f-stack/dpdk/drivers/event/octeontx/ssovf_worker.c

507 lines
13 KiB
C

/* SPDX-License-Identifier: BSD-3-Clause
* Copyright(c) 2017 Cavium, Inc
*/
#include "ssovf_worker.h"
static __rte_always_inline void
ssows_new_event(struct ssows *ws, const struct rte_event *ev)
{
const uint64_t event_ptr = ev->u64;
const uint32_t tag = (uint32_t)ev->event;
const uint8_t new_tt = ev->sched_type;
const uint8_t grp = ev->queue_id;
ssows_add_work(ws, event_ptr, tag, new_tt, grp);
}
static __rte_always_inline void
ssows_fwd_swtag(struct ssows *ws, const struct rte_event *ev, const uint8_t grp)
{
const uint8_t cur_tt = ws->cur_tt;
const uint8_t new_tt = ev->sched_type;
const uint32_t tag = (uint32_t)ev->event;
/*
* cur_tt/new_tt SSO_SYNC_ORDERED SSO_SYNC_ATOMIC SSO_SYNC_UNTAGGED
*
* SSO_SYNC_ORDERED norm norm untag
* SSO_SYNC_ATOMIC norm norm untag
* SSO_SYNC_UNTAGGED full full NOOP
*/
if (unlikely(cur_tt == SSO_SYNC_UNTAGGED)) {
if (new_tt != SSO_SYNC_UNTAGGED) {
ssows_swtag_full(ws, ev->u64, tag,
new_tt, grp);
}
} else {
if (likely(new_tt != SSO_SYNC_UNTAGGED))
ssows_swtag_norm(ws, tag, new_tt);
else
ssows_swtag_untag(ws);
}
ws->swtag_req = 1;
}
#define OCT_EVENT_TYPE_GRP_FWD (RTE_EVENT_TYPE_MAX - 1)
static __rte_always_inline void
ssows_fwd_group(struct ssows *ws, const struct rte_event *ev, const uint8_t grp)
{
const uint64_t event_ptr = ev->u64;
const uint32_t tag = (uint32_t)ev->event;
const uint8_t cur_tt = ws->cur_tt;
const uint8_t new_tt = ev->sched_type;
if (cur_tt == SSO_SYNC_ORDERED) {
/* Create unique tag based on custom event type and new grp */
uint32_t newtag = OCT_EVENT_TYPE_GRP_FWD << 28;
newtag |= grp << 20;
newtag |= tag;
ssows_swtag_norm(ws, newtag, SSO_SYNC_ATOMIC);
rte_smp_wmb();
ssows_swtag_wait(ws);
} else {
rte_smp_wmb();
}
ssows_add_work(ws, event_ptr, tag, new_tt, grp);
}
static __rte_always_inline void
ssows_forward_event(struct ssows *ws, const struct rte_event *ev)
{
const uint8_t grp = ev->queue_id;
/* Group hasn't changed, Use SWTAG to forward the event */
if (ws->cur_grp == grp)
ssows_fwd_swtag(ws, ev, grp);
else
/*
* Group has been changed for group based work pipelining,
* Use deschedule/add_work operation to transfer the event to
* new group/core
*/
ssows_fwd_group(ws, ev, grp);
}
static __rte_always_inline void
ssows_release_event(struct ssows *ws)
{
if (likely(ws->cur_tt != SSO_SYNC_UNTAGGED))
ssows_swtag_untag(ws);
}
#define R(name, f2, f1, f0, flags) \
static uint16_t __rte_noinline __rte_hot \
ssows_deq_ ##name(void *port, struct rte_event *ev, uint64_t timeout_ticks) \
{ \
struct ssows *ws = port; \
\
RTE_SET_USED(timeout_ticks); \
\
if (ws->swtag_req) { \
ws->swtag_req = 0; \
ssows_swtag_wait(ws); \
return 1; \
} else { \
return ssows_get_work(ws, ev, flags); \
} \
} \
\
static uint16_t __rte_hot \
ssows_deq_burst_ ##name(void *port, struct rte_event ev[], \
uint16_t nb_events, uint64_t timeout_ticks) \
{ \
RTE_SET_USED(nb_events); \
\
return ssows_deq_ ##name(port, ev, timeout_ticks); \
} \
\
static uint16_t __rte_hot \
ssows_deq_timeout_ ##name(void *port, struct rte_event *ev, \
uint64_t timeout_ticks) \
{ \
struct ssows *ws = port; \
uint64_t iter; \
uint16_t ret = 1; \
\
if (ws->swtag_req) { \
ws->swtag_req = 0; \
ssows_swtag_wait(ws); \
} else { \
ret = ssows_get_work(ws, ev, flags); \
for (iter = 1; iter < timeout_ticks && (ret == 0); iter++) \
ret = ssows_get_work(ws, ev, flags); \
} \
return ret; \
} \
\
static uint16_t __rte_hot \
ssows_deq_timeout_burst_ ##name(void *port, struct rte_event ev[], \
uint16_t nb_events, uint64_t timeout_ticks) \
{ \
RTE_SET_USED(nb_events); \
\
return ssows_deq_timeout_ ##name(port, ev, timeout_ticks); \
}
SSO_RX_ADPTR_ENQ_FASTPATH_FUNC
#undef R
__rte_always_inline uint16_t __rte_hot
ssows_enq(void *port, const struct rte_event *ev)
{
struct ssows *ws = port;
uint16_t ret = 1;
switch (ev->op) {
case RTE_EVENT_OP_NEW:
rte_smp_wmb();
ssows_new_event(ws, ev);
break;
case RTE_EVENT_OP_FORWARD:
ssows_forward_event(ws, ev);
break;
case RTE_EVENT_OP_RELEASE:
ssows_release_event(ws);
break;
default:
ret = 0;
}
return ret;
}
uint16_t __rte_hot
ssows_enq_burst(void *port, const struct rte_event ev[], uint16_t nb_events)
{
RTE_SET_USED(nb_events);
return ssows_enq(port, ev);
}
uint16_t __rte_hot
ssows_enq_new_burst(void *port, const struct rte_event ev[], uint16_t nb_events)
{
uint16_t i;
struct ssows *ws = port;
rte_smp_wmb();
for (i = 0; i < nb_events; i++)
ssows_new_event(ws, &ev[i]);
return nb_events;
}
uint16_t __rte_hot
ssows_enq_fwd_burst(void *port, const struct rte_event ev[], uint16_t nb_events)
{
struct ssows *ws = port;
RTE_SET_USED(nb_events);
ssows_forward_event(ws, ev);
return 1;
}
void
ssows_flush_events(struct ssows *ws, uint8_t queue_id,
ssows_handle_event_t fn, void *arg)
{
uint32_t reg_off;
struct rte_event ev;
uint64_t enable, aq_cnt = 1, cq_ds_cnt = 1;
uint64_t get_work0, get_work1;
uint64_t sched_type_queue;
uint8_t *base = ssovf_bar(OCTEONTX_SSO_GROUP, queue_id, 0);
enable = ssovf_read64(base + SSO_VHGRP_QCTL);
if (!enable)
return;
reg_off = SSOW_VHWS_OP_GET_WORK0;
reg_off |= 1 << 17; /* Grouped */
reg_off |= 1 << 16; /* WAIT */
reg_off |= queue_id << 4; /* INDEX_GGRP_MASK(group number) */
while (aq_cnt || cq_ds_cnt) {
aq_cnt = ssovf_read64(base + SSO_VHGRP_AQ_CNT);
cq_ds_cnt = ssovf_read64(base + SSO_VHGRP_INT_CNT);
/* Extract cq and ds count */
cq_ds_cnt &= 0x1FFF1FFF0000;
ssovf_load_pair(get_work0, get_work1, ws->base + reg_off);
sched_type_queue = (get_work0 >> 32) & 0xfff;
ws->cur_tt = sched_type_queue & 0x3;
ws->cur_grp = sched_type_queue >> 2;
sched_type_queue = sched_type_queue << 38;
ev.event = sched_type_queue | (get_work0 & 0xffffffff);
if (get_work1 && ev.event_type == RTE_EVENT_TYPE_ETHDEV)
ev.mbuf = ssovf_octeontx_wqe_to_pkt(get_work1,
(ev.event >> 20) & 0x7F,
OCCTX_RX_OFFLOAD_NONE |
OCCTX_RX_MULTI_SEG_F,
ws->lookup_mem);
else
ev.u64 = get_work1;
if (fn != NULL && ev.u64 != 0)
fn(arg, ev);
}
}
void
ssows_reset(struct ssows *ws)
{
uint64_t tag;
uint64_t pend_tag;
uint8_t pend_tt;
uint8_t tt;
tag = ssovf_read64(ws->base + SSOW_VHWS_TAG);
pend_tag = ssovf_read64(ws->base + SSOW_VHWS_PENDTAG);
if (pend_tag & (1ULL << 63)) { /* Tagswitch pending */
pend_tt = (pend_tag >> 32) & 0x3;
if (pend_tt == SSO_SYNC_ORDERED || pend_tt == SSO_SYNC_ATOMIC)
ssows_desched(ws);
} else {
tt = (tag >> 32) & 0x3;
if (tt == SSO_SYNC_ORDERED || tt == SSO_SYNC_ATOMIC)
ssows_swtag_untag(ws);
}
}
static __rte_always_inline uint16_t
__sso_event_tx_adapter_enqueue(void *port, struct rte_event ev[],
uint16_t nb_events, uint64_t *cmd,
const uint16_t flag)
{
uint16_t port_id;
uint16_t queue_id;
struct rte_mbuf *m;
struct rte_eth_dev *ethdev;
struct ssows *ws = port;
struct octeontx_txq *txq;
RTE_SET_USED(nb_events);
switch (ev->sched_type) {
case SSO_SYNC_ORDERED:
ssows_swtag_norm(ws, ev->event, SSO_SYNC_ATOMIC);
rte_io_wmb();
ssows_swtag_wait(ws);
break;
case SSO_SYNC_UNTAGGED:
ssows_swtag_full(ws, ev->u64, ev->event, SSO_SYNC_ATOMIC,
ev->queue_id);
rte_io_wmb();
ssows_swtag_wait(ws);
break;
case SSO_SYNC_ATOMIC:
rte_io_wmb();
break;
}
m = ev[0].mbuf;
port_id = m->port;
queue_id = rte_event_eth_tx_adapter_txq_get(m);
ethdev = &rte_eth_devices[port_id];
txq = ethdev->data->tx_queues[queue_id];
return __octeontx_xmit_pkts(txq, &m, 1, cmd, flag);
}
#define T(name, f3, f2, f1, f0, sz, flags) \
static uint16_t __rte_noinline __rte_hot \
sso_event_tx_adapter_enqueue_ ## name(void *port, struct rte_event ev[], \
uint16_t nb_events) \
{ \
uint64_t cmd[sz]; \
return __sso_event_tx_adapter_enqueue(port, ev, nb_events, cmd, \
flags); \
}
SSO_TX_ADPTR_ENQ_FASTPATH_FUNC
#undef T
static uint16_t __rte_hot
ssow_crypto_adapter_enqueue(void *port, struct rte_event ev[],
uint16_t nb_events)
{
RTE_SET_USED(nb_events);
return otx_crypto_adapter_enqueue(port, ev->event_ptr);
}
void
ssovf_fastpath_fns_set(struct rte_eventdev *dev)
{
struct ssovf_evdev *edev = ssovf_pmd_priv(dev);
dev->enqueue = ssows_enq;
dev->enqueue_burst = ssows_enq_burst;
dev->enqueue_new_burst = ssows_enq_new_burst;
dev->enqueue_forward_burst = ssows_enq_fwd_burst;
dev->ca_enqueue = ssow_crypto_adapter_enqueue;
const event_tx_adapter_enqueue_t ssow_txa_enqueue[2][2][2][2] = {
#define T(name, f3, f2, f1, f0, sz, flags) \
[f3][f2][f1][f0] = sso_event_tx_adapter_enqueue_ ##name,
SSO_TX_ADPTR_ENQ_FASTPATH_FUNC
#undef T
};
dev->txa_enqueue = ssow_txa_enqueue
[!!(edev->tx_offload_flags & OCCTX_TX_OFFLOAD_MBUF_NOFF_F)]
[!!(edev->tx_offload_flags & OCCTX_TX_OFFLOAD_OL3_OL4_CSUM_F)]
[!!(edev->tx_offload_flags & OCCTX_TX_OFFLOAD_L3_L4_CSUM_F)]
[!!(edev->tx_offload_flags & OCCTX_TX_MULTI_SEG_F)];
dev->txa_enqueue_same_dest = dev->txa_enqueue;
/* Assigning dequeue func pointers */
const event_dequeue_t ssow_deq[2][2][2] = {
#define R(name, f2, f1, f0, flags) \
[f2][f1][f0] = ssows_deq_ ##name,
SSO_RX_ADPTR_ENQ_FASTPATH_FUNC
#undef R
};
dev->dequeue = ssow_deq
[!!(edev->rx_offload_flags & OCCTX_RX_VLAN_FLTR_F)]
[!!(edev->rx_offload_flags & OCCTX_RX_OFFLOAD_CSUM_F)]
[!!(edev->rx_offload_flags & OCCTX_RX_MULTI_SEG_F)];
const event_dequeue_burst_t ssow_deq_burst[2][2][2] = {
#define R(name, f2, f1, f0, flags) \
[f2][f1][f0] = ssows_deq_burst_ ##name,
SSO_RX_ADPTR_ENQ_FASTPATH_FUNC
#undef R
};
dev->dequeue_burst = ssow_deq_burst
[!!(edev->rx_offload_flags & OCCTX_RX_VLAN_FLTR_F)]
[!!(edev->rx_offload_flags & OCCTX_RX_OFFLOAD_CSUM_F)]
[!!(edev->rx_offload_flags & OCCTX_RX_MULTI_SEG_F)];
if (edev->is_timeout_deq) {
const event_dequeue_t ssow_deq_timeout[2][2][2] = {
#define R(name, f2, f1, f0, flags) \
[f2][f1][f0] = ssows_deq_timeout_ ##name,
SSO_RX_ADPTR_ENQ_FASTPATH_FUNC
#undef R
};
dev->dequeue = ssow_deq_timeout
[!!(edev->rx_offload_flags & OCCTX_RX_VLAN_FLTR_F)]
[!!(edev->rx_offload_flags & OCCTX_RX_OFFLOAD_CSUM_F)]
[!!(edev->rx_offload_flags & OCCTX_RX_MULTI_SEG_F)];
const event_dequeue_burst_t ssow_deq_timeout_burst[2][2][2] = {
#define R(name, f2, f1, f0, flags) \
[f2][f1][f0] = ssows_deq_timeout_burst_ ##name,
SSO_RX_ADPTR_ENQ_FASTPATH_FUNC
#undef R
};
dev->dequeue_burst = ssow_deq_timeout_burst
[!!(edev->rx_offload_flags & OCCTX_RX_VLAN_FLTR_F)]
[!!(edev->rx_offload_flags & OCCTX_RX_OFFLOAD_CSUM_F)]
[!!(edev->rx_offload_flags & OCCTX_RX_MULTI_SEG_F)];
}
}
static void
octeontx_create_rx_ol_flags_array(void *mem)
{
uint16_t idx, errcode, errlev;
uint32_t val, *ol_flags;
/* Skip ptype array memory */
ol_flags = (uint32_t *)mem;
for (idx = 0; idx < BIT(ERRCODE_ERRLEN_WIDTH); idx++) {
errcode = idx & 0xff;
errlev = (idx & 0x700) >> 8;
val = RTE_MBUF_F_RX_IP_CKSUM_UNKNOWN;
val |= RTE_MBUF_F_RX_L4_CKSUM_UNKNOWN;
val |= RTE_MBUF_F_RX_OUTER_L4_CKSUM_UNKNOWN;
switch (errlev) {
case OCCTX_ERRLEV_RE:
if (errcode) {
val |= RTE_MBUF_F_RX_IP_CKSUM_BAD;
val |= RTE_MBUF_F_RX_L4_CKSUM_BAD;
} else {
val |= RTE_MBUF_F_RX_IP_CKSUM_GOOD;
val |= RTE_MBUF_F_RX_L4_CKSUM_GOOD;
}
break;
case OCCTX_ERRLEV_LC:
if (errcode == OCCTX_EC_IP4_CSUM) {
val |= RTE_MBUF_F_RX_IP_CKSUM_BAD;
val |= RTE_MBUF_F_RX_OUTER_IP_CKSUM_BAD;
} else {
val |= RTE_MBUF_F_RX_IP_CKSUM_GOOD;
}
break;
case OCCTX_ERRLEV_LD:
/* Check if parsed packet is neither IPv4 or IPV6 */
if (errcode == OCCTX_EC_IP4_NOT)
break;
val |= RTE_MBUF_F_RX_IP_CKSUM_GOOD;
if (errcode == OCCTX_EC_L4_CSUM)
val |= RTE_MBUF_F_RX_OUTER_L4_CKSUM_BAD;
else
val |= RTE_MBUF_F_RX_L4_CKSUM_GOOD;
break;
case OCCTX_ERRLEV_LE:
if (errcode == OCCTX_EC_IP4_CSUM)
val |= RTE_MBUF_F_RX_IP_CKSUM_BAD;
else
val |= RTE_MBUF_F_RX_IP_CKSUM_GOOD;
break;
case OCCTX_ERRLEV_LF:
/* Check if parsed packet is neither IPv4 or IPV6 */
if (errcode == OCCTX_EC_IP4_NOT)
break;
val |= RTE_MBUF_F_RX_IP_CKSUM_GOOD;
if (errcode == OCCTX_EC_L4_CSUM)
val |= RTE_MBUF_F_RX_L4_CKSUM_BAD;
else
val |= RTE_MBUF_F_RX_L4_CKSUM_GOOD;
break;
}
ol_flags[idx] = val;
}
}
void *
octeontx_fastpath_lookup_mem_get(void)
{
const char name[] = OCCTX_FASTPATH_LOOKUP_MEM;
const struct rte_memzone *mz;
void *mem;
mz = rte_memzone_lookup(name);
if (mz != NULL)
return mz->addr;
/* Request for the first time */
mz = rte_memzone_reserve_aligned(name, LOOKUP_ARRAY_SZ,
SOCKET_ID_ANY, 0, OCCTX_ALIGN);
if (mz != NULL) {
mem = mz->addr;
/* Form the rx ol_flags based on errcode */
octeontx_create_rx_ol_flags_array(mem);
return mem;
}
return NULL;
}