f-stack/dpdk/drivers/baseband/acc100/rte_acc100_pmd.c

4808 lines
140 KiB
C

/* SPDX-License-Identifier: BSD-3-Clause
* Copyright(c) 2020 Intel Corporation
*/
#include <unistd.h>
#include <rte_common.h>
#include <rte_log.h>
#include <rte_dev.h>
#include <rte_malloc.h>
#include <rte_mempool.h>
#include <rte_byteorder.h>
#include <rte_errno.h>
#include <rte_branch_prediction.h>
#include <rte_hexdump.h>
#include <rte_pci.h>
#include <rte_bus_pci.h>
#ifdef RTE_BBDEV_OFFLOAD_COST
#include <rte_cycles.h>
#endif
#include <rte_bbdev.h>
#include <rte_bbdev_pmd.h>
#include "rte_acc100_pmd.h"
#ifdef RTE_LIBRTE_BBDEV_DEBUG
RTE_LOG_REGISTER_DEFAULT(acc100_logtype, DEBUG);
#else
RTE_LOG_REGISTER_DEFAULT(acc100_logtype, NOTICE);
#endif
/* Write to MMIO register address */
static inline void
mmio_write(void *addr, uint32_t value)
{
*((volatile uint32_t *)(addr)) = rte_cpu_to_le_32(value);
}
/* Write a register of a ACC100 device */
static inline void
acc100_reg_write(struct acc100_device *d, uint32_t offset, uint32_t value)
{
void *reg_addr = RTE_PTR_ADD(d->mmio_base, offset);
mmio_write(reg_addr, value);
usleep(ACC100_LONG_WAIT);
}
/* Read a register of a ACC100 device */
static inline uint32_t
acc100_reg_read(struct acc100_device *d, uint32_t offset)
{
void *reg_addr = RTE_PTR_ADD(d->mmio_base, offset);
uint32_t ret = *((volatile uint32_t *)(reg_addr));
return rte_le_to_cpu_32(ret);
}
/* Basic Implementation of Log2 for exact 2^N */
static inline uint32_t
log2_basic(uint32_t value)
{
return (value == 0) ? 0 : rte_bsf32(value);
}
/* Calculate memory alignment offset assuming alignment is 2^N */
static inline uint32_t
calc_mem_alignment_offset(void *unaligned_virt_mem, uint32_t alignment)
{
rte_iova_t unaligned_phy_mem = rte_malloc_virt2iova(unaligned_virt_mem);
return (uint32_t)(alignment -
(unaligned_phy_mem & (alignment-1)));
}
/* Calculate the offset of the enqueue register */
static inline uint32_t
queue_offset(bool pf_device, uint8_t vf_id, uint8_t qgrp_id, uint16_t aq_id)
{
if (pf_device)
return ((vf_id << 12) + (qgrp_id << 7) + (aq_id << 3) +
HWPfQmgrIngressAq);
else
return ((qgrp_id << 7) + (aq_id << 3) +
HWVfQmgrIngressAq);
}
enum {UL_4G = 0, UL_5G, DL_4G, DL_5G, NUM_ACC};
/* Return the accelerator enum for a Queue Group Index */
static inline int
accFromQgid(int qg_idx, const struct rte_acc100_conf *acc100_conf)
{
int accQg[ACC100_NUM_QGRPS];
int NumQGroupsPerFn[NUM_ACC];
int acc, qgIdx, qgIndex = 0;
for (qgIdx = 0; qgIdx < ACC100_NUM_QGRPS; qgIdx++)
accQg[qgIdx] = 0;
NumQGroupsPerFn[UL_4G] = acc100_conf->q_ul_4g.num_qgroups;
NumQGroupsPerFn[UL_5G] = acc100_conf->q_ul_5g.num_qgroups;
NumQGroupsPerFn[DL_4G] = acc100_conf->q_dl_4g.num_qgroups;
NumQGroupsPerFn[DL_5G] = acc100_conf->q_dl_5g.num_qgroups;
for (acc = UL_4G; acc < NUM_ACC; acc++)
for (qgIdx = 0; qgIdx < NumQGroupsPerFn[acc]; qgIdx++)
accQg[qgIndex++] = acc;
acc = accQg[qg_idx];
return acc;
}
/* Return the queue topology for a Queue Group Index */
static inline void
qtopFromAcc(struct rte_acc100_queue_topology **qtop, int acc_enum,
struct rte_acc100_conf *acc100_conf)
{
struct rte_acc100_queue_topology *p_qtop;
p_qtop = NULL;
switch (acc_enum) {
case UL_4G:
p_qtop = &(acc100_conf->q_ul_4g);
break;
case UL_5G:
p_qtop = &(acc100_conf->q_ul_5g);
break;
case DL_4G:
p_qtop = &(acc100_conf->q_dl_4g);
break;
case DL_5G:
p_qtop = &(acc100_conf->q_dl_5g);
break;
default:
/* NOTREACHED */
rte_bbdev_log(ERR, "Unexpected error evaluating qtopFromAcc");
break;
}
*qtop = p_qtop;
}
/* Return the AQ depth for a Queue Group Index */
static inline int
aqDepth(int qg_idx, struct rte_acc100_conf *acc100_conf)
{
struct rte_acc100_queue_topology *q_top = NULL;
int acc_enum = accFromQgid(qg_idx, acc100_conf);
qtopFromAcc(&q_top, acc_enum, acc100_conf);
if (unlikely(q_top == NULL))
return 1;
return RTE_MAX(1, q_top->aq_depth_log2);
}
/* Return the AQ depth for a Queue Group Index */
static inline int
aqNum(int qg_idx, struct rte_acc100_conf *acc100_conf)
{
struct rte_acc100_queue_topology *q_top = NULL;
int acc_enum = accFromQgid(qg_idx, acc100_conf);
qtopFromAcc(&q_top, acc_enum, acc100_conf);
if (unlikely(q_top == NULL))
return 0;
return q_top->num_aqs_per_groups;
}
static void
initQTop(struct rte_acc100_conf *acc100_conf)
{
acc100_conf->q_ul_4g.num_aqs_per_groups = 0;
acc100_conf->q_ul_4g.num_qgroups = 0;
acc100_conf->q_ul_4g.first_qgroup_index = -1;
acc100_conf->q_ul_5g.num_aqs_per_groups = 0;
acc100_conf->q_ul_5g.num_qgroups = 0;
acc100_conf->q_ul_5g.first_qgroup_index = -1;
acc100_conf->q_dl_4g.num_aqs_per_groups = 0;
acc100_conf->q_dl_4g.num_qgroups = 0;
acc100_conf->q_dl_4g.first_qgroup_index = -1;
acc100_conf->q_dl_5g.num_aqs_per_groups = 0;
acc100_conf->q_dl_5g.num_qgroups = 0;
acc100_conf->q_dl_5g.first_qgroup_index = -1;
}
static inline void
updateQtop(uint8_t acc, uint8_t qg, struct rte_acc100_conf *acc100_conf,
struct acc100_device *d) {
uint32_t reg;
struct rte_acc100_queue_topology *q_top = NULL;
qtopFromAcc(&q_top, acc, acc100_conf);
if (unlikely(q_top == NULL))
return;
uint16_t aq;
q_top->num_qgroups++;
if (q_top->first_qgroup_index == -1) {
q_top->first_qgroup_index = qg;
/* Can be optimized to assume all are enabled by default */
reg = acc100_reg_read(d, queue_offset(d->pf_device,
0, qg, ACC100_NUM_AQS - 1));
if (reg & ACC100_QUEUE_ENABLE) {
q_top->num_aqs_per_groups = ACC100_NUM_AQS;
return;
}
q_top->num_aqs_per_groups = 0;
for (aq = 0; aq < ACC100_NUM_AQS; aq++) {
reg = acc100_reg_read(d, queue_offset(d->pf_device,
0, qg, aq));
if (reg & ACC100_QUEUE_ENABLE)
q_top->num_aqs_per_groups++;
}
}
}
/* Fetch configuration enabled for the PF/VF using MMIO Read (slow) */
static inline void
fetch_acc100_config(struct rte_bbdev *dev)
{
struct acc100_device *d = dev->data->dev_private;
struct rte_acc100_conf *acc100_conf = &d->acc100_conf;
const struct acc100_registry_addr *reg_addr;
uint8_t acc, qg;
uint32_t reg, reg_aq, reg_len0, reg_len1;
uint32_t reg_mode;
/* No need to retrieve the configuration is already done */
if (d->configured)
return;
/* Choose correct registry addresses for the device type */
if (d->pf_device)
reg_addr = &pf_reg_addr;
else
reg_addr = &vf_reg_addr;
d->ddr_size = (1 + acc100_reg_read(d, reg_addr->ddr_range)) << 10;
/* Single VF Bundle by VF */
acc100_conf->num_vf_bundles = 1;
initQTop(acc100_conf);
struct rte_acc100_queue_topology *q_top = NULL;
int qman_func_id[ACC100_NUM_ACCS] = {ACC100_ACCMAP_0, ACC100_ACCMAP_1,
ACC100_ACCMAP_2, ACC100_ACCMAP_3, ACC100_ACCMAP_4};
reg = acc100_reg_read(d, reg_addr->qman_group_func);
for (qg = 0; qg < ACC100_NUM_QGRPS_PER_WORD; qg++) {
reg_aq = acc100_reg_read(d,
queue_offset(d->pf_device, 0, qg, 0));
if (reg_aq & ACC100_QUEUE_ENABLE) {
uint32_t idx = (reg >> (qg * 4)) & 0x7;
if (idx < ACC100_NUM_ACCS) {
acc = qman_func_id[idx];
updateQtop(acc, qg, acc100_conf, d);
}
}
}
/* Check the depth of the AQs*/
reg_len0 = acc100_reg_read(d, reg_addr->depth_log0_offset);
reg_len1 = acc100_reg_read(d, reg_addr->depth_log1_offset);
for (acc = 0; acc < NUM_ACC; acc++) {
qtopFromAcc(&q_top, acc, acc100_conf);
if (q_top->first_qgroup_index < ACC100_NUM_QGRPS_PER_WORD)
q_top->aq_depth_log2 = (reg_len0 >>
(q_top->first_qgroup_index * 4))
& 0xF;
else
q_top->aq_depth_log2 = (reg_len1 >>
((q_top->first_qgroup_index -
ACC100_NUM_QGRPS_PER_WORD) * 4))
& 0xF;
}
/* Read PF mode */
if (d->pf_device) {
reg_mode = acc100_reg_read(d, HWPfHiPfMode);
acc100_conf->pf_mode_en = (reg_mode == ACC100_PF_VAL) ? 1 : 0;
}
rte_bbdev_log_debug(
"%s Config LLR SIGN IN/OUT %s %s QG %u %u %u %u AQ %u %u %u %u Len %u %u %u %u\n",
(d->pf_device) ? "PF" : "VF",
(acc100_conf->input_pos_llr_1_bit) ? "POS" : "NEG",
(acc100_conf->output_pos_llr_1_bit) ? "POS" : "NEG",
acc100_conf->q_ul_4g.num_qgroups,
acc100_conf->q_dl_4g.num_qgroups,
acc100_conf->q_ul_5g.num_qgroups,
acc100_conf->q_dl_5g.num_qgroups,
acc100_conf->q_ul_4g.num_aqs_per_groups,
acc100_conf->q_dl_4g.num_aqs_per_groups,
acc100_conf->q_ul_5g.num_aqs_per_groups,
acc100_conf->q_dl_5g.num_aqs_per_groups,
acc100_conf->q_ul_4g.aq_depth_log2,
acc100_conf->q_dl_4g.aq_depth_log2,
acc100_conf->q_ul_5g.aq_depth_log2,
acc100_conf->q_dl_5g.aq_depth_log2);
}
static void
free_base_addresses(void **base_addrs, int size)
{
int i;
for (i = 0; i < size; i++)
rte_free(base_addrs[i]);
}
static inline uint32_t
get_desc_len(void)
{
return sizeof(union acc100_dma_desc);
}
/* Allocate the 2 * 64MB block for the sw rings */
static int
alloc_2x64mb_sw_rings_mem(struct rte_bbdev *dev, struct acc100_device *d,
int socket)
{
uint32_t sw_ring_size = ACC100_SIZE_64MBYTE;
d->sw_rings_base = rte_zmalloc_socket(dev->device->driver->name,
2 * sw_ring_size, RTE_CACHE_LINE_SIZE, socket);
if (d->sw_rings_base == NULL) {
rte_bbdev_log(ERR, "Failed to allocate memory for %s:%u",
dev->device->driver->name,
dev->data->dev_id);
return -ENOMEM;
}
uint32_t next_64mb_align_offset = calc_mem_alignment_offset(
d->sw_rings_base, ACC100_SIZE_64MBYTE);
d->sw_rings = RTE_PTR_ADD(d->sw_rings_base, next_64mb_align_offset);
d->sw_rings_iova = rte_malloc_virt2iova(d->sw_rings_base) +
next_64mb_align_offset;
d->sw_ring_size = ACC100_MAX_QUEUE_DEPTH * get_desc_len();
d->sw_ring_max_depth = ACC100_MAX_QUEUE_DEPTH;
return 0;
}
/* Attempt to allocate minimised memory space for sw rings */
static void
alloc_sw_rings_min_mem(struct rte_bbdev *dev, struct acc100_device *d,
uint16_t num_queues, int socket)
{
rte_iova_t sw_rings_base_iova, next_64mb_align_addr_iova;
uint32_t next_64mb_align_offset;
rte_iova_t sw_ring_iova_end_addr;
void *base_addrs[ACC100_SW_RING_MEM_ALLOC_ATTEMPTS];
void *sw_rings_base;
int i = 0;
uint32_t q_sw_ring_size = ACC100_MAX_QUEUE_DEPTH * get_desc_len();
uint32_t dev_sw_ring_size = q_sw_ring_size * num_queues;
/* Find an aligned block of memory to store sw rings */
while (i < ACC100_SW_RING_MEM_ALLOC_ATTEMPTS) {
/*
* sw_ring allocated memory is guaranteed to be aligned to
* q_sw_ring_size at the condition that the requested size is
* less than the page size
*/
sw_rings_base = rte_zmalloc_socket(
dev->device->driver->name,
dev_sw_ring_size, q_sw_ring_size, socket);
if (sw_rings_base == NULL) {
rte_bbdev_log(ERR,
"Failed to allocate memory for %s:%u",
dev->device->driver->name,
dev->data->dev_id);
break;
}
sw_rings_base_iova = rte_malloc_virt2iova(sw_rings_base);
next_64mb_align_offset = calc_mem_alignment_offset(
sw_rings_base, ACC100_SIZE_64MBYTE);
next_64mb_align_addr_iova = sw_rings_base_iova +
next_64mb_align_offset;
sw_ring_iova_end_addr = sw_rings_base_iova + dev_sw_ring_size;
/* Check if the end of the sw ring memory block is before the
* start of next 64MB aligned mem address
*/
if (sw_ring_iova_end_addr < next_64mb_align_addr_iova) {
d->sw_rings_iova = sw_rings_base_iova;
d->sw_rings = sw_rings_base;
d->sw_rings_base = sw_rings_base;
d->sw_ring_size = q_sw_ring_size;
d->sw_ring_max_depth = ACC100_MAX_QUEUE_DEPTH;
break;
}
/* Store the address of the unaligned mem block */
base_addrs[i] = sw_rings_base;
i++;
}
/* Free all unaligned blocks of mem allocated in the loop */
free_base_addresses(base_addrs, i);
}
/*
* Find queue_id of a device queue based on details from the Info Ring.
* If a queue isn't found UINT16_MAX is returned.
