_ctl->disable_npa;
}
}
if (tim_ring->disable_npa) {
tim_ring->nb_chunks =
tim_ring->nb_timers /
OTX2_TIM_NB_CHUNK_SLOTS(tim_ring->chunk_sz);
tim_ring->nb_chunks = tim_ring->nb_chunks * tim_ring->nb_bkts;
} else {
tim_ring->nb_chunks = tim_ring->nb_timers;
}
tim_ring->nb_chunk_slots = OTX2_TIM_NB_CHUNK_SLOTS(tim_ring->chunk_sz);
tim_ring->bkt = rte_zmalloc("otx2_tim_bucket", (tim_ring->nb_bkts) *
sizeof(struct otx2_tim_bkt),
RTE_CACHE_LINE_SIZE);
if (tim_ring->bkt == NULL)
goto bkt_mem_err;
rc = tim_chnk_pool_create(tim_ring, rcfg);
if (rc < 0)
goto chnk_mem_err;
cfg_req = otx2_mbox_alloc_msg_tim_config_ring(dev->mbox);
cfg_req->ring = tim_ring->ring_id;
cfg_req->bigendian = false;
cfg_req->clocksource = tim_ring->clk_src;
cfg_req->enableperiodic = tim_ring->ena_periodic;
cfg_req->enabledontfreebuffer = tim_ring->ena_dfb;
cfg_req->bucketsize = tim_ring->nb_bkts;
cfg_req->chunksize = tim_ring->chunk_sz;
cfg_req->interval = NSEC2TICK(tim_ring->tck_nsec,
tim_ring->tenns_clk_freq);
rc = otx2_mbox_process(dev->mbox);
if (rc < 0) {
tim_err_desc(rc);
goto chnk_mem_err;
}
tim_ring->base = dev->bar2 +
(RVU_BLOCK_ADDR_TIM << 20 | tim_ring->ring_id << 12);
rc = tim_register_irq(tim_ring->ring_id);
if (rc < 0)
goto chnk_mem_err;
otx2_write64((uint64_t)tim_ring->bkt,
tim_ring->base + TIM_LF_RING_BASE);
otx2_write64(tim_ring->aura, tim_ring->base + TIM_LF_RING_AURA);
/* Set fastpath ops. */
tim_set_fp_ops(tim_ring);
/* Update SSO xae count. */
sso_updt_xae_cnt(sso_pmd_priv(dev->event_dev), (void *)tim_ring,
RTE_EVENT_TYPE_TIMER);
sso_xae_reconfigure(dev->event_dev);
otx2_tim_dbg("Total memory used %"PRIu64"MB\n",
(uint64_t)(((tim_ring->nb_chunks * tim_ring->chunk_sz)
+ (tim_ring->nb_bkts * sizeof(struct otx2_tim_bkt))) /
BIT_ULL(20)));
return rc;
chnk_mem_err:
rte_free(tim_ring->bkt);
bkt_mem_err:
rte_free(tim_ring);
rng_mem_err:
free_req = otx2_mbox_alloc_msg_tim_lf_free(dev->mbox);
free_req->ring = adptr->data->id;
otx2_mbox_process(dev->mbox);
return rc;
}
static void
otx2_tim_calibrate_start_tsc(struct otx2_tim_ring *tim_ring)
{
#define OTX2_TIM_CALIB_ITER 1E6
uint32_t real_bkt, bucket;
int icount, ecount = 0;
uint64_t bkt_cyc;
for (icount = 0; icount < OTX2_TIM_CALIB_ITER; icount++) {
real_bkt = otx2_read64(tim_ring->base + TIM_LF_RING_REL) >> 44;
bkt_cyc = tim_cntvct();
bucket = (bkt_cyc - tim_ring->ring_start_cyc) /
tim_ring->tck_int;
bucket = bucket % (tim_ring->nb_bkts);
tim_ring->ring_start_cyc = bkt_cyc - (real_bkt *
tim_ring->tck_int);
if (bucket != real_bkt)
ecount++;
}
tim_ring->last_updt_cyc = bkt_cyc;
otx2_tim_dbg("Bucket mispredict %3.2f distance %d\n",
100 - (((double)(icount - ecount) / (double)icount) * 100),
bucket - real_bkt);
}
static int
otx2_tim_ring_start(const struct rte_event_timer_adapter *adptr)
{
struct otx2_tim_ring *tim_ring = adptr->data->adapter_priv;
struct otx2_tim_evdev *dev = tim_priv_get();
struct tim_enable_rsp *rsp;
struct tim_ring_req *req;
int rc;
if (dev == NULL)
return -ENODEV;
req = otx2_mbox_alloc_msg_tim_enable_ring(dev->mbox);
req->ring = tim_ring->ring_id;
rc = otx2_mbox_process_msg(dev->mbox, (void **)&rsp);
if (rc < 0) {
tim_err_desc(rc);
goto fail;
}
tim_ring->ring_start_cyc = rsp->timestarted;
tim_ring->tck_int = NSEC2TICK(tim_ring->tck_nsec, tim_cntfrq());
tim_ring->tot_int = tim_ring->tck_int * tim_ring->nb_bkts;
tim_ring->fast_div = rte_reciprocal_value_u64(tim_ring->tck_int);
tim_ring->fast_bkt = rte_reciprocal_value_u64(tim_ring->nb_bkts);
otx2_tim_calibrate_start_tsc(tim_ring);
fail:
return rc;
}
static int
otx2_tim_ring_stop(const struct rte_event_timer_adapter *adptr)
{
struct otx2_tim_ring *tim_ring = adptr->data->adapter_priv;
struct otx2_tim_evdev *dev = tim_priv_get();
struct tim_ring_req *req;
int rc;
if (dev == NULL)
return -ENODEV;
req = otx2_mbox_alloc_msg_tim_disable_ring(dev->mbox);
req->ring = tim_ring->ring_id;
rc = otx2_mbox_process(dev->mbox);
if (rc < 0) {
tim_err_desc(rc);
rc = -EBUSY;
}
return rc;
}
static int
otx2_tim_ring_free(struct rte_event_timer_adapter *adptr)
{
struct otx2_tim_ring *tim_ring = adptr->data->adapter_priv;
struct otx2_tim_evdev *dev = tim_priv_get();
struct tim_ring_req *req;
int rc;
if (dev == NULL)
return -ENODEV;
tim_unregister_irq(tim_ring->ring_id);
req = otx2_mbox_alloc_msg_tim_lf_free(dev->mbox);
req->ring = tim_ring->ring_id;
rc = otx2_mbox_process(dev->mbox);
if (rc < 0) {
tim_err_desc(rc);
return -EBUSY;
}
rte_free(tim_ring->bkt);
rte_mempool_free(tim_ring->chunk_pool);
rte_free(adptr->data->adapter_priv);
return 0;
}
static int
otx2_tim_stats_get(const struct rte_event_timer_adapter *adapter,
struct rte_event_timer_adapter_stats *stats)
{
struct otx2_tim_ring *tim_ring = adapter->data->adapter_priv;
uint64_t bkt_cyc = tim_cntvct() - tim_ring->ring_start_cyc;
stats->evtim_exp_count = __atomic_load_n(&tim_ring->arm_cnt,
__ATOMIC_RELAXED);
stats->ev_enq_count = stats->evtim_exp_count;
stats->adapter_tick_count = rte_reciprocal_divide_u64(bkt_cyc,
&tim_ring->fast_div);
return 0;
}
static int
otx2_tim_stats_reset(const struct rte_event_timer_adapter *adapter)
{
struct otx2_tim_ring *tim_ring = adapter->data->adapter_priv;
__atomic_store_n(&tim_ring->arm_cnt, 0, __ATOMIC_RELAXED);
return 0;
}
int
otx2_tim_caps_get(const struct rte_eventdev *evdev, uint64_t flags,
uint32_t *caps, const struct event_timer_adapter_ops **ops)
{
struct otx2_tim_evdev *dev = tim_priv_get();
RTE_SET_USED(flags);
if (dev == NULL)
return -ENODEV;
otx2_tim_ops.init = otx2_tim_ring_create;
otx2_tim_ops.uninit = otx2_tim_ring_free;
otx2_tim_ops.start = otx2_tim_ring_start;
otx2_tim_ops.stop = otx2_tim_ring_stop;
otx2_tim_ops.get_info = otx2_tim_ring_info_get;
if (dev->enable_stats) {
otx2_tim_ops.stats_get = otx2_tim_stats_get;
otx2_tim_ops.stats_reset = otx2_tim_stats_reset;
}
/* Store evdev pointer for later use. */
dev->event_dev = (struct rte_eventdev *)(uintptr_t)evdev;
*caps = RTE_EVENT_TIMER_ADAPTER_CAP_INTERNAL_PORT |
RTE_EVENT_TIMER_ADAPTER_CAP_PERIODIC;
*ops = &otx2_tim_ops;
return 0;
}
#define OTX2_TIM_DISABLE_NPA "tim_disable_npa"
#define OTX2_TIM_CHNK_SLOTS "tim_chnk_slots"
#define OTX2_TIM_STATS_ENA "tim_stats_ena"
#define OTX2_TIM_RINGS_LMT "tim_rings_lmt"
#define OTX2_TIM_RING_CTL "tim_ring_ctl"
static void
tim_parse_ring_param(char *value, void *opaque)
{
struct otx2_tim_evdev *dev = opaque;
struct otx2_tim_ctl ring_ctl = {0};
char *tok = strtok(value, "-");
struct otx2_tim_ctl *old_ptr;
uint16_t *val;
val = (uint16_t *)&ring_ctl;
if (!strlen(value))
return;
while (tok != NULL) {
*val = atoi(tok);
tok = strtok(NULL, "-");
val++;
}
if (val != (&ring_ctl.enable_stats + 1)) {
otx2_err(
"Invalid ring param expected [ring-chunk_sz-disable_npa-enable_stats]");
return;
}
dev->ring_ctl_cnt++;
old_ptr = dev->ring_ctl_data;
dev->ring_ctl_data = rte_realloc(dev->ring_ctl_data,
sizeof(struct otx2_tim_ctl) *
dev->ring_ctl_cnt, 0);
if (dev->ring_ctl_data == NULL) {
dev->ring_ctl_data = old_ptr;
dev->ring_ctl_cnt--;
return;
}
dev->ring_ctl_data[dev->ring_ctl_cnt - 1] = ring_ctl;
}
static void
tim_parse_ring_ctl_list(const char *value, void *opaque)
{
char *s = strdup(value);
char *start = NULL;
char *end = NULL;
char *f = s;
while (*s) {
if (*s == '[')
start = s;
else if (*s == ']')
end = s;
if (start && start < end) {
*end = 0;
tim_parse_ring_param(start + 1, opaque);
start = end;
s = end;
}
s++;
}
free(f);
}
static int
tim_parse_kvargs_dict(const char *key, const char *value, void *opaque)
{
RTE_SET_USED(key);
/* Dict format [ring-chunk_sz-disable_npa-enable_stats] use '-' as ','
* isn't allowed. 0 represents default.
*/
tim_parse_ring_ctl_list(value, opaque);
return 0;
}
static void
tim_parse_devargs(struct rte_devargs *devargs, struct otx2_tim_evdev *dev)
{
struct rte_kvargs *kvlist;
if (devargs == NULL)
return;
kvlist = rte_kvargs_parse(devargs->args, NULL);
if (kvlist == NULL)
return;
rte_kvargs_process(kvlist, OTX2_TIM_DISABLE_NPA,
&parse_kvargs_flag, &dev->disable_npa);
rte_kvargs_process(kvlist, OTX2_TIM_CHNK_SLOTS,
&parse_kvargs_value, &dev->chunk_slots);
rte_kvargs_process(kvlist, OTX2_TIM_STATS_ENA, &parse_kvargs_flag,
&dev->enable_stats);
rte_kvargs_process(kvlist, OTX2_TIM_RINGS_LMT, &parse_kvargs_value,
&dev->min_ring_cnt);
rte_kvargs_process(kvlist, OTX2_TIM_RING_CTL,
&tim_parse_kvargs_dict, &dev);
rte_kvargs_free(kvlist);
}
void
otx2_tim_init(struct rte_pci_device *pci_dev, struct otx2_dev *cmn_dev)
{
struct rsrc_attach_req *atch_req;
struct rsrc_detach_req *dtch_req;
struct free_rsrcs_rsp *rsrc_cnt;
const struct rte_memzone *mz;
struct otx2_tim_evdev *dev;
int rc;
if (rte_eal_process_type() != RTE_PROC_PRIMARY)
return;
mz = rte_memzone_reserve(RTE_STR(OTX2_TIM_EVDEV_NAME),
sizeof(struct otx2_tim_evdev),
rte_socket_id(), 0);
if (mz == NULL) {
otx2_tim_dbg("Unable to allocate memory for TIM Event device");
return;
}
dev = mz->addr;
dev->pci_dev = pci_dev;
dev->mbox = cmn_dev->mbox;
dev->bar2 = cmn_dev->bar2;
tim_parse_devargs(pci_dev->device.devargs, dev);
otx2_mbox_alloc_msg_free_rsrc_cnt(dev->mbox);
rc = otx2_mbox_process_msg(dev->mbox, (void *)&rsrc_cnt);
if (rc < 0) {
otx2_err("Unable to get free rsrc count.");
goto mz_free;
}
dev->nb_rings = dev->min_ring_cnt ?
RTE_MIN(dev->min_ring_cnt, rsrc_cnt->tim) : rsrc_cnt->tim;
if (!dev->nb_rings) {
otx2_tim_dbg("No TIM Logical functions provisioned.");
goto mz_free;
}
atch_req = otx2_mbox_alloc_msg_attach_resources(dev->mbox);
atch_req->modify = true;
atch_req->timlfs = dev->nb_rings;
rc = otx2_mbox_process(dev->mbox);
if (rc < 0) {
otx2_err("Unable to attach TIM rings.");
goto mz_free;
}
rc = tim_get_msix_offsets();
if (rc < 0) {
otx2_err("Unable to get MSIX offsets for TIM.");
goto detach;
}
if (dev->chunk_slots &&
dev->chunk_slots <= OTX2_TIM_MAX_CHUNK_SLOTS &&
dev->chunk_slots >= OTX2_TIM_MIN_CHUNK_SLOTS) {
dev->chunk_sz = (dev->chunk_slots + 1) *
OTX2_TIM_CHUNK_ALIGNMENT;
} else {
dev->chunk_sz = OTX2_TIM_RING_DEF_CHUNK_SZ;
}
return;
detach:
dtch_req = otx2_mbox_alloc_msg_detach_resources(dev->mbox);
dtch_req->partial = true;
dtch_req->timlfs = true;
otx2_mbox_process(dev->mbox);
mz_free:
rte_memzone_free(mz);
}
void
otx2_tim_fini(void)
{
struct otx2_tim_evdev *dev = tim_priv_get();
struct rsrc_detach_req *dtch_req;
if (rte_eal_process_type() != RTE_PROC_PRIMARY)
return;
dtch_req = otx2_mbox_alloc_msg_detach_resources(dev->mbox);
dtch_req->partial = true;
dtch_req->timlfs = true;
otx2_mbox_process(dev->mbox);
rte_memzone_free(rte_memzone_lookup(RTE_STR(OTX2_TIM_EVDEV_NAME)));
}