*/
static inline uint16_t
get_queue_id_from_ring_info(struct rte_bbdev_data *data,
const union acc100_info_ring_data ring_data)
{
uint16_t queue_id;
for (queue_id = 0; queue_id < data->num_queues; ++queue_id) {
struct acc100_queue *acc100_q =
data->queues[queue_id].queue_private;
if (acc100_q != NULL && acc100_q->aq_id == ring_data.aq_id &&
acc100_q->qgrp_id == ring_data.qg_id &&
acc100_q->vf_id == ring_data.vf_id)
return queue_id;
}
return UINT16_MAX;
}
/* Checks PF Info Ring to find the interrupt cause and handles it accordingly */
static inline void
acc100_check_ir(struct acc100_device *acc100_dev)
{
volatile union acc100_info_ring_data *ring_data;
uint16_t info_ring_head = acc100_dev->info_ring_head;
if (acc100_dev->info_ring == NULL)
return;
ring_data = acc100_dev->info_ring + (acc100_dev->info_ring_head &
ACC100_INFO_RING_MASK);
while (ring_data->valid) {
if ((ring_data->int_nb < ACC100_PF_INT_DMA_DL_DESC_IRQ) || (
ring_data->int_nb >
ACC100_PF_INT_DMA_DL5G_DESC_IRQ))
rte_bbdev_log(WARNING, "InfoRing: ITR:%d Info:0x%x",
ring_data->int_nb, ring_data->detailed_info);
/* Initialize Info Ring entry and move forward */
ring_data->val = 0;
info_ring_head++;
ring_data = acc100_dev->info_ring +
(info_ring_head & ACC100_INFO_RING_MASK);
}
}
/* Checks PF Info Ring to find the interrupt cause and handles it accordingly */
static inline void
acc100_pf_interrupt_handler(struct rte_bbdev *dev)
{
struct acc100_device *acc100_dev = dev->data->dev_private;
volatile union acc100_info_ring_data *ring_data;
struct acc100_deq_intr_details deq_intr_det;
ring_data = acc100_dev->info_ring + (acc100_dev->info_ring_head &
ACC100_INFO_RING_MASK);
while (ring_data->valid) {
rte_bbdev_log_debug(
"ACC100 PF Interrupt received, Info Ring data: 0x%x",
ring_data->val);
switch (ring_data->int_nb) {
case ACC100_PF_INT_DMA_DL_DESC_IRQ:
case ACC100_PF_INT_DMA_UL_DESC_IRQ:
case ACC100_PF_INT_DMA_UL5G_DESC_IRQ:
case ACC100_PF_INT_DMA_DL5G_DESC_IRQ:
deq_intr_det.queue_id = get_queue_id_from_ring_info(
dev->data, *ring_data);
if (deq_intr_det.queue_id == UINT16_MAX) {
rte_bbdev_log(ERR,
"Couldn't find queue: aq_id: %u, qg_id: %u, vf_id: %u",
ring_data->aq_id,
ring_data->qg_id,
ring_data->vf_id);
return;
}
rte_bbdev_pmd_callback_process(dev,
RTE_BBDEV_EVENT_DEQUEUE, &deq_intr_det);
break;
default:
rte_bbdev_pmd_callback_process(dev,
RTE_BBDEV_EVENT_ERROR, NULL);
break;
}
/* Initialize Info Ring entry and move forward */
ring_data->val = 0;
++acc100_dev->info_ring_head;
ring_data = acc100_dev->info_ring +
(acc100_dev->info_ring_head &
ACC100_INFO_RING_MASK);
}
}
/* Checks VF Info Ring to find the interrupt cause and handles it accordingly */
static inline void
acc100_vf_interrupt_handler(struct rte_bbdev *dev)
{
struct acc100_device *acc100_dev = dev->data->dev_private;
volatile union acc100_info_ring_data *ring_data;
struct acc100_deq_intr_details deq_intr_det;
ring_data = acc100_dev->info_ring + (acc100_dev->info_ring_head &
ACC100_INFO_RING_MASK);
while (ring_data->valid) {
rte_bbdev_log_debug(
"ACC100 VF Interrupt received, Info Ring data: 0x%x",
ring_data->val);
switch (ring_data->int_nb) {
case ACC100_VF_INT_DMA_DL_DESC_IRQ:
case ACC100_VF_INT_DMA_UL_DESC_IRQ:
case ACC100_VF_INT_DMA_UL5G_DESC_IRQ:
case ACC100_VF_INT_DMA_DL5G_DESC_IRQ:
/* VFs are not aware of their vf_id - it's set to 0 in
* queue structures.
*/
ring_data->vf_id = 0;
deq_intr_det.queue_id = get_queue_id_from_ring_info(
dev->data, *ring_data);
if (deq_intr_det.queue_id == UINT16_MAX) {
rte_bbdev_log(ERR,
"Couldn't find queue: aq_id: %u, qg_id: %u",
ring_data->aq_id,
ring_data->qg_id);
return;
}
rte_bbdev_pmd_callback_process(dev,
RTE_BBDEV_EVENT_DEQUEUE, &deq_intr_det);
break;
default:
rte_bbdev_pmd_callback_process(dev,
RTE_BBDEV_EVENT_ERROR, NULL);
break;
}
/* Initialize Info Ring entry and move forward */
ring_data->valid = 0;
++acc100_dev->info_ring_head;
ring_data = acc100_dev->info_ring + (acc100_dev->info_ring_head
& ACC100_INFO_RING_MASK);
}
}
/* Interrupt handler triggered by ACC100 dev for handling specific interrupt */
static void
acc100_dev_interrupt_handler(void *cb_arg)
{
struct rte_bbdev *dev = cb_arg;
struct acc100_device *acc100_dev = dev->data->dev_private;
/* Read info ring */
if (acc100_dev->pf_device)
acc100_pf_interrupt_handler(dev);
else
acc100_vf_interrupt_handler(dev);
}
/* Allocate and setup inforing */
static int
allocate_info_ring(struct rte_bbdev *dev)
{
struct acc100_device *d = dev->data->dev_private;
const struct acc100_registry_addr *reg_addr;
rte_iova_t info_ring_iova;
uint32_t phys_low, phys_high;
if (d->info_ring != NULL)
return 0; /* Already configured */
/* Choose correct registry addresses for the device type */
if (d->pf_device)
reg_addr = &pf_reg_addr;
else
reg_addr = &vf_reg_addr;
/* Allocate InfoRing */
d->info_ring = rte_zmalloc_socket("Info Ring",
ACC100_INFO_RING_NUM_ENTRIES *
sizeof(*d->info_ring), RTE_CACHE_LINE_SIZE,
dev->data->socket_id);
if (d->info_ring == NULL) {
rte_bbdev_log(ERR,
"Failed to allocate Info Ring for %s:%u",
dev->device->driver->name,
dev->data->dev_id);
return -ENOMEM;
}
info_ring_iova = rte_malloc_virt2iova(d->info_ring);
/* Setup Info Ring */
phys_high = (uint32_t)(info_ring_iova >> 32);
phys_low = (uint32_t)(info_ring_iova);
acc100_reg_write(d, reg_addr->info_ring_hi, phys_high);
acc100_reg_write(d, reg_addr->info_ring_lo, phys_low);
acc100_reg_write(d, reg_addr->info_ring_en, ACC100_REG_IRQ_EN_ALL);
d->info_ring_head = (acc100_reg_read(d, reg_addr->info_ring_ptr) &
0xFFF) / sizeof(union acc100_info_ring_data);
return 0;
}
/* Allocate 64MB memory used for all software rings */
static int
acc100_setup_queues(struct rte_bbdev *dev, uint16_t num_queues, int socket_id)
{
uint32_t phys_low, phys_high, value;
struct acc100_device *d = dev->data->dev_private;
const struct acc100_registry_addr *reg_addr;
int ret;
if (d->pf_device && !d->acc100_conf.pf_mode_en) {
rte_bbdev_log(NOTICE,
"%s has PF mode disabled. This PF can't be used.",
dev->data->name);
return -ENODEV;
}
alloc_sw_rings_min_mem(dev, d, num_queues, socket_id);
/* If minimal memory space approach failed, then allocate
* the 2 * 64MB block for the sw rings
*/
if (d->sw_rings == NULL)
alloc_2x64mb_sw_rings_mem(dev, d, socket_id);
if (d->sw_rings == NULL) {
rte_bbdev_log(NOTICE,
"Failure allocating sw_rings memory");
return -ENODEV;
}
/* Configure ACC100 with the base address for DMA descriptor rings
* Same descriptor rings used for UL and DL DMA Engines
* Note : Assuming only VF0 bundle is used for PF mode
*/
phys_high = (uint32_t)(d->sw_rings_iova >> 32);
phys_low = (uint32_t)(d->sw_rings_iova & ~(ACC100_SIZE_64MBYTE-1));
/* Choose correct registry addresses for the device type */
if (d->pf_device)
reg_addr = &pf_reg_addr;
else
reg_addr = &vf_reg_addr;
/* Read the populated cfg from ACC100 registers */
fetch_acc100_config(dev);
/* Release AXI from PF */
if (d->pf_device)
acc100_reg_write(d, HWPfDmaAxiControl, 1);
acc100_reg_write(d, reg_addr->dma_ring_ul5g_hi, phys_high);
acc100_reg_write(d, reg_addr->dma_ring_ul5g_lo, phys_low);
acc100_reg_write(d, reg_addr->dma_ring_dl5g_hi, phys_high);
acc100_reg_write(d, reg_addr->dma_ring_dl5g_lo, phys_low);
acc100_reg_write(d, reg_addr->dma_ring_ul4g_hi, phys_high);
acc100_reg_write(d, reg_addr->dma_ring_ul4g_lo, phys_low);
acc100_reg_write(d, reg_addr->dma_ring_dl4g_hi, phys_high);
acc100_reg_write(d, reg_addr->dma_ring_dl4g_lo, phys_low);
/*
* Configure Ring Size to the max queue ring size
* (used for wrapping purpose)
*/
value = log2_basic(d->sw_ring_size / 64);
acc100_reg_write(d, reg_addr->ring_size, value);
/* Configure tail pointer for use when SDONE enabled */
d->tail_ptrs = rte_zmalloc_socket(
dev->device->driver->name,
ACC100_NUM_QGRPS * ACC100_NUM_AQS * sizeof(uint32_t),
RTE_CACHE_LINE_SIZE, socket_id);
if (d->tail_ptrs == NULL) {
rte_bbdev_log(ERR, "Failed to allocate tail ptr for %s:%u",
dev->device->driver->name,
dev->data->dev_id);
rte_free(d->sw_rings);
return -ENOMEM;
}
d->tail_ptr_iova = rte_malloc_virt2iova(d->tail_ptrs);
phys_high = (uint32_t)(d->tail_ptr_iova >> 32);
phys_low = (uint32_t)(d->tail_ptr_iova);
acc100_reg_write(d, reg_addr->tail_ptrs_ul5g_hi, phys_high);
acc100_reg_write(d, reg_addr->tail_ptrs_ul5g_lo, phys_low);
acc100_reg_write(d, reg_addr->tail_ptrs_dl5g_hi, phys_high);
acc100_reg_write(d, reg_addr->tail_ptrs_dl5g_lo, phys_low);
acc100_reg_write(d, reg_addr->tail_ptrs_ul4g_hi, phys_high);
acc100_reg_write(d, reg_addr->tail_ptrs_ul4g_lo, phys_low);
acc100_reg_write(d, reg_addr->tail_ptrs_dl4g_hi, phys_high);
acc100_reg_write(d, reg_addr->tail_ptrs_dl4g_lo, phys_low);
ret = allocate_info_ring(dev);
if (ret < 0) {
rte_bbdev_log(ERR, "Failed to allocate info_ring for %s:%u",
dev->device->driver->name,
dev->data->dev_id);
/* Continue */
}
d->harq_layout = rte_zmalloc_socket("HARQ Layout",
ACC100_HARQ_LAYOUT * sizeof(*d->harq_layout),
RTE_CACHE_LINE_SIZE, dev->data->socket_id);
if (d->harq_layout == NULL) {
rte_bbdev_log(ERR, "Failed to allocate harq_layout for %s:%u",
dev->device->driver->name,
dev->data->dev_id);
rte_free(d->sw_rings);
return -ENOMEM;
}
/* Mark as configured properly */
d->configured = true;
rte_bbdev_log_debug(
"ACC100 (%s) configured sw_rings = %p, sw_rings_iova = %#"
PRIx64, dev->data->name, d->sw_rings, d->sw_rings_iova);
return 0;
}
static int
acc100_intr_enable(struct rte_bbdev *dev)
{
int ret;
struct acc100_device *d = dev->data->dev_private;
/* Only MSI are currently supported */
if (rte_intr_type_get(dev->intr_handle) == RTE_INTR_HANDLE_VFIO_MSI ||
rte_intr_type_get(dev->intr_handle) == RTE_INTR_HANDLE_UIO) {
ret = allocate_info_ring(dev);
if (ret < 0) {
rte_bbdev_log(ERR,
"Couldn't allocate info ring for device: %s",
dev->data->name);
return ret;
}
ret = rte_intr_enable(dev->intr_handle);
if (ret < 0) {
rte_bbdev_log(ERR,
"Couldn't enable interrupts for device: %s",
dev->data->name);
rte_free(d->info_ring);
return ret;
}
ret = rte_intr_callback_register(dev->intr_handle,
acc100_dev_interrupt_handler, dev);
if (ret < 0) {
rte_bbdev_log(ERR,
"Couldn't register interrupt callback for device: %s",
dev->data->name);
rte_free(d->info_ring);
return ret;
}
return 0;
}
rte_bbdev_log(ERR, "ACC100 (%s) supports only VFIO MSI interrupts",
dev->data->name);
return -ENOTSUP;
}
/* Free memory used for software rings */
static int
acc100_dev_close(struct rte_bbdev *dev)
{
struct acc100_device *d = dev->data->dev_private;
acc100_check_ir(d);
if (d->sw_rings_base != NULL) {
rte_free(d->tail_ptrs);
rte_free(d->info_ring);
rte_free(d->sw_rings_base);
d->sw_rings_base = NULL;
}
/* Ensure all in flight HW transactions are completed */
usleep(ACC100_LONG_WAIT);
return 0;
}
/**
* Report a ACC100 queue index which is free
* Return 0 to 16k for a valid queue_idx or -1 when no queue is available
* Note : Only supporting VF0 Bundle for PF mode
*/
static int
acc100_find_free_queue_idx(struct rte_bbdev *dev,
const struct rte_bbdev_queue_conf *conf)
{
struct acc100_device *d = dev->data->dev_private;
int op_2_acc[5] = {0, UL_4G, DL_4G, UL_5G, DL_5G};
int acc = op_2_acc[conf->op_type];
struct rte_acc100_queue_topology *qtop = NULL;
qtopFromAcc(&qtop, acc, &(d->acc100_conf));
if (qtop == NULL)
return -1;
/* Identify matching QGroup Index which are sorted in priority order */
uint16_t group_idx = qtop->first_qgroup_index;
group_idx += conf->priority;
if (group_idx >= ACC100_NUM_QGRPS ||
conf->priority >= qtop->num_qgroups) {
rte_bbdev_log(INFO, "Invalid Priority on %s, priority %u",
dev->data->name, conf->priority);
return -1;
}
/* Find a free AQ_idx */
uint16_t aq_idx;
for (aq_idx = 0; aq_idx < qtop->num_aqs_per_groups; aq_idx++) {
if (((d->q_assigned_bit_map[group_idx] >> aq_idx) & 0x1) == 0) {
/* Mark the Queue as assigned */
d->q_assigned_bit_map[group_idx] |= (1 << aq_idx);
/* Report the AQ Index */
return (group_idx << ACC100_GRP_ID_SHIFT) + aq_idx;
}
}
rte_bbdev_log(INFO, "Failed to find free queue on %s, priority %u",
dev->data->name, conf->priority);
return -1;
}
/* Setup ACC100 queue */
static int
acc100_queue_setup(struct rte_bbdev *dev, uint16_t queue_id,
const struct rte_bbdev_queue_conf *conf)
{
struct acc100_device *d = dev->data->dev_private;
struct acc100_queue *q;
int16_t q_idx;
/* Allocate the queue data structure. */
q = rte_zmalloc_socket(dev->device->driver->name, sizeof(*q),
RTE_CACHE_LINE_SIZE, conf->socket);
if (q == NULL) {
rte_bbdev_log(ERR, "Failed to allocate queue memory");
return -ENOMEM;
}
if (d == NULL) {
rte_bbdev_log(ERR, "Undefined device");
return -ENODEV;
}
q->d = d;
q->ring_addr = RTE_PTR_ADD(d->sw_rings, (d->sw_ring_size * queue_id));
q->ring_addr_iova = d->sw_rings_iova + (d->sw_ring_size * queue_id);
/* Prepare the Ring with default descriptor format */
union acc100_dma_desc *desc = NULL;
unsigned int desc_idx, b_idx;
int fcw_len = (conf->op_type == RTE_BBDEV_OP_LDPC_ENC ?
ACC100_FCW_LE_BLEN : (conf->op_type == RTE_BBDEV_OP_TURBO_DEC ?
ACC100_FCW_TD_BLEN : ACC100_FCW_LD_BLEN));
for (desc_idx = 0; desc_idx < d->sw_ring_max_depth; desc_idx++) {
desc = q->ring_addr + desc_idx;
desc->req.word0 = ACC100_DMA_DESC_TYPE;
desc->req.word1 = 0; /**< Timestamp */
desc->req.word2 = 0;
desc->req.word3 = 0;
uint64_t fcw_offset = (desc_idx << 8) + ACC100_DESC_FCW_OFFSET;
desc->req.data_ptrs[0].address = q->ring_addr_iova + fcw_offset;
desc->req.data_ptrs[0].blen = fcw_len;
desc->req.data_ptrs[0].blkid = ACC100_DMA_BLKID_FCW;
desc->req.data_ptrs[0].last = 0;
desc->req.data_ptrs[0].dma_ext = 0;
for (b_idx = 1; b_idx < ACC100_DMA_MAX_NUM_POINTERS - 1;
b_idx++) {
desc->req.data_ptrs[b_idx].blkid = ACC100_DMA_BLKID_IN;
desc->req.data_ptrs[b_idx].last = 1;
desc->req.data_ptrs[b_idx].dma_ext = 0;
b_idx++;
desc->req.data_ptrs[b_idx].blkid =
ACC100_DMA_BLKID_OUT_ENC;
desc->req.data_ptrs[b_idx].last = 1;
desc->req.data_ptrs[b_idx].dma_ext = 0;
}
/* Preset some fields of LDPC FCW */
desc->req.fcw_ld.FCWversion = ACC100_FCW_VER;
desc->req.fcw_ld.gain_i = 1;
desc->req.fcw_ld.gain_h = 1;
}
q->lb_in = rte_zmalloc_socket(dev->device->driver->name,
RTE_CACHE_LINE_SIZE,
RTE_CACHE_LINE_SIZE, conf->socket);
if (q->lb_in == NULL) {
rte_bbdev_log(ERR, "Failed to allocate lb_in memory");
rte_free(q);
return -ENOMEM;
}
q->lb_in_addr_iova = rte_malloc_virt2iova(q->lb_in);
q->lb_out = rte_zmalloc_socket(dev->device->driver->name,
RTE_CACHE_LINE_SIZE,
RTE_CACHE_LINE_SIZE, conf->socket);
if (q->lb_out == NULL) {
rte_bbdev_log(ERR, "Failed to allocate lb_out memory");
rte_free(q->lb_in);
rte_free(q);
return -ENOMEM;
}
q->lb_out_addr_iova = rte_malloc_virt2iova(q->lb_out);
/*
* Software queue ring wraps synchronously with the HW when it reaches
* the boundary of the maximum allocated queue size, no matter what the
* sw queue size is. This wrapping is guarded by setting the wrap_mask
* to represent the maximum queue size as allocated at the time when
* the device has been setup (in configure()).
*
* The queue depth is set to the queue size value (conf->queue_size).
* This limits the occupancy of the queue at any point of time, so that
* the queue does not get swamped with enqueue requests.
*/
q->sw_ring_depth = conf->queue_size;
q->sw_ring_wrap_mask = d->sw_ring_max_depth - 1;
q->op_type = conf->op_type;
q_idx = acc100_find_free_queue_idx(dev, conf);
if (q_idx == -1) {
rte_free(q->lb_in);
rte_free(q->lb_out);
rte_free(q);
return -1;
}
q->qgrp_id = (q_idx >> ACC100_GRP_ID_SHIFT) & 0xF;
q->vf_id = (q_idx >> ACC100_VF_ID_SHIFT) & 0x3F;
q->aq_id = q_idx & 0xF;
q->aq_depth = (conf->op_type == RTE_BBDEV_OP_TURBO_DEC) ?
(1 << d->acc100_conf.q_ul_4g.aq_depth_log2) :
(1 << d->acc100_conf.q_dl_4g.aq_depth_log2);
q->mmio_reg_enqueue = RTE_PTR_ADD(d->mmio_base,
queue_offset(d->pf_device,
q->vf_id, q->qgrp_id, q->aq_id));
rte_bbdev_log_debug(
"Setup dev%u q%u: qgrp_id=%u, vf_id=%u, aq_id=%u, aq_depth=%u, mmio_reg_enqueue=%p",
dev->data->dev_id, queue_id, q->qgrp_id, q->vf_id,
q->aq_id, q->aq_depth, q->mmio_reg_enqueue);
dev->data->queues[queue_id].queue_private = q;
return 0;
}
/* Release ACC100 queue */
static int
acc100_queue_release(struct rte_bbdev *dev, uint16_t q_id)
{
struct acc100_device *d = dev->data->dev_private;
struct acc100_queue *q = dev->data->queues[q_id].queue_private;
if (q != NULL) {
/* Mark the Queue as un-assigned */
d->q_assigned_bit_map[q->qgrp_id] &= (0xFFFFFFFF -
(1 << q->aq_id));
rte_free(q->lb_in);
rte_free(q->lb_out);
rte_free(q);
dev->data->queues[q_id].queue_private = NULL;
}
return 0;
}
/* Get ACC100 device info */
static void
acc100_dev_info_get(struct rte_bbdev *dev,
struct rte_bbdev_driver_info *dev_info)
{
struct acc100_device *d = dev->data->dev_private;
static const struct rte_bbdev_op_cap bbdev_capabilities[] = {
{
.type = RTE_BBDEV_OP_TURBO_DEC,
.cap.turbo_dec = {
.capability_flags =
RTE_BBDEV_TURBO_SUBBLOCK_DEINTERLEAVE |
RTE_BBDEV_TURBO_CRC_TYPE_24B |
RTE_BBDEV_TURBO_HALF_ITERATION_EVEN |
RTE_BBDEV_TURBO_EARLY_TERMINATION |
RTE_BBDEV_TURBO_DEC_INTERRUPTS |
RTE_BBDEV_TURBO_NEG_LLR_1_BIT_IN |
RTE_BBDEV_TURBO_MAP_DEC |
RTE_BBDEV_TURBO_DEC_TB_CRC_24B_KEEP |
RTE_BBDEV_TURBO_DEC_CRC_24B_DROP |
RTE_BBDEV_TURBO_DEC_SCATTER_GATHER,
.max_llr_modulus = INT8_MAX,
.num_buffers_src =
RTE_BBDEV_TURBO_MAX_CODE_BLOCKS,
.num_buffers_hard_out =
RTE_BBDEV_TURBO_MAX_CODE_BLOCKS,
.num_buffers_soft_out =
RTE_BBDEV_TURBO_MAX_CODE_BLOCKS,
}
},
{
.type = RTE_BBDEV_OP_TURBO_ENC,
.cap.turbo_enc = {
.capability_flags =
RTE_BBDEV_TURBO_CRC_24B_ATTACH |
RTE_BBDEV_TURBO_RV_INDEX_BYPASS |
RTE_BBDEV_TURBO_RATE_MATCH |
RTE_BBDEV_TURBO_ENC_INTERRUPTS |
RTE_BBDEV_TURBO_ENC_SCATTER_GATHER,
.num_buffers_src =
RTE_BBDEV_TURBO_MAX_CODE_BLOCKS,
.num_buffers_dst =
RTE_BBDEV_TURBO_MAX_CODE_BLOCKS,
}
},
{
.type = RTE_BBDEV_OP_LDPC_ENC,
.cap.ldpc_enc = {
.capability_flags =
RTE_BBDEV_LDPC_RATE_MATCH |
RTE_BBDEV_LDPC_CRC_24B_ATTACH |
RTE_BBDEV_LDPC_INTERLEAVER_BYPASS |
RTE_BBDEV_LDPC_ENC_INTERRUPTS,
.num_buffers_src =
RTE_BBDEV_LDPC_MAX_CODE_BLOCKS,
.num_buffers_dst =
RTE_BBDEV_LDPC_MAX_CODE_BLOCKS,
}
},
{
.type = RTE_BBDEV_OP_LDPC_DEC,
.cap.ldpc_dec = {
.capability_flags =
RTE_BBDEV_LDPC_CRC_TYPE_24B_CHECK |
RTE_BBDEV_LDPC_CRC_TYPE_24B_DROP |
RTE_BBDEV_LDPC_HQ_COMBINE_IN_ENABLE |
RTE_BBDEV_LDPC_HQ_COMBINE_OUT_ENABLE |
#ifdef ACC100_EXT_MEM
RTE_BBDEV_LDPC_INTERNAL_HARQ_MEMORY_LOOPBACK |
RTE_BBDEV_LDPC_INTERNAL_HARQ_MEMORY_IN_ENABLE |
RTE_BBDEV_LDPC_INTERNAL_HARQ_MEMORY_OUT_ENABLE |
#endif
RTE_BBDEV_LDPC_ITERATION_STOP_ENABLE |
RTE_BBDEV_LDPC_DEINTERLEAVER_BYPASS |
RTE_BBDEV_LDPC_DECODE_BYPASS |
RTE_BBDEV_LDPC_DEC_SCATTER_GATHER |
RTE_BBDEV_LDPC_HARQ_6BIT_COMPRESSION |
RTE_BBDEV_LDPC_LLR_COMPRESSION |
RTE_BBDEV_LDPC_DEC_INTERRUPTS,
.llr_size = 8,
.llr_decimals = 1,
.num_buffers_src =
RTE_BBDEV_LDPC_MAX_CODE_BLOCKS,
.num_buffers_hard_out =
RTE_BBDEV_LDPC_MAX_CODE_BLOCKS,
.num_buffers_soft_out = 0,
}
},
RTE_BBDEV_END_OF_CAPABILITIES_LIST()
};
static struct rte_bbdev_queue_conf default_queue_conf;
default_queue_conf.socket = dev->data->socket_id;
default_queue_conf.queue_size = ACC100_MAX_QUEUE_DEPTH;
dev_info->driver_name = dev->device->driver->name;
/* Read and save the populated config from ACC100 registers */
fetch_acc100_config(dev);
/* This isn't ideal because it reports the maximum number of queues but
* does not provide info on how many can be uplink/downlink or different
* priorities
*/
dev_info->max_num_queues =
d->acc100_conf.q_dl_5g.num_aqs_per_groups *
d->acc100_conf.q_dl_5g.num_qgroups +
d->acc100_conf.q_ul_5g.num_aqs_per_groups *
d->acc100_conf.q_ul_5g.num_qgroups +
d->acc100_conf.q_dl_4g.num_aqs_per_groups *
d->acc100_conf.q_dl_4g.num_qgroups +
d->acc100_conf.q_ul_4g.num_aqs_per_groups *
d->acc100_conf.q_ul_4g.num_qgroups;
dev_info->queue_size_lim = ACC100_MAX_QUEUE_DEPTH;
dev_info->hardware_accelerated = true;
dev_info->max_dl_queue_priority =
d->acc100_conf.q_dl_4g.num_qgroups - 1;
dev_info->max_ul_queue_priority =
d->acc100_conf.q_ul_4g.num_qgroups - 1;
dev_info->default_queue_conf = default_queue_conf;
dev_info->cpu_flag_reqs = NULL;
dev_info->min_alignment = 64;
dev_info->capabilities = bbdev_capabilities;
#ifdef ACC100_EXT_MEM
dev_info->harq_buffer_size = d->ddr_size;
#else
dev_info->harq_buffer_size = 0;
#endif
dev_info->data_endianness = RTE_LITTLE_ENDIAN;
acc100_check_ir(d);
}
static int
acc100_queue_intr_enable(struct rte_bbdev *dev, uint16_t queue_id)
{
struct acc100_queue *q = dev->data->queues[queue_id].queue_private;
if (rte_intr_type_get(dev->intr_handle) != RTE_INTR_HANDLE_VFIO_MSI &&
rte_intr_type_get(dev->intr_handle) != RTE_INTR_HANDLE_UIO)
return -ENOTSUP;
q->irq_enable = 1;
return 0;
}
static int
acc100_queue_intr_disable(struct rte_bbdev *dev, uint16_t queue_id)
{
struct acc100_queue *q = dev->data->queues[queue_id].queue_private;
if (rte_intr_type_get(dev->intr_handle) != RTE_INTR_HANDLE_VFIO_MSI &&
rte_intr_type_get(dev->intr_handle) != RTE_INTR_HANDLE_UIO)
return -ENOTSUP;
q->irq_enable = 0;
return 0;
}
static const struct rte_bbdev_ops acc100_bbdev_ops = {
.setup_queues = acc100_setup_queues,
.intr_enable = acc100_intr_enable,
.close = acc100_dev_close,
.info_get = acc100_dev_info_get,
.queue_setup = acc100_queue_setup,
.queue_release = acc100_queue_release,
.queue_intr_enable = acc100_queue_intr_enable,
.queue_intr_disable = acc100_queue_intr_disable
};
/* ACC100 PCI PF address map */
static struct rte_pci_id pci_id_acc100_pf_map[] = {
{
RTE_PCI_DEVICE(RTE_ACC100_VENDOR_ID, RTE_ACC100_PF_DEVICE_ID)
},
{.device_id = 0},
};
/* ACC100 PCI VF address map */
static struct rte_pci_id pci_id_acc100_vf_map[] = {
{
RTE_PCI_DEVICE(RTE_ACC100_VENDOR_ID, RTE_ACC100_VF_DEVICE_ID)
},
{.device_id = 0},
};
/* Read flag value 0/1 from bitmap */
static inline bool
check_bit(uint32_t bitmap, uint32_t bitmask)
{
return bitmap & bitmask;
}
static inline char *
mbuf_append(struct rte_mbuf *m_head, struct rte_mbuf *m, uint16_t len)
{
if (unlikely(len > rte_pktmbuf_tailroom(m)))
return NULL;
char *tail = (char *)m->buf_addr + m->data_off + m->data_len;
m->data_len = (uint16_t)(m->data_len + len);
m_head->pkt_len = (m_head->pkt_len + len);
return tail;
}
/* Fill in a frame control word for turbo encoding. */
static inline void
acc100_fcw_te_fill(const struct rte_bbdev_enc_op *op, struct acc100_fcw_te *fcw)
{
fcw->code_block_mode = op->turbo_enc.code_block_mode;
if (fcw->code_block_mode == RTE_BBDEV_TRANSPORT_BLOCK) {
fcw->k_neg = op->turbo_enc.tb_params.k_neg;
fcw->k_pos = op->turbo_enc.tb_params.k_pos;
fcw->c_neg = op->turbo_enc.tb_params.c_neg;
fcw->c = op->turbo_enc.tb_params.c;
fcw->ncb_neg = op->turbo_enc.tb_params.ncb_neg;
fcw->ncb_pos = op->turbo_enc.tb_params.ncb_pos;
if (check_bit(op->turbo_enc.op_flags,
RTE_BBDEV_TURBO_RATE_MATCH)) {
fcw->bypass_rm = 0;
fcw->cab = op->turbo_enc.tb_params.cab;
fcw->ea = op->turbo_enc.tb_params.ea;
fcw->eb = op->turbo_enc.tb_params.eb;
} else {
/* E is set to the encoding output size when RM is
* bypassed.
*/
fcw->bypass_rm = 1;
fcw->cab = fcw->c_neg;
fcw->ea = 3 * fcw->k_neg + 12;
fcw->eb = 3 * fcw->k_pos + 12;
}
} else { /* For CB mode */
fcw->k_pos = op->turbo_enc.cb_params.k;
fcw->ncb_pos = op->turbo_enc.cb_params.ncb;
if (check_bit(op->turbo_enc.op_flags,
RTE_BBDEV_TURBO_RATE_MATCH)) {
fcw->bypass_rm = 0;
fcw->eb = op->turbo_enc.cb_params.e;
} else {
/* E is set to the encoding output size when RM is
* bypassed.
*/
fcw->bypass_rm = 1;
fcw->eb = 3 * fcw->k_pos + 12;
}
}
fcw->bypass_rv_idx1 = check_bit(op->turbo_enc.op_flags,
RTE_BBDEV_TURBO_RV_INDEX_BYPASS);
fcw->code_block_crc = check_bit(op->turbo_enc.op_flags,
RTE_BBDEV_TURBO_CRC_24B_ATTACH);
fcw->rv_idx1 = op->turbo_enc.rv_index;
}
/* Compute value of k0.
* Based on 3GPP 38.212 Table 5.4.2.1-2
* Starting position of different redundancy versions, k0
*/
static inline uint16_t
get_k0(uint16_t n_cb, uint16_t z_c, uint8_t bg, uint8_t rv_index)
{
if (rv_index == 0)
return 0;
uint16_t n = (bg == 1 ? ACC100_N_ZC_1 : ACC100_N_ZC_2) * z_c;
if (n_cb == n) {
if (rv_index == 1)
return (bg == 1 ? ACC100_K0_1_1 : ACC100_K0_1_2) * z_c;
else if (rv_index == 2)
return (bg == 1 ? ACC100_K0_2_1 : ACC100_K0_2_2) * z_c;
else
return (bg == 1 ? ACC100_K0_3_1 : ACC100_K0_3_2) * z_c;
}
/* LBRM case - includes a division by N */
if (unlikely(z_c == 0))
return 0;
if (rv_index == 1)
return (((bg == 1 ? ACC100_K0_1_1 : ACC100_K0_1_2) * n_cb)
/ n) * z_c;
else if (rv_index == 2)
return (((bg == 1 ? ACC100_K0_2_1 : ACC100_K0_2_2) * n_cb)
/ n) * z_c;
else
return (((bg == 1 ? ACC100_K0_3_1 : ACC100_K0_3_2) * n_cb)
/ n) * z_c;
}
/* Fill in a frame control word for LDPC encoding. */
static inline void
acc100_fcw_le_fill(const struct rte_bbdev_enc_op *op,
struct acc100_fcw_le *fcw, int num_cb)
{
fcw->qm = op->ldpc_enc.q_m;
fcw->nfiller = op->ldpc_enc.n_filler;
fcw->BG = (op->ldpc_enc.basegraph - 1);
fcw->Zc = op->ldpc_enc.z_c;
fcw->ncb = op->ldpc_enc.n_cb;
fcw->k0 = get_k0(fcw->ncb, fcw->Zc, op->ldpc_enc.basegraph,
op->ldpc_enc.rv_index);
fcw->rm_e = op->ldpc_enc.cb_params.e;
fcw->crc_select = check_bit(op->ldpc_enc.op_flags,
RTE_BBDEV_LDPC_CRC_24B_ATTACH);
fcw->bypass_intlv = check_bit(op->ldpc_enc.op_flags,
RTE_BBDEV_LDPC_INTERLEAVER_BYPASS);
fcw->mcb_count = num_cb;
}
/* Fill in a frame control word for turbo decoding. */
static inline void
acc100_fcw_td_fill(const struct rte_bbdev_dec_op *op, struct acc100_fcw_td *fcw)
{
/* Note : Early termination is always enabled for 4GUL */
fcw->fcw_ver = 1;
if (op->turbo_dec.code_block_mode == RTE_BBDEV_TRANSPORT_BLOCK)
fcw->k_pos = op->turbo_dec.tb_params.k_pos;
else
fcw->k_pos = op->turbo_dec.cb_params.k;
fcw->turbo_crc_type = check_bit(op->turbo_dec.op_flags,
RTE_BBDEV_TURBO_CRC_TYPE_24B);
fcw->bypass_sb_deint = 0;
fcw->raw_decoder_input_on = 0;
fcw->max_iter = op->turbo_dec.iter_max;
fcw->half_iter_on = !check_bit(op->turbo_dec.op_flags,
RTE_BBDEV_TURBO_HALF_ITERATION_EVEN);
}
/* Fill in a frame control word for LDPC decoding. */
static inline void
acc100_fcw_ld_fill(const struct rte_bbdev_dec_op *op, struct acc100_fcw_ld *fcw,
union acc100_harq_layout_data *harq_layout)
{
uint16_t harq_out_length, harq_in_length, ncb_p, k0_p, parity_offset;
uint16_t harq_index;
uint32_t l;
bool harq_prun = false;
fcw->qm = op->ldpc_dec.q_m;
fcw->nfiller = op->ldpc_dec.n_filler;
fcw->BG = (op->ldpc_dec.basegraph - 1);
fcw->Zc = op->ldpc_dec.z_c;
fcw->ncb = op->ldpc_dec.n_cb;
fcw->k0 = get_k0(fcw->ncb, fcw->Zc, op->ldpc_dec.basegraph,
op->ldpc_dec.rv_index);
if (op->ldpc_dec.code_block_mode == RTE_BBDEV_CODE_BLOCK)
fcw->rm_e = op->ldpc_dec.cb_params.e;
else
fcw->rm_e = (op->ldpc_dec.tb_params.r <
op->ldpc_dec.tb_params.cab) ?
op->ldpc_dec.tb_params.ea :
op->ldpc_dec.tb_params.eb;
fcw->hcin_en = check_bit(op->ldpc_dec.op_flags,
RTE_BBDEV_LDPC_HQ_COMBINE_IN_ENABLE);
fcw->hcout_en = check_bit(op->ldpc_dec.op_flags,
RTE_BBDEV_LDPC_HQ_COMBINE_OUT_ENABLE);
fcw->crc_select = check_bit(op->ldpc_dec.op_flags,
RTE_BBDEV_LDPC_CRC_TYPE_24B_CHECK);
fcw->bypass_dec = check_bit(op->ldpc_dec.op_flags,
RTE_BBDEV_LDPC_DECODE_BYPASS);
fcw->bypass_intlv = check_bit(op->ldpc_dec.op_flags,
RTE_BBDEV_LDPC_DEINTERLEAVER_BYPASS);
if (op->ldpc_dec.q_m == 1) {
fcw->bypass_intlv = 1;
fcw->qm = 2;
}
fcw->hcin_decomp_mode = check_bit(op->ldpc_dec.op_flags,
RTE_BBDEV_LDPC_HARQ_6BIT_COMPRESSION);
fcw->hcout_comp_mode = check_bit(op->ldpc_dec.op_flags,
RTE_BBDEV_LDPC_HARQ_6BIT_COMPRESSION);
fcw->llr_pack_mode = check_bit(op->ldpc_dec.op_flags,
RTE_BBDEV_LDPC_LLR_COMPRESSION);
harq_index = op->ldpc_dec.harq_combined_output.offset /
ACC100_HARQ_OFFSET;
#ifdef ACC100_EXT_MEM
/* Limit cases when HARQ pruning is valid */
harq_prun = ((op->ldpc_dec.harq_combined_output.offset %
ACC100_HARQ_OFFSET) == 0) &&
(op->ldpc_dec.harq_combined_output.offset <= UINT16_MAX
* ACC100_HARQ_OFFSET);
#endif
if (fcw->hcin_en > 0) {
harq_in_length = op->ldpc_dec.harq_combined_input.length;
if (fcw->hcin_decomp_mode > 0)
harq_in_length = harq_in_length * 8 / 6;
harq_in_length = RTE_ALIGN(harq_in_length, 64);
if ((harq_layout[harq_index].offset > 0) & harq_prun) {
rte_bbdev_log_debug("HARQ IN offset unexpected for now\n");
fcw->hcin_size0 = harq_layout[harq_index].size0;
fcw->hcin_offset = harq_layout[harq_index].offset;
fcw->hcin_size1 = harq_in_length -
harq_layout[harq_index].offset;
} else {
fcw->hcin_size0 = harq_in_length;
fcw->hcin_offset = 0;
fcw->hcin_size1 = 0;
}
} else {
fcw->hcin_size0 = 0;
fcw->hcin_offset = 0;
fcw->hcin_size1 = 0;
}
fcw->itmax = op->ldpc_dec.iter_max;
fcw->itstop = check_bit(op->ldpc_dec.op_flags,
RTE_BBDEV_LDPC_ITERATION_STOP_ENABLE);
fcw->synd_precoder = fcw->itstop;
/*
* These are all implicitly set
* fcw->synd_post = 0;
* fcw->so_en = 0;
* fcw->so_bypass_rm = 0;
* fcw->so_bypass_intlv = 0;
* fcw->dec_convllr = 0;
* fcw->hcout_convllr = 0;
* fcw->hcout_size1 = 0;
* fcw->so_it = 0;
* fcw->hcout_offset = 0;
* fcw->negstop_th = 0;
* fcw->negstop_it = 0;
* fcw->negstop_en = 0;
* fcw->gain_i = 1;
* fcw->gain_h = 1;
*/
if (fcw->hcout_en > 0) {
parity_offset = (op->ldpc_dec.basegraph == 1 ? 20 : 8)
* op->ldpc_dec.z_c - op->ldpc_dec.n_filler;
k0_p = (fcw->k0 > parity_offset) ?
fcw->k0 - op->ldpc_dec.n_filler : fcw->k0;
ncb_p = fcw->ncb - op->ldpc_dec.n_filler;
l = k0_p + fcw->rm_e;
harq_out_length = (uint16_t) fcw->hcin_size0;
harq_out_length = RTE_MIN(RTE_MAX(harq_out_length, l), ncb_p);
harq_out_length = (harq_out_length + 0x3F) & 0xFFC0;
if ((k0_p > fcw->hcin_size0 + ACC100_HARQ_OFFSET_THRESHOLD) &&
harq_prun) {
fcw->hcout_size0 = (uint16_t) fcw->hcin_size0;
fcw->hcout_offset = k0_p & 0xFFC0;
fcw->hcout_size1 = harq_out_length - fcw->hcout_offset;
} else {
fcw->hcout_size0 = harq_out_length;
fcw->hcout_size1 = 0;
fcw->hcout_offset = 0;
}
harq_layout[harq_index].offset = fcw->hcout_offset;
harq_layout[harq_index].size0 = fcw->hcout_size0;
} else {
fcw->hcout_size0 = 0;
fcw->hcout_size1 = 0;
fcw->hcout_offset = 0;
}
}
/**
* Fills descriptor with data pointers of one block type.
*
* @param desc
* Pointer to DMA descriptor.
* @param input
* Pointer to pointer to input data which will be encoded. It can be changed
* and points to next segment in scatter-gather case.
* @param offset
* Input offset in rte_mbuf structure. It is used for calculating the point
* where data is starting.
* @param cb_len
* Length of currently processed Code Block
* @param seg_total_left
* It indicates how many bytes still left in segment (mbuf) for further
* processing.
* @param op_flags
* Store information about device capabilities
* @param next_triplet
* Index for ACC100 DMA Descriptor triplet
*
* @return
* Returns index of next triplet on success, other value if lengths of
* pkt and processed cb do not match.
*
*/
static inline int
acc100_dma_fill_blk_type_in(struct acc100_dma_req_desc *desc,
struct rte_mbuf **input, uint32_t *offset, uint32_t cb_len,
uint32_t *seg_total_left, int next_triplet)
{
uint32_t part_len;
struct rte_mbuf *m = *input;
part_len = (*seg_total_left < cb_len) ? *seg_total_left : cb_len;
cb_len -= part_len;
*seg_total_left -= part_len;
desc->data_ptrs[next_triplet].address =
rte_pktmbuf_iova_offset(m, *offset);
desc->data_ptrs[next_triplet].blen = part_len;
desc->data_ptrs[next_triplet].blkid = ACC100_DMA_BLKID_IN;
desc->data_ptrs[next_triplet].last = 0;
desc->data_ptrs[next_triplet].dma_ext = 0;
*offset += part_len;
next_triplet++;
while (cb_len > 0) {
if (next_triplet < ACC100_DMA_MAX_NUM_POINTERS_IN && m->next != NULL) {
m = m->next;
*seg_total_left = rte_pktmbuf_data_len(m);
part_len = (*seg_total_left < cb_len) ?
*seg_total_left :
cb_len;
desc->data_ptrs[next_triplet].address =
rte_pktmbuf_iova_offset(m, 0);
desc->data_ptrs[next_triplet].blen = part_len;
desc->data_ptrs[next_triplet].blkid =
ACC100_DMA_BLKID_IN;
desc->data_ptrs[next_triplet].last = 0;
desc->data_ptrs[next_triplet].dma_ext = 0;
cb_len -= part_len;
*seg_total_left -= part_len;
/* Initializing offset for next segment (mbuf) */
*offset = part_len;
next_triplet++;
} else {
rte_bbdev_log(ERR,
"Some data still left for processing: "
"data_left: %u, next_triplet: %u, next_mbuf: %p",
cb_len, next_triplet, m->next);
return -EINVAL;
}
}
/* Storing new mbuf as it could be changed in scatter-gather case*/
*input = m;
return next_triplet;
}
/* Fills descriptor with data pointers of one block type.
* Returns index of next triplet on success, other value if lengths of
* output data and processed mbuf do not match.
*/
static inline int
acc100_dma_fill_blk_type_out(struct acc100_dma_req_desc *desc,
struct rte_mbuf *output, uint32_t out_offset,
uint32_t output_len, int next_triplet, int blk_id)
{
desc->data_ptrs[next_triplet].address =
rte_pktmbuf_iova_offset(output, out_offset);
desc->data_ptrs[next_triplet].blen = output_len;
desc->data_ptrs[next_triplet].blkid = blk_id;
desc->data_ptrs[next_triplet].last = 0;
desc->data_ptrs[next_triplet].dma_ext = 0;
next_triplet++;
return next_triplet;
}
static inline void
acc100_header_init(struct acc100_dma_req_desc *desc)
{
desc->word0 = ACC100_DMA_DESC_TYPE;
desc->word1 = 0; /**< Timestamp could be disabled */
desc->word2 = 0;
desc->word3 = 0;
desc->numCBs = 1;
}
#ifdef RTE_LIBRTE_BBDEV_DEBUG
/* Check if any input data is unexpectedly left for processing */
static inline int
check_mbuf_total_left(uint32_t mbuf_total_left)
{
if (mbuf_total_left == 0)
return 0;
rte_bbdev_log(ERR,
"Some date still left for processing: mbuf_total_left = %u",
mbuf_total_left);
return -EINVAL;
}
#endif
static inline int
acc100_dma_desc_te_fill(struct rte_bbdev_enc_op *op,
struct acc100_dma_req_desc *desc, struct rte_mbuf **input,
struct rte_mbuf *output, uint32_t *in_offset,
uint32_t *out_offset, uint32_t *out_length,
uint32_t *mbuf_total_left, uint32_t *seg_total_left, uint8_t r)
{
int next_triplet = 1; /* FCW already done */
uint32_t e, ea, eb, length;
uint16_t k, k_neg, k_pos;
uint8_t cab, c_neg;
desc->word0 = ACC100_DMA_DESC_TYPE;
desc->word1 = 0; /**< Timestamp could be disabled */
desc->word2 = 0;
desc->word3 = 0;
desc->numCBs = 1;
if (op->turbo_enc.code_block_mode == RTE_BBDEV_TRANSPORT_BLOCK) {
ea = op->turbo_enc.tb_params.ea;
eb = op->turbo_enc.tb_params.eb;
cab = op->turbo_enc.tb_params.cab;
k_neg = op->turbo_enc.tb_params.k_neg;
k_pos = op->turbo_enc.tb_params.k_pos;
c_neg = op->turbo_enc.tb_params.c_neg;
e = (r < cab) ? ea : eb;
k = (r < c_neg) ? k_neg : k_pos;
} else {
e = op->turbo_enc.cb_params.e;
k = op->turbo_enc.cb_params.k;
}
if (check_bit(op->turbo_enc.op_flags, RTE_BBDEV_TURBO_CRC_24B_ATTACH))
length = (k - 24) >> 3;
else
length = k >> 3;
if (unlikely((*mbuf_total_left == 0) || (*mbuf_total_left < length))) {
rte_bbdev_log(ERR,
"Mismatch between mbuf length and included CB sizes: mbuf len %u, cb len %u",
*mbuf_total_left, length);
return -1;
}
next_triplet = acc100_dma_fill_blk_type_in(desc, input, in_offset,
length, seg_total_left, next_triplet);
if (unlikely(next_triplet < 0)) {
rte_bbdev_log(ERR,
"Mismatch between data to process and mbuf data length in bbdev_op: %p",
op);
return -1;
}
desc->data_ptrs[next_triplet - 1].last = 1;
desc->m2dlen = next_triplet;
*mbuf_total_left -= length;
/* Set output length */
if (check_bit(op->turbo_enc.op_flags, RTE_BBDEV_TURBO_RATE_MATCH))
/* Integer round up division by 8 */
*out_length = (e + 7) >> 3;
else
*out_length = (k >> 3) * 3 + 2;
next_triplet = acc100_dma_fill_blk_type_out(desc, output, *out_offset,
*out_length, next_triplet, ACC100_DMA_BLKID_OUT_ENC);
if (unlikely(next_triplet < 0)) {
rte_bbdev_log(ERR,
"Mismatch between data to process and mbuf data length in bbdev_op: %p",
op);
return -1;
}
op->turbo_enc.output.length += *out_length;
*out_offset += *out_length;
desc->data_ptrs[next_triplet - 1].last = 1;
desc->d2mlen = next_triplet - desc->m2dlen;
desc->op_addr = op;
return 0;
}
static inline int
acc100_dma_desc_le_fill(struct rte_bbdev_enc_op *op,
struct acc100_dma_req_desc *desc, struct rte_mbuf **input,
struct rte_mbuf *output, uint32_t *in_offset,
uint32_t *out_offset, uint32_t *out_length,
uint32_t *mbuf_total_left, uint32_t *seg_total_left)
{
int next_triplet = 1; /* FCW already done */
uint16_t K, in_length_in_bits, in_length_in_bytes;
struct rte_bbdev_op_ldpc_enc *enc = &op->ldpc_enc;
acc100_header_init(desc);
K = (enc->basegraph == 1 ? 22 : 10) * enc->z_c;
in_length_in_bits = K - enc->n_filler;
if ((enc->op_flags & RTE_BBDEV_LDPC_CRC_24A_ATTACH) ||
(enc->op_flags & RTE_BBDEV_LDPC_CRC_24B_ATTACH))
in_length_in_bits -= 24;
in_length_in_bytes = in_length_in_bits >> 3;
if (unlikely((*mbuf_total_left == 0) ||
(*mbuf_total_left < in_length_in_bytes))) {
rte_bbdev_log(ERR,
"Mismatch between mbuf length and included CB sizes: mbuf len %u, cb len %u",
*mbuf_total_left, in_length_in_bytes);
return -1;
}
next_triplet = acc100_dma_fill_blk_type_in(desc, input, in_offset,
in_length_in_bytes,
seg_total_left, next_triplet);
if (unlikely(next_triplet < 0)) {
rte_bbdev_log(ERR,
"Mismatch between data to process and mbuf data length in bbdev_op: %p",
op);
return -1;
}
desc->data_ptrs[next_triplet - 1].last = 1;
desc->m2dlen = next_triplet;
*mbuf_total_left -= in_length_in_bytes;
/* Set output length */
/* Integer round up division by 8 */
*out_length = (enc->cb_params.e + 7) >> 3;
next_triplet = acc100_dma_fill_blk_type_out(desc, output, *out_offset,
*out_length, next_triplet, ACC100_DMA_BLKID_OUT_ENC);
op->ldpc_enc.output.length += *out_length;
*out_offset += *out_length;
desc->data_ptrs[next_triplet - 1].last = 1;
desc->data_ptrs[next_triplet - 1].dma_ext = 0;
desc->d2mlen = next_triplet - desc->m2dlen;
desc->op_addr = op;
return 0;
}
static inline int
acc100_dma_desc_td_fill(struct rte_bbdev_dec_op *op,
struct acc100_dma_req_desc *desc, struct rte_mbuf **input,
struct rte_mbuf *h_output, struct rte_mbuf *s_output,
uint32_t *in_offset, uint32_t *h_out_offset,
uint32_t *s_out_offset, uint32_t *h_out_length,
uint32_t *s_out_length, uint32_t *mbuf_total_left,
uint32_t *seg_total_left, uint8_t r)
{
int next_triplet = 1; /* FCW already done */
uint16_t k;
uint16_t crc24_overlap = 0;
uint32_t e, kw;
desc->word0 = ACC100_DMA_DESC_TYPE;
desc->word1 = 0; /**< Timestamp could be disabled */
desc->word2 = 0;
desc->word3 = 0;
desc->numCBs = 1;
if (op->turbo_dec.code_block_mode == RTE_BBDEV_TRANSPORT_BLOCK) {
k = (r < op->turbo_dec.tb_params.c_neg)
? op->turbo_dec.tb_params.k_neg
: op->turbo_dec.tb_params.k_pos;
e = (r < op->turbo_dec.tb_params.cab)
? op->turbo_dec.tb_params.ea
: op->turbo_dec.tb_params.eb;
} else {
k = op->turbo_dec.cb_params.k;
e = op->turbo_dec.cb_params.e;
}
if ((op->turbo_dec.code_block_mode == RTE_BBDEV_TRANSPORT_BLOCK)
&& !check_bit(op->turbo_dec.op_flags,
RTE_BBDEV_TURBO_DEC_TB_CRC_24B_KEEP))
crc24_overlap = 24;
if ((op->turbo_dec.code_block_mode == RTE_BBDEV_CODE_BLOCK)
&& check_bit(op->turbo_dec.op_flags,
RTE_BBDEV_TURBO_DEC_CRC_24B_DROP))
crc24_overlap = 24;
/* Calculates circular buffer size.
* According to 3gpp 36.212 section 5.1.4.2
* Kw = 3 * Kpi,
* where:
* Kpi = nCol * nRow
* where nCol is 32 and nRow can be calculated from:
* D =< nCol * nRow
* where D is the size of each output from turbo encoder block (k + 4).
*/
kw = RTE_ALIGN_CEIL(k + 4, 32) * 3;
if (unlikely((*mbuf_total_left == 0) || (*mbuf_total_left < kw))) {
rte_bbdev_log(ERR,
"Mismatch between mbuf length and included CB sizes: mbuf len %u, cb len %u",
*mbuf_total_left, kw);
return -1;
}
next_triplet = acc100_dma_fill_blk_type_in(desc, input, in_offset, kw,
seg_total_left, next_triplet);
if (unlikely(next_triplet < 0)) {
rte_bbdev_log(ERR,
"Mismatch between data to process and mbuf data length in bbdev_op: %p",
op);
return -1;
}
desc->data_ptrs[next_triplet - 1].last = 1;
desc->m2dlen = next_triplet;
*mbuf_total_left -= kw;
next_triplet = acc100_dma_fill_blk_type_out(
desc, h_output, *h_out_offset,
(k - crc24_overlap) >> 3, next_triplet,
ACC100_DMA_BLKID_OUT_HARD);
if (unlikely(next_triplet < 0)) {
rte_bbdev_log(ERR,
"Mismatch between data to process and mbuf data length in bbdev_op: %p",
op);
return -1;
}
*h_out_length = ((k - crc24_overlap) >> 3);
op->turbo_dec.hard_output.length += *h_out_length;
*h_out_offset += *h_out_length;
/* Soft output */
if (check_bit(op->turbo_dec.op_flags, RTE_BBDEV_TURBO_SOFT_OUTPUT)) {
if (op->turbo_dec.soft_output.data == 0) {
rte_bbdev_log(ERR, "Soft output is not defined");
return -1;
}
if (check_bit(op->turbo_dec.op_flags,
RTE_BBDEV_TURBO_EQUALIZER))
*s_out_length = e;
else
*s_out_length = (k * 3) + 12;
next_triplet = acc100_dma_fill_blk_type_out(desc, s_output,
*s_out_offset, *s_out_length, next_triplet,
ACC100_DMA_BLKID_OUT_SOFT);
if (unlikely(next_triplet < 0)) {
rte_bbdev_log(ERR,
"Mismatch between data to process and mbuf data length in bbdev_op: %p",
op);
return -1;
}
op->turbo_dec.soft_output.length += *s_out_length;
*s_out_offset += *s_out_length;
}
desc->data_ptrs[next_triplet - 1].last = 1;
desc->d2mlen = next_triplet - desc->m2dlen;
desc->op_addr = op;
return 0;
}
static inline int
acc100_dma_desc_ld_fill(struct rte_bbdev_dec_op *op,
struct acc100_dma_req_desc *desc,
struct rte_mbuf **input, struct rte_mbuf *h_output,
uint32_t *in_offset, uint32_t *h_out_offset,
uint32_t *h_out_length, uint32_t *mbuf_total_left,
uint32_t *seg_total_left,
struct acc100_fcw_ld *fcw)
{
struct rte_bbdev_op_ldpc_dec *dec = &op->ldpc_dec;
int next_triplet = 1; /* FCW already done */
uint32_t input_length;
uint16_t output_length, crc24_overlap = 0;
uint16_t sys_cols, K, h_p_size, h_np_size;
bool h_comp = check_bit(dec->op_flags,
RTE_BBDEV_LDPC_HARQ_6BIT_COMPRESSION);
acc100_header_init(desc);
if (check_bit(op->ldpc_dec.op_flags,
RTE_BBDEV_LDPC_CRC_TYPE_24B_DROP))
crc24_overlap = 24;
/* Compute some LDPC BG lengths */
input_length = dec->cb_params.e;
if (check_bit(op->ldpc_dec.op_flags,
RTE_BBDEV_LDPC_LLR_COMPRESSION))
input_length = (input_length * 3 + 3) / 4;
sys_cols = (dec->basegraph == 1) ? 22 : 10;
K = sys_cols * dec->z_c;
output_length = K - dec->n_filler - crc24_overlap;
if (unlikely((*mbuf_total_left == 0) ||
(*mbuf_total_left < input_length))) {
rte_bbdev_log(ERR,
"Mismatch between mbuf length and included CB sizes: mbuf len %u, cb len %u",
*mbuf_total_left, input_length);
return -1;
}
next_triplet = acc100_dma_fill_blk_type_in(desc, input,
in_offset, input_length,
seg_total_left, next_triplet);
if (unlikely(next_triplet < 0)) {
rte_bbdev_log(ERR,
"Mismatch between data to process and mbuf data length in bbdev_op: %p",
op);
return -1;
}
if (check_bit(op->ldpc_dec.op_flags,
RTE_BBDEV_LDPC_HQ_COMBINE_IN_ENABLE)) {
h_p_size = fcw->hcin_size0 + fcw->hcin_size1;
if (h_comp)
h_p_size = (h_p_size * 3 + 3) / 4;
desc->data_ptrs[next_triplet].address =
dec->harq_combined_input.offset;
desc->data_ptrs[next_triplet].blen = h_p_size;
desc->data_ptrs[next_triplet].blkid = ACC100_DMA_BLKID_IN_HARQ;
desc->data_ptrs[next_triplet].dma_ext = 1;
#ifndef ACC100_EXT_MEM
acc100_dma_fill_blk_type_out(
desc,
op->ldpc_dec.harq_combined_input.data,
op->ldpc_dec.harq_combined_input.offset,
h_p_size,
next_triplet,
ACC100_DMA_BLKID_IN_HARQ);
#endif
next_triplet++;
}
desc->data_ptrs[next_triplet - 1].last = 1;
desc->m2dlen = next_triplet;
*mbuf_total_left -= input_length;
next_triplet = acc100_dma_fill_blk_type_out(desc, h_output,
*h_out_offset, output_length >> 3, next_triplet,
ACC100_DMA_BLKID_OUT_HARD);
if (check_bit(op->ldpc_dec.op_flags,
RTE_BBDEV_LDPC_HQ_COMBINE_OUT_ENABLE)) {
/* Pruned size of the HARQ */
h_p_size = fcw->hcout_size0 + fcw->hcout_size1;
/* Non-Pruned size of the HARQ */
h_np_size = fcw->hcout_offset > 0 ?
fcw->hcout_offset + fcw->hcout_size1 :
h_p_size;
if (h_comp) {
h_np_size = (h_np_size * 3 + 3) / 4;
h_p_size = (h_p_size * 3 + 3) / 4;
}
dec->harq_combined_output.length = h_np_size;
desc->data_ptrs[next_triplet].address =
dec->harq_combined_output.offset;
desc->data_ptrs[next_triplet].blen = h_p_size;
desc->data_ptrs[next_triplet].blkid = ACC100_DMA_BLKID_OUT_HARQ;
desc->data_ptrs[next_triplet].dma_ext = 1;
#ifndef ACC100_EXT_MEM
acc100_dma_fill_blk_type_out(
desc,
dec->harq_combined_output.data,
dec->harq_combined_output.offset,
h_p_size,
next_triplet,
ACC100_DMA_BLKID_OUT_HARQ);
#endif
next_triplet++;
}
*h_out_length = output_length >> 3;
dec->hard_output.length += *h_out_length;
*h_out_offset += *h_out_length;
desc->data_ptrs[next_triplet - 1].last = 1;
desc->d2mlen = next_triplet - desc->m2dlen;
desc->op_addr = op;
return 0;
}
static inline void
acc100_dma_desc_ld_update(struct rte_bbdev_dec_op *op,
struct acc100_dma_req_desc *desc,
struct rte_mbuf *input, struct rte_mbuf *h_output,
uint32_t *in_offset, uint32_t *h_out_offset,
uint32_t *h_out_length,
union acc100_harq_layout_data *harq_layout)
{
int next_triplet = 1; /* FCW already done */
desc->data_ptrs[next_triplet].address =
rte_pktmbuf_iova_offset(input, *in_offset);
next_triplet++;
if (check_bit(op->ldpc_dec.op_flags,
RTE_BBDEV_LDPC_HQ_COMBINE_IN_ENABLE)) {
struct rte_bbdev_op_data hi = op->ldpc_dec.harq_combined_input;
desc->data_ptrs[next_triplet].address = hi.offset;
#ifndef ACC100_EXT_MEM
desc->data_ptrs[next_triplet].address =
rte_pktmbuf_iova_offset(hi.data, hi.offset);
#endif
next_triplet++;
}
desc->data_ptrs[next_triplet].address =
rte_pktmbuf_iova_offset(h_output, *h_out_offset);
*h_out_length = desc->data_ptrs[next_triplet].blen;
next_triplet++;
if (check_bit(op->ldpc_dec.op_flags,
RTE_BBDEV_LDPC_HQ_COMBINE_OUT_ENABLE)) {
desc->data_ptrs[next_triplet].address =
op->ldpc_dec.harq_combined_output.offset;
/* Adjust based on previous operation */
struct rte_bbdev_dec_op *prev_op = desc->op_addr;
op->ldpc_dec.harq_combined_output.length =
prev_op->ldpc_dec.harq_combined_output.length;
int16_t hq_idx = op->ldpc_dec.harq_combined_output.offset /
ACC100_HARQ_OFFSET;
int16_t prev_hq_idx =
prev_op->ldpc_dec.harq_combined_output.offset
/ ACC100_HARQ_OFFSET;
harq_layout[hq_idx].val = harq_layout[prev_hq_idx].val;
#ifndef ACC100_EXT_MEM
struct rte_bbdev_op_data ho =
op->ldpc_dec.harq_combined_output;
desc->data_ptrs[next_triplet].address =
rte_pktmbuf_iova_offset(ho.data, ho.offset);
#endif
next_triplet++;
}
op->ldpc_dec.hard_output.length += *h_out_length;
desc->op_addr = op;
}
/* Enqueue a number of operations to HW and update software rings */
static inline void
acc100_dma_enqueue(struct acc100_queue *q, uint16_t n,
struct rte_bbdev_stats *queue_stats)
{
union acc100_enqueue_reg_fmt enq_req;
#ifdef RTE_BBDEV_OFFLOAD_COST
uint64_t start_time = 0;
queue_stats->acc_offload_cycles = 0;
#else
RTE_SET_USED(queue_stats);
#endif
enq_req.val = 0;
/* Setting offset, 100b for 256 DMA Desc */
enq_req.addr_offset = ACC100_DESC_OFFSET;
/* Split ops into batches */
do {
union acc100_dma_desc *desc;
uint16_t enq_batch_size;
uint64_t offset;
rte_iova_t req_elem_addr;
enq_batch_size = RTE_MIN(n, MAX_ENQ_BATCH_SIZE);
/* Set flag on last descriptor in a batch */
desc = q->ring_addr + ((q->sw_ring_head + enq_batch_size - 1) &
q->sw_ring_wrap_mask);
desc->req.last_desc_in_batch = 1;
/* Calculate the 1st descriptor's address */
offset = ((q->sw_ring_head & q->sw_ring_wrap_mask) *
sizeof(union acc100_dma_desc));
req_elem_addr = q->ring_addr_iova + offset;
/* Fill enqueue struct */
enq_req.num_elem = enq_batch_size;
/* low 6 bits are not needed */
enq_req.req_elem_addr = (uint32_t)(req_elem_addr >> 6);
#ifdef RTE_LIBRTE_BBDEV_DEBUG
rte_memdump(stderr, "Req sdone", desc, sizeof(*desc));
#endif
rte_bbdev_log_debug(
"Enqueue %u reqs (phys %#"PRIx64") to reg %p",
enq_batch_size,
req_elem_addr,
(void *)q->mmio_reg_enqueue);
rte_wmb();
#ifdef RTE_BBDEV_OFFLOAD_COST
/* Start time measurement for enqueue function offload. */
start_time = rte_rdtsc_precise();
#endif
rte_bbdev_log(DEBUG, "Debug : MMIO Enqueue");
mmio_write(q->mmio_reg_enqueue, enq_req.val);
#ifdef RTE_BBDEV_OFFLOAD_COST
queue_stats->acc_offload_cycles +=
rte_rdtsc_precise() - start_time;
#endif
q->aq_enqueued++;
q->sw_ring_head += enq_batch_size;
n -= enq_batch_size;
} while (n);
}
#ifdef RTE_LIBRTE_BBDEV_DEBUG
/* Validates turbo encoder parameters */
static inline int
validate_enc_op(struct rte_bbdev_enc_op *op)
{
struct rte_bbdev_op_turbo_enc *turbo_enc = &op->turbo_enc;
struct rte_bbdev_op_enc_turbo_cb_params *cb = NULL;
struct rte_bbdev_op_enc_turbo_tb_params *tb = NULL;
uint16_t kw, kw_neg, kw_pos;
if (op->mempool == NULL) {
rte_bbdev_log(ERR, "Invalid mempool pointer");
return -1;
}
if (turbo_enc->input.data == NULL) {
rte_bbdev_log(ERR, "Invalid input pointer");
return -1;
}
if (turbo_enc->output.data == NULL) {
rte_bbdev_log(ERR, "Invalid output pointer");
return -1;
}
if (turbo_enc->rv_index > 3) {
rte_bbdev_log(ERR,
"rv_index (%u) is out of range 0 <= value <= 3",
turbo_enc->rv_index);
return -1;
}
if (turbo_enc->code_block_mode != RTE_BBDEV_TRANSPORT_BLOCK &&
turbo_enc->code_block_mode != RTE_BBDEV_CODE_BLOCK) {
rte_bbdev_log(ERR,
"code_block_mode (%u) is out of range 0 <= value <= 1",
turbo_enc->code_block_mode);
return -1;
}
if (turbo_enc->code_block_mode == RTE_BBDEV_TRANSPORT_BLOCK) {
tb = &turbo_enc->tb_params;
if ((tb->k_neg < RTE_BBDEV_TURBO_MIN_CB_SIZE
|| tb->k_neg > RTE_BBDEV_TURBO_MAX_CB_SIZE)
&& tb->c_neg > 0) {
rte_bbdev_log(ERR,
"k_neg (%u) is out of range %u <= value <= %u",
tb->k_neg, RTE_BBDEV_TURBO_MIN_CB_SIZE,
RTE_BBDEV_TURBO_MAX_CB_SIZE);
return -1;
}
if (tb->k_pos < RTE_BBDEV_TURBO_MIN_CB_SIZE
|| tb->k_pos > RTE_BBDEV_TURBO_MAX_CB_SIZE) {
rte_bbdev_log(ERR,
"k_pos (%u) is out of range %u <= value <= %u",
tb->k_pos, RTE_BBDEV_TURBO_MIN_CB_SIZE,
RTE_BBDEV_TURBO_MAX_CB_SIZE);
return -1;
}
if (tb->c_neg > (RTE_BBDEV_TURBO_MAX_CODE_BLOCKS - 1))
rte_bbdev_log(ERR,
"c_neg (%u) is out of range 0 <= value <= %u",
tb->c_neg,
RTE_BBDEV_TURBO_MAX_CODE_BLOCKS - 1);
if (tb->c < 1 || tb->c > RTE_BBDEV_TURBO_MAX_CODE_BLOCKS) {
rte_bbdev_log(ERR,
"c (%u) is out of range 1 <= value <= %u",
tb->c, RTE_BBDEV_TURBO_MAX_CODE_BLOCKS);
return -1;
}
if (tb->cab > tb->c) {
rte_bbdev_log(ERR,
"cab (%u) is greater than c (%u)",
tb->cab, tb->c);
return -1;
}
if ((tb->ea < RTE_BBDEV_TURBO_MIN_CB_SIZE || (tb->ea % 2))
&& tb->r < tb->cab) {
rte_bbdev_log(ERR,
"ea (%u) is less than %u or it is not even",
tb->ea, RTE_BBDEV_TURBO_MIN_CB_SIZE);
return -1;
}
if ((tb->eb < RTE_BBDEV_TURBO_MIN_CB_SIZE || (tb->eb % 2))
&& tb->c > tb->cab) {
rte_bbdev_log(ERR,
"eb (%u) is less than %u or it is not even",
tb->eb, RTE_BBDEV_TURBO_MIN_CB_SIZE);
return -1;
}
kw_neg = 3 * RTE_ALIGN_CEIL(tb->k_neg + 4,
RTE_BBDEV_TURBO_C_SUBBLOCK);
if (tb->ncb_neg < tb->k_neg || tb->ncb_neg > kw_neg) {
rte_bbdev_log(ERR,
"ncb_neg (%u) is out of range (%u) k_neg <= value <= (%u) kw_neg",
tb->ncb_neg, tb->k_neg, kw_neg);
return -1;
}
kw_pos = 3 * RTE_ALIGN_CEIL(tb->k_pos + 4,
RTE_BBDEV_TURBO_C_SUBBLOCK);
if (tb->ncb_pos < tb->k_pos || tb->ncb_pos > kw_pos) {
rte_bbdev_log(ERR,
"ncb_pos (%u) is out of range (%u) k_pos <= value <= (%u) kw_pos",
tb->ncb_pos, tb->k_pos, kw_pos);
return -1;
}
if (tb->r > (tb->c - 1)) {
rte_bbdev_log(ERR,
"r (%u) is greater than c - 1 (%u)",
tb->r, tb->c - 1);
return -1;
}
} else {
cb = &turbo_enc->cb_params;
if (cb->k < RTE_BBDEV_TURBO_MIN_CB_SIZE
|| cb->k > RTE_BBDEV_TURBO_MAX_CB_SIZE) {
rte_bbdev_log(ERR,
"k (%u) is out of range %u <= value <= %u",
cb->k, RTE_BBDEV_TURBO_MIN_CB_SIZE,
RTE_BBDEV_TURBO_MAX_CB_SIZE);
return -1;
}
if (cb->e < RTE_BBDEV_TURBO_MIN_CB_SIZE || (cb->e % 2)) {
rte_bbdev_log(ERR,
"e (%u) is less than %u or it is not even",
cb->e, RTE_BBDEV_TURBO_MIN_CB_SIZE);
return -1;
}
kw = RTE_ALIGN_CEIL(cb->k + 4, RTE_BBDEV_TURBO_C_SUBBLOCK) * 3;
if (cb->ncb < cb->k || cb->ncb > kw) {
rte_bbdev_log(ERR,
"ncb (%u) is out of range (%u) k <= value <= (%u) kw",
cb->ncb, cb->k, kw);
return -1;
}
}
return 0;
}
/* Validates LDPC encoder parameters */
static inline int
validate_ldpc_enc_op(struct rte_bbdev_enc_op *op)
{
struct rte_bbdev_op_ldpc_enc *ldpc_enc = &op->ldpc_enc;
if (op->mempool == NULL) {
rte_bbdev_log(ERR, "Invalid mempool pointer");
return -1;
}
if (ldpc_enc->input.data == NULL) {
rte_bbdev_log(ERR, "Invalid input pointer");
return -1;
}
if (ldpc_enc->output.data == NULL) {
rte_bbdev_log(ERR, "Invalid output pointer");
return -1;
}
if (ldpc_enc->input.length >
RTE_BBDEV_LDPC_MAX_CB_SIZE >> 3) {
rte_bbdev_log(ERR, "CB size (%u) is too big, max: %d",
ldpc_enc->input.length,
RTE_BBDEV_LDPC_MAX_CB_SIZE);
return -1;
}
if ((ldpc_enc->basegraph > 2) || (ldpc_enc->basegraph == 0)) {
rte_bbdev_log(ERR,
"BG (%u) is out of range 1 <= value <= 2",
ldpc_enc->basegraph);
return -1;
}
if (ldpc_enc->rv_index > 3) {
rte_bbdev_log(ERR,
"rv_index (%u) is out of range 0 <= value <= 3",
ldpc_enc->rv_index);
return -1;
}
if (ldpc_enc->code_block_mode > RTE_BBDEV_CODE_BLOCK) {
rte_bbdev_log(ERR,
"code_block_mode (%u) is out of range 0 <= value <= 1",
ldpc_enc->code_block_mode);
return -1;
}
int K = (ldpc_enc->basegraph == 1 ? 22 : 10) * ldpc_enc->z_c;
if (ldpc_enc->n_filler >= K) {
rte_bbdev_log(ERR,
"K and F are not compatible %u %u",
K, ldpc_enc->n_filler);
return -1;
}
return 0;
}
/* Validates LDPC decoder parameters */
static inline int
validate_ldpc_dec_op(struct rte_bbdev_dec_op *op)
{
struct rte_bbdev_op_ldpc_dec *ldpc_dec = &op->ldpc_dec;
if (op->mempool == NULL) {
rte_bbdev_log(ERR, "Invalid mempool pointer");
return -1;
}
if ((ldpc_dec->basegraph > 2) || (ldpc_dec->basegraph == 0)) {
rte_bbdev_log(ERR,
"BG (%u) is out of range 1 <= value <= 2",
ldpc_dec->basegraph);
return -1;
}
if (ldpc_dec->iter_max == 0) {
rte_bbdev_log(ERR,
"iter_max (%u) is equal to 0",
ldpc_dec->iter_max);
return -1;
}
if (ldpc_dec->rv_index > 3) {
rte_bbdev_log(ERR,
"rv_index (%u) is out of range 0 <= value <= 3",
ldpc_dec->rv_index);
return -1;
}
if (ldpc_dec->code_block_mode > RTE_BBDEV_CODE_BLOCK) {
rte_bbdev_log(ERR,
"code_block_mode (%u) is out of range 0 <= value <= 1",
ldpc_dec->code_block_mode);
return -1;
}
int K = (ldpc_dec->basegraph == 1 ? 22 : 10) * ldpc_dec->z_c;
if (ldpc_dec->n_filler >= K) {
rte_bbdev_log(ERR,
"K and F are not compatible %u %u",
K, ldpc_dec->n_filler);
return -1;
}
return 0;
}
#endif
/* Enqueue one encode operations for ACC100 device in CB mode */
static inline int
enqueue_enc_one_op_cb(struct acc100_queue *q, struct rte_bbdev_enc_op *op,
uint16_t total_enqueued_cbs)
{
union acc100_dma_desc *desc = NULL;
int ret;
uint32_t in_offset, out_offset, out_length, mbuf_total_left,
seg_total_left;
struct rte_mbuf *input, *output_head, *output;
#ifdef RTE_LIBRTE_BBDEV_DEBUG
/* Validate op structure */
if (validate_enc_op(op) == -1) {
rte_bbdev_log(ERR, "Turbo encoder validation failed");
return -EINVAL;
}
#endif
uint16_t desc_idx = ((q->sw_ring_head + total_enqueued_cbs)
& q->sw_ring_wrap_mask);
desc = q->ring_addr + desc_idx;
acc100_fcw_te_fill(op, &desc->req.fcw_te);
input = op->turbo_enc.input.data;
output_head = output = op->turbo_enc.output.data;
in_offset = op->turbo_enc.input.offset;
out_offset = op->turbo_enc.output.offset;
out_length = 0;
mbuf_total_left = op->turbo_enc.input.length;
seg_total_left = rte_pktmbuf_data_len(op->turbo_enc.input.data)
- in_offset;
ret = acc100_dma_desc_te_fill(op, &desc->req, &input, output,
&in_offset, &out_offset, &out_length, &mbuf_total_left,
&seg_total_left, 0);
if (unlikely(ret < 0))
return ret;
mbuf_append(output_head, output, out_length);
#ifdef RTE_LIBRTE_BBDEV_DEBUG
rte_memdump(stderr, "FCW", &desc->req.fcw_te,
sizeof(desc->req.fcw_te) - 8);
rte_memdump(stderr, "Req Desc.", desc, sizeof(*desc));
if (check_mbuf_total_left(mbuf_total_left) != 0)
return -EINVAL;
#endif
/* One CB (one op) was successfully prepared to enqueue */
return 1;
}
/* Enqueue one encode operations for ACC100 device in CB mode */
static inline int
enqueue_ldpc_enc_n_op_cb(struct acc100_queue *q, struct rte_bbdev_enc_op **ops,
uint16_t total_enqueued_cbs, int16_t num)
{
union acc100_dma_desc *desc = NULL;
uint32_t out_length;
struct rte_mbuf *output_head, *output;
int i, next_triplet;
uint16_t in_length_in_bytes;
struct rte_bbdev_op_ldpc_enc *enc = &ops[0]->ldpc_enc;
#ifdef RTE_LIBRTE_BBDEV_DEBUG
/* Validate op structure */
if (validate_ldpc_enc_op(ops[0]) == -1) {
rte_bbdev_log(ERR, "LDPC encoder validation failed");
return -EINVAL;
}
#endif
uint16_t desc_idx = ((q->sw_ring_head + total_enqueued_cbs)
& q->sw_ring_wrap_mask);
desc = q->ring_addr + desc_idx;
acc100_fcw_le_fill(ops[0], &desc->req.fcw_le, num);
/** This could be done at polling */
acc100_header_init(&desc->req);
desc->req.numCBs = num;
in_length_in_bytes = ops[0]->ldpc_enc.input.data->data_len;
out_length = (enc->cb_params.e + 7) >> 3;
desc->req.m2dlen = 1 + num;
desc->req.d2mlen = num;
next_triplet = 1;
for (i = 0; i < num; i++) {
desc->req.data_ptrs[next_triplet].address =
rte_pktmbuf_iova_offset(ops[i]->ldpc_enc.input.data, 0);
desc->req.data_ptrs[next_triplet].blen = in_length_in_bytes;
next_triplet++;
desc->req.data_ptrs[next_triplet].address =
rte_pktmbuf_iova_offset(
ops[i]->ldpc_enc.output.data, 0);
desc->req.data_ptrs[next_triplet].blen = out_length;
next_triplet++;
ops[i]->ldpc_enc.output.length = out_length;
output_head = output = ops[i]->ldpc_enc.output.data;
mbuf_append(output_head, output, out_length);
output->data_len = out_length;
}
desc->req.op_addr = ops[0];
#ifdef RTE_LIBRTE_BBDEV_DEBUG
rte_memdump(stderr, "FCW", &desc->req.fcw_le,
sizeof(desc->req.fcw_le) - 8);
rte_memdump(stderr, "Req Desc.", desc, sizeof(*desc));
#endif
/* One CB (one op) was successfully prepared to enqueue */
return num;
}
/* Enqueue one encode operations for ACC100 device in CB mode */
static inline int
enqueue_ldpc_enc_one_op_cb(struct acc100_queue *q, struct rte_bbdev_enc_op *op,
uint16_t total_enqueued_cbs)
{
union acc100_dma_desc *desc = NULL;
int ret;
uint32_t in_offset, out_offset, out_length, mbuf_total_left,
seg_total_left;
struct rte_mbuf *input, *output_head, *output;
#ifdef RTE_LIBRTE_BBDEV_DEBUG
/* Validate op structure */
if (validate_ldpc_enc_op(op) == -1) {
rte_bbdev_log(ERR, "LDPC encoder validation failed");
return -EINVAL;
}
#endif
uint16_t desc_idx = ((q->sw_ring_head + total_enqueued_cbs)
& q->sw_ring_wrap_mask);
desc = q->ring_addr + desc_idx;
acc100_fcw_le_fill(op, &desc->req.fcw_le, 1);
input = op->ldpc_enc.input.data;
output_head = output = op->ldpc_enc.output.data;
in_offset = op->ldpc_enc.input.offset;
out_offset = op->ldpc_enc.output.offset;
out_length = 0;
mbuf_total_left = op->ldpc_enc.input.length;
seg_total_left = rte_pktmbuf_data_len(op->ldpc_enc.input.data)
- in_offset;
ret = acc100_dma_desc_le_fill(op, &desc->req, &input, output,
&in_offset, &out_offset, &out_length, &mbuf_total_left,
&seg_total_left);
if (unlikely(ret < 0))
return ret;
mbuf_append(output_head, output, out_length);
#ifdef RTE_LIBRTE_BBDEV_DEBUG
rte_memdump(stderr, "FCW", &desc->req.fcw_le,
sizeof(desc->req.fcw_le) - 8);
rte_memdump(stderr, "Req Desc.", desc, sizeof(*desc));
if (check_mbuf_total_left(mbuf_total_left) != 0)
return -EINVAL;
#endif
/* One CB (one op) was successfully prepared to enqueue */
return 1;
}
/* Enqueue one encode operations for ACC100 device in TB mode. */
static inline int
enqueue_enc_one_op_tb(struct acc100_queue *q, struct rte_bbdev_enc_op *op,
uint16_t total_enqueued_cbs, uint8_t cbs_in_tb)
{
union acc100_dma_desc *desc = NULL;
int ret;
uint8_t r, c;
uint32_t in_offset, out_offset, out_length, mbuf_total_left,
seg_total_left;
struct rte_mbuf *input, *output_head, *output;
uint16_t current_enqueued_cbs = 0;
#ifdef RTE_LIBRTE_BBDEV_DEBUG
/* Validate op structure */
if (validate_enc_op(op) == -1) {
rte_bbdev_log(ERR, "Turbo encoder validation failed");
return -EINVAL;
}
#endif
uint16_t desc_idx = ((q->sw_ring_head + total_enqueued_cbs)
& q->sw_ring_wrap_mask);
desc = q->ring_addr + desc_idx;
uint64_t fcw_offset = (desc_idx << 8) + ACC100_DESC_FCW_OFFSET;
acc100_fcw_te_fill(op, &desc->req.fcw_te);
input = op->turbo_enc.input.data;
output_head = output = op->turbo_enc.output.data;
in_offset = op->turbo_enc.input.offset;
out_offset = op->turbo_enc.output.offset;
out_length = 0;
mbuf_total_left = op->turbo_enc.input.length;
c = op->turbo_enc.tb_params.c;
r = op->turbo_enc.tb_params.r;
while (mbuf_total_left > 0 && r < c) {
seg_total_left = rte_pktmbuf_data_len(input) - in_offset;
/* Set up DMA descriptor */
desc = q->ring_addr + ((q->sw_ring_head + total_enqueued_cbs)
& q->sw_ring_wrap_mask);
desc->req.data_ptrs[0].address = q->ring_addr_iova + fcw_offset;
desc->req.data_ptrs[0].blen = ACC100_FCW_TE_BLEN;
ret = acc100_dma_desc_te_fill(op, &desc->req, &input, output,
&in_offset, &out_offset, &out_length,
&mbuf_total_left, &seg_total_left, r);
if (unlikely(ret < 0))
return ret;
mbuf_append(output_head, output, out_length);
/* Set total number of CBs in TB */
desc->req.cbs_in_tb = cbs_in_tb;
#ifdef RTE_LIBRTE_BBDEV_DEBUG
rte_memdump(stderr, "FCW", &desc->req.fcw_te,
sizeof(desc->req.fcw_te) - 8);
rte_memdump(stderr, "Req Desc.", desc, sizeof(*desc));
#endif
if (seg_total_left == 0) {
/* Go to the next mbuf */
input = input->next;
in_offset = 0;
output = output->next;
out_offset = 0;
}
total_enqueued_cbs++;
current_enqueued_cbs++;
r++;
}
#ifdef RTE_LIBRTE_BBDEV_DEBUG
if (check_mbuf_total_left(mbuf_total_left) != 0)
return -EINVAL;
#endif
/* Set SDone on last CB descriptor for TB mode. */
desc->req.sdone_enable = 1;
desc->req.irq_enable = q->irq_enable;
return current_enqueued_cbs;
}
#ifdef RTE_LIBRTE_BBDEV_DEBUG
/* Validates turbo decoder parameters */
static inline int
validate_dec_op(struct rte_bbdev_dec_op *op)
{
struct rte_bbdev_op_turbo_dec *turbo_dec = &op->turbo_dec;
struct rte_bbdev_op_dec_turbo_cb_params *cb = NULL;
struct rte_bbdev_op_dec_turbo_tb_params *tb = NULL;
if (op->mempool == NULL) {
rte_bbdev_log(ERR, "Invalid mempool pointer");
return -1;
}
if (turbo_dec->input.data == NULL) {
rte_bbdev_log(ERR, "Invalid input pointer");
return -1;
}
if (turbo_dec->hard_output.data == NULL) {
rte_bbdev_log(ERR, "Invalid hard_output pointer");
return -1;
}
if (check_bit(turbo_dec->op_flags, RTE_BBDEV_TURBO_SOFT_OUTPUT) &&
turbo_dec->soft_output.data == NULL) {
rte_bbdev_log(ERR, "Invalid soft_output pointer");
return -1;
}
if (turbo_dec->rv_index > 3) {
rte_bbdev_log(ERR,
"rv_index (%u) is out of range 0 <= value <= 3",
turbo_dec->rv_index);
return -1;
}
if (turbo_dec->iter_min < 1) {
rte_bbdev_log(ERR,
"iter_min (%u) is less than 1",
turbo_dec->iter_min);
return -1;
}
if (turbo_dec->iter_max <= 2) {
rte_bbdev_log(ERR,
"iter_max (%u) is less than or equal to 2",
turbo_dec->iter_max);
return -1;
}
if (turbo_dec->iter_min > turbo_dec->iter_max) {
rte_bbdev_log(ERR,
"iter_min (%u) is greater than iter_max (%u)",
turbo_dec->iter_min, turbo_dec->iter_max);
return -1;
}
if (turbo_dec->code_block_mode != RTE_BBDEV_TRANSPORT_BLOCK &&
turbo_dec->code_block_mode != RTE_BBDEV_CODE_BLOCK) {
rte_bbdev_log(ERR,
"code_block_mode (%u) is out of range 0 <= value <= 1",
turbo_dec->code_block_mode);
return -1;
}
if (turbo_dec->code_block_mode == RTE_BBDEV_TRANSPORT_BLOCK) {
tb = &turbo_dec->tb_params;
if ((tb->k_neg < RTE_BBDEV_TURBO_MIN_CB_SIZE
|| tb->k_neg > RTE_BBDEV_TURBO_MAX_CB_SIZE)
&& tb->c_neg > 0) {
rte_bbdev_log(ERR,
"k_neg (%u) is out of range %u <= value <= %u",
tb->k_neg, RTE_BBDEV_TURBO_MIN_CB_SIZE,
RTE_BBDEV_TURBO_MAX_CB_SIZE);
return -1;
}
if ((tb->k_pos < RTE_BBDEV_TURBO_MIN_CB_SIZE
|| tb->k_pos > RTE_BBDEV_TURBO_MAX_CB_SIZE)
&& tb->c > tb->c_neg) {
rte_bbdev_log(ERR,
"k_pos (%u) is out of range %u <= value <= %u",
tb->k_pos, RTE_BBDEV_TURBO_MIN_CB_SIZE,
RTE_BBDEV_TURBO_MAX_CB_SIZE);
return -1;
}
if (tb->c_neg > (RTE_BBDEV_TURBO_MAX_CODE_BLOCKS - 1))
rte_bbdev_log(ERR,
"c_neg (%u) is out of range 0 <= value <= %u",
tb->c_neg,
RTE_BBDEV_TURBO_MAX_CODE_BLOCKS - 1);
if (tb->c < 1 || tb->c > RTE_BBDEV_TURBO_MAX_CODE_BLOCKS) {
rte_bbdev_log(ERR,
"c (%u) is out of range 1 <= value <= %u",
tb->c, RTE_BBDEV_TURBO_MAX_CODE_BLOCKS);
return -1;
}
if (tb->cab > tb->c) {
rte_bbdev_log(ERR,
"cab (%u) is greater than c (%u)",
tb->cab, tb->c);
return -1;
}
if (check_bit(turbo_dec->op_flags, RTE_BBDEV_TURBO_EQUALIZER) &&
(tb->ea < RTE_BBDEV_TURBO_MIN_CB_SIZE
|| (tb->ea % 2))
&& tb->cab > 0) {
rte_bbdev_log(ERR,
"ea (%u) is less than %u or it is not even",
tb->ea, RTE_BBDEV_TURBO_MIN_CB_SIZE);
return -1;
}
if (check_bit(turbo_dec->op_flags, RTE_BBDEV_TURBO_EQUALIZER) &&
(tb->eb < RTE_BBDEV_TURBO_MIN_CB_SIZE
|| (tb->eb % 2))
&& tb->c > tb->cab) {
rte_bbdev_log(ERR,
"eb (%u) is less than %u or it is not even",
tb->eb, RTE_BBDEV_TURBO_MIN_CB_SIZE);
}
} else {
cb = &turbo_dec->cb_params;
if (cb->k < RTE_BBDEV_TURBO_MIN_CB_SIZE
|| cb->k > RTE_BBDEV_TURBO_MAX_CB_SIZE) {
rte_bbdev_log(ERR,
"k (%u) is out of range %u <= value <= %u",
cb->k, RTE_BBDEV_TURBO_MIN_CB_SIZE,
RTE_BBDEV_TURBO_MAX_CB_SIZE);
return -1;
}
if (check_bit(turbo_dec->op_flags, RTE_BBDEV_TURBO_EQUALIZER) &&
(cb->e < RTE_BBDEV_TURBO_MIN_CB_SIZE ||
(cb->e % 2))) {
rte_bbdev_log(ERR,
"e (%u) is less than %u or it is not even",
cb->e, RTE_BBDEV_TURBO_MIN_CB_SIZE);
return -1;
}
}
return 0;
}
#endif
/** Enqueue one decode operations for ACC100 device in CB mode */
static inline int
enqueue_dec_one_op_cb(struct acc100_queue *q, struct rte_bbdev_dec_op *op,
uint16_t total_enqueued_cbs)
{
union acc100_dma_desc *desc = NULL;
int ret;
uint32_t in_offset, h_out_offset, s_out_offset, s_out_length,
h_out_length, mbuf_total_left, seg_total_left;
struct rte_mbuf *input, *h_output_head, *h_output,
*s_output_head, *s_output;
#ifdef RTE_LIBRTE_BBDEV_DEBUG
/* Validate op structure */
if (validate_dec_op(op) == -1) {
rte_bbdev_log(ERR, "Turbo decoder validation failed");
return -EINVAL;
}
#endif
uint16_t desc_idx = ((q->sw_ring_head + total_enqueued_cbs)
& q->sw_ring_wrap_mask);
desc = q->ring_addr + desc_idx;
acc100_fcw_td_fill(op, &desc->req.fcw_td);
input = op->turbo_dec.input.data;
h_output_head = h_output = op->turbo_dec.hard_output.data;
s_output_head = s_output = op->turbo_dec.soft_output.data;
in_offset = op->turbo_dec.input.offset;
h_out_offset = op->turbo_dec.hard_output.offset;
s_out_offset = op->turbo_dec.soft_output.offset;
h_out_length = s_out_length = 0;
mbuf_total_left = op->turbo_dec.input.length;
seg_total_left = rte_pktmbuf_data_len(input) - in_offset;
#ifdef RTE_LIBRTE_BBDEV_DEBUG
if (unlikely(input == NULL)) {
rte_bbdev_log(ERR, "Invalid mbuf pointer");
return -EFAULT;
}
#endif
/* Set up DMA descriptor */
desc = q->ring_addr + ((q->sw_ring_head + total_enqueued_cbs)
& q->sw_ring_wrap_mask);
ret = acc100_dma_desc_td_fill(op, &desc->req, &input, h_output,
s_output, &in_offset, &h_out_offset, &s_out_offset,
&h_out_length, &s_out_length, &mbuf_total_left,
&seg_total_left, 0);
if (unlikely(ret < 0))
return ret;
/* Hard output */
mbuf_append(h_output_head, h_output, h_out_length);
/* Soft output */
if (check_bit(op->turbo_dec.op_flags, RTE_BBDEV_TURBO_SOFT_OUTPUT))
mbuf_append(s_output_head, s_output, s_out_length);
#ifdef RTE_LIBRTE_BBDEV_DEBUG
rte_memdump(stderr, "FCW", &desc->req.fcw_td,
sizeof(desc->req.fcw_td) - 8);
rte_memdump(stderr, "Req Desc.", desc, sizeof(*desc));
if (check_mbuf_total_left(mbuf_total_left) != 0)
return -EINVAL;
#endif
/* One CB (one op) was successfully prepared to enqueue */
return 1;
}
static inline int
harq_loopback(struct acc100_queue *q, struct rte_bbdev_dec_op *op,
uint16_t total_enqueued_cbs) {
struct acc100_fcw_ld *fcw;
union acc100_dma_desc *desc;
int next_triplet = 1;
struct rte_mbuf *hq_output_head, *hq_output;
uint16_t harq_dma_length_in, harq_dma_length_out;
uint16_t harq_in_length = op->ldpc_dec.harq_combined_input.length;
if (harq_in_length == 0) {
rte_bbdev_log(ERR, "Loopback of invalid null size\n");
return -EINVAL;
}
int h_comp = check_bit(op->ldpc_dec.op_flags,
RTE_BBDEV_LDPC_HARQ_6BIT_COMPRESSION
) ? 1 : 0;
if (h_comp == 1) {
harq_in_length = harq_in_length * 8 / 6;
harq_in_length = RTE_ALIGN(harq_in_length, 64);
harq_dma_length_in = harq_in_length * 6 / 8;
} else {
harq_in_length = RTE_ALIGN(harq_in_length, 64);
harq_dma_length_in = harq_in_length;
}
harq_dma_length_out = harq_dma_length_in;
bool ddr_mem_in = check_bit(op->ldpc_dec.op_flags,
RTE_BBDEV_LDPC_INTERNAL_HARQ_MEMORY_IN_ENABLE);
union acc100_harq_layout_data *harq_layout = q->d->harq_layout;
uint16_t harq_index = (ddr_mem_in ?
op->ldpc_dec.harq_combined_input.offset :
op->ldpc_dec.harq_combined_output.offset)
/ ACC100_HARQ_OFFSET;
uint16_t desc_idx = ((q->sw_ring_head + total_enqueued_cbs)
& q->sw_ring_wrap_mask);
desc = q->ring_addr + desc_idx;
fcw = &desc->req.fcw_ld;
/* Set the FCW from loopback into DDR */
memset(fcw, 0, sizeof(struct acc100_fcw_ld));
fcw->FCWversion = ACC100_FCW_VER;
fcw->qm = 2;
fcw->Zc = 384;
if (harq_in_length < 16 * ACC100_N_ZC_1)
fcw->Zc = 16;
fcw->ncb = fcw->Zc * ACC100_N_ZC_1;
fcw->rm_e = 2;
fcw->hcin_en = 1;
fcw->hcout_en = 1;
rte_bbdev_log(DEBUG, "Loopback IN %d Index %d offset %d length %d %d\n",
ddr_mem_in, harq_index,
harq_layout[harq_index].offset, harq_in_length,
harq_dma_length_in);
if (ddr_mem_in && (harq_layout[harq_index].offset > 0)) {
fcw->hcin_size0 = harq_layout[harq_index].size0;
fcw->hcin_offset = harq_layout[harq_index].offset;
fcw->hcin_size1 = harq_in_length - fcw->hcin_offset;
harq_dma_length_in = (fcw->hcin_size0 + fcw->hcin_size1);
if (h_comp == 1)
harq_dma_length_in = harq_dma_length_in * 6 / 8;
} else {
fcw->hcin_size0 = harq_in_length;
}
harq_layout[harq_index].val = 0;
rte_bbdev_log(DEBUG, "Loopback FCW Config %d %d %d\n",
fcw->hcin_size0, fcw->hcin_offset, fcw->hcin_size1);
fcw->hcout_size0 = harq_in_length;
fcw->hcin_decomp_mode = h_comp;
fcw->hcout_comp_mode = h_comp;
fcw->gain_i = 1;
fcw->gain_h = 1;
/* Set the prefix of descriptor. This could be done at polling */
acc100_header_init(&desc->req);
/* Null LLR input for Decoder */
desc->req.data_ptrs[next_triplet].address =
q->lb_in_addr_iova;
desc->req.data_ptrs[next_triplet].blen = 2;
desc->req.data_ptrs[next_triplet].blkid = ACC100_DMA_BLKID_IN;
desc->req.data_ptrs[next_triplet].last = 0;
desc->req.data_ptrs[next_triplet].dma_ext = 0;
next_triplet++;
/* HARQ Combine input from either Memory interface */
if (!ddr_mem_in) {
next_triplet = acc100_dma_fill_blk_type_out(&desc->req,
op->ldpc_dec.harq_combined_input.data,
op->ldpc_dec.harq_combined_input.offset,
harq_dma_length_in,
next_triplet,
ACC100_DMA_BLKID_IN_HARQ);
} else {
desc->req.data_ptrs[next_triplet].address =
op->ldpc_dec.harq_combined_input.offset;
desc->req.data_ptrs[next_triplet].blen =
harq_dma_length_in;
desc->req.data_ptrs[next_triplet].blkid =
ACC100_DMA_BLKID_IN_HARQ;
desc->req.data_ptrs[next_triplet].dma_ext = 1;
next_triplet++;
}
desc->req.data_ptrs[next_triplet - 1].last = 1;
desc->req.m2dlen = next_triplet;
/* Dropped decoder hard output */
desc->req.data_ptrs[next_triplet].address =
q->lb_out_addr_iova;
desc->req.data_ptrs[next_triplet].blen = ACC100_BYTES_IN_WORD;
desc->req.data_ptrs[next_triplet].blkid = ACC100_DMA_BLKID_OUT_HARD;
desc->req.data_ptrs[next_triplet].last = 0;
desc->req.data_ptrs[next_triplet].dma_ext = 0;
next_triplet++;
/* HARQ Combine output to either Memory interface */
if (check_bit(op->ldpc_dec.op_flags,
RTE_BBDEV_LDPC_INTERNAL_HARQ_MEMORY_OUT_ENABLE
)) {
desc->req.data_ptrs[next_triplet].address =
op->ldpc_dec.harq_combined_output.offset;
desc->req.data_ptrs[next_triplet].blen =
harq_dma_length_out;
desc->req.data_ptrs[next_triplet].blkid =
ACC100_DMA_BLKID_OUT_HARQ;
desc->req.data_ptrs[next_triplet].dma_ext = 1;
next_triplet++;
} else {
hq_output_head = op->ldpc_dec.harq_combined_output.data;
hq_output = op->ldpc_dec.harq_combined_output.data;
next_triplet = acc100_dma_fill_blk_type_out(
&desc->req,
op->ldpc_dec.harq_combined_output.data,
op->ldpc_dec.harq_combined_output.offset,
harq_dma_length_out,
next_triplet,
ACC100_DMA_BLKID_OUT_HARQ);
/* HARQ output */
mbuf_append(hq_output_head, hq_output, harq_dma_length_out);
op->ldpc_dec.harq_combined_output.length =
harq_dma_length_out;
}
desc->req.data_ptrs[next_triplet - 1].last = 1;
desc->req.d2mlen = next_triplet - desc->req.m2dlen;
desc->req.op_addr = op;
/* One CB (one op) was successfully prepared to enqueue */
return 1;
}
/** Enqueue one decode operations for ACC100 device in CB mode */
static inline int
enqueue_ldpc_dec_one_op_cb(struct acc100_queue *q, struct rte_bbdev_dec_op *op,
uint16_t total_enqueued_cbs, bool same_op)
{
int ret;
if (unlikely(check_bit(op->ldpc_dec.op_flags,
RTE_BBDEV_LDPC_INTERNAL_HARQ_MEMORY_LOOPBACK))) {
ret = harq_loopback(q, op, total_enqueued_cbs);
return ret;
}
#ifdef RTE_LIBRTE_BBDEV_DEBUG
/* Validate op structure */
if (validate_ldpc_dec_op(op) == -1) {
rte_bbdev_log(ERR, "LDPC decoder validation failed");
return -EINVAL;
}
#endif
union acc100_dma_desc *desc;
uint16_t desc_idx = ((q->sw_ring_head + total_enqueued_cbs)
& q->sw_ring_wrap_mask);
desc = q->ring_addr + desc_idx;
struct rte_mbuf *input, *h_output_head, *h_output;
uint32_t in_offset, h_out_offset, mbuf_total_left, h_out_length = 0;
input = op->ldpc_dec.input.data;
h_output_head = h_output = op->ldpc_dec.hard_output.data;
in_offset = op->ldpc_dec.input.offset;
h_out_offset = op->ldpc_dec.hard_output.offset;
mbuf_total_left = op->ldpc_dec.input.length;
#ifdef RTE_LIBRTE_BBDEV_DEBUG
if (unlikely(input == NULL)) {
rte_bbdev_log(ERR, "Invalid mbuf pointer");
return -EFAULT;
}
#endif
union acc100_harq_layout_data *harq_layout = q->d->harq_layout;
if (same_op) {
union acc100_dma_desc *prev_desc;
desc_idx = ((q->sw_ring_head + total_enqueued_cbs - 1)
& q->sw_ring_wrap_mask);
prev_desc = q->ring_addr + desc_idx;
uint8_t *prev_ptr = (uint8_t *) prev_desc;
uint8_t *new_ptr = (uint8_t *) desc;
/* Copy first 4 words and BDESCs */
rte_memcpy(new_ptr, prev_ptr, ACC100_5GUL_SIZE_0);
rte_memcpy(new_ptr + ACC100_5GUL_OFFSET_0,
prev_ptr + ACC100_5GUL_OFFSET_0,
ACC100_5GUL_SIZE_1);
desc->req.op_addr = prev_desc->req.op_addr;
/* Copy FCW */
rte_memcpy(new_ptr + ACC100_DESC_FCW_OFFSET,
prev_ptr + ACC100_DESC_FCW_OFFSET,
ACC100_FCW_LD_BLEN);
acc100_dma_desc_ld_update(op, &desc->req, input, h_output,
&in_offset, &h_out_offset,
&h_out_length, harq_layout);
} else {
struct acc100_fcw_ld *fcw;
uint32_t seg_total_left;
fcw = &desc->req.fcw_ld;
acc100_fcw_ld_fill(op, fcw, harq_layout);
/* Special handling when overusing mbuf */
if (fcw->rm_e < ACC100_MAX_E_MBUF)
seg_total_left = rte_pktmbuf_data_len(input)
- in_offset;
else
seg_total_left = fcw->rm_e;
ret = acc100_dma_desc_ld_fill(op, &desc->req, &input, h_output,
&in_offset, &h_out_offset,
&h_out_length, &mbuf_total_left,
&seg_total_left, fcw);
if (unlikely(ret < 0))
return ret;
}
/* Hard output */
mbuf_append(h_output_head, h_output, h_out_length);
#ifndef ACC100_EXT_MEM
if (op->ldpc_dec.harq_combined_output.length > 0) {
/* Push the HARQ output into host memory */
struct rte_mbuf *hq_output_head, *hq_output;
hq_output_head = op->ldpc_dec.harq_combined_output.data;
hq_output = op->ldpc_dec.harq_combined_output.data;
mbuf_append(hq_output_head, hq_output,
op->ldpc_dec.harq_combined_output.length);
}
#endif
#ifdef RTE_LIBRTE_BBDEV_DEBUG
rte_memdump(stderr, "FCW", &desc->req.fcw_ld,
sizeof(desc->req.fcw_ld) - 8);
rte_memdump(stderr, "Req Desc.", desc, sizeof(*desc));
#endif
/* One CB (one op) was successfully prepared to enqueue */
return 1;
}
/* Enqueue one decode operations for ACC100 device in TB mode */
static inline int
enqueue_ldpc_dec_one_op_tb(struct acc100_queue *q, struct rte_bbdev_dec_op *op,
uint16_t total_enqueued_cbs, uint8_t cbs_in_tb)
{
union acc100_dma_desc *desc = NULL;
int ret;
uint8_t r, c;
uint32_t in_offset, h_out_offset,
h_out_length, mbuf_total_left, seg_total_left;
struct rte_mbuf *input, *h_output_head, *h_output;
uint16_t current_enqueued_cbs = 0;
#ifdef RTE_LIBRTE_BBDEV_DEBUG
/* Validate op structure */
if (validate_ldpc_dec_op(op) == -1) {
rte_bbdev_log(ERR, "LDPC decoder validation failed");
return -EINVAL;
}
#endif
uint16_t desc_idx = ((q->sw_ring_head + total_enqueued_cbs)
& q->sw_ring_wrap_mask);
desc = q->ring_addr + desc_idx;
uint64_t fcw_offset = (desc_idx << 8) + ACC100_DESC_FCW_OFFSET;
union acc100_harq_layout_data *harq_layout = q->d->harq_layout;
acc100_fcw_ld_fill(op, &desc->req.fcw_ld, harq_layout);
input = op->ldpc_dec.input.data;
h_output_head = h_output = op->ldpc_dec.hard_output.data;
in_offset = op->ldpc_dec.input.offset;
h_out_offset = op->ldpc_dec.hard_output.offset;
h_out_length = 0;
mbuf_total_left = op->ldpc_dec.input.length;
c = op->ldpc_dec.tb_params.c;
r = op->ldpc_dec.tb_params.r;
while (mbuf_total_left > 0 && r < c) {
seg_total_left = rte_pktmbuf_data_len(input) - in_offset;
/* Set up DMA descriptor */
desc = q->ring_addr + ((q->sw_ring_head + total_enqueued_cbs)
& q->sw_ring_wrap_mask);
desc->req.data_ptrs[0].address = q->ring_addr_iova + fcw_offset;
desc->req.data_ptrs[0].blen = ACC100_FCW_LD_BLEN;
ret = acc100_dma_desc_ld_fill(op, &desc->req, &input,
h_output, &in_offset, &h_out_offset,
&h_out_length,
&mbuf_total_left, &seg_total_left,
&desc->req.fcw_ld);
if (unlikely(ret < 0))
return ret;
/* Hard output */
mbuf_append(h_output_head, h_output, h_out_length);
/* Set total number of CBs in TB */
desc->req.cbs_in_tb = cbs_in_tb;
#ifdef RTE_LIBRTE_BBDEV_DEBUG
rte_memdump(stderr, "FCW", &desc->req.fcw_td,
sizeof(desc->req.fcw_td) - 8);
rte_memdump(stderr, "Req Desc.", desc, sizeof(*desc));
#endif
if (seg_total_left == 0) {
/* Go to the next mbuf */
input = input->next;
in_offset = 0;
h_output = h_output->next;
h_out_offset = 0;
}
total_enqueued_cbs++;
current_enqueued_cbs++;
r++;
}
#ifdef RTE_LIBRTE_BBDEV_DEBUG
if (check_mbuf_total_left(mbuf_total_left) != 0)
return -EINVAL;
#endif
/* Set SDone on last CB descriptor for TB mode */
desc->req.sdone_enable = 1;
desc->req.irq_enable = q->irq_enable;
return current_enqueued_cbs;
}
/* Enqueue one decode operations for ACC100 device in TB mode */
static inline int
enqueue_dec_one_op_tb(struct acc100_queue *q, struct rte_bbdev_dec_op *op,
uint16_t total_enqueued_cbs, uint8_t cbs_in_tb)
{
union acc100_dma_desc *desc = NULL;
int ret;
uint8_t r, c;
uint32_t in_offset, h_out_offset, s_out_offset, s_out_length,
h_out_length, mbuf_total_left, seg_total_left;
struct rte_mbuf *input, *h_output_head, *h_output,
*s_output_head, *s_output;
uint16_t current_enqueued_cbs = 0;
#ifdef RTE_LIBRTE_BBDEV_DEBUG
/* Validate op structure */
if (validate_dec_op(op) == -1) {
rte_bbdev_log(ERR, "Turbo decoder validation failed");
return -EINVAL;
}
#endif
uint16_t desc_idx = ((q->sw_ring_head + total_enqueued_cbs)
& q->sw_ring_wrap_mask);
desc = q->ring_addr + desc_idx;
uint64_t fcw_offset = (desc_idx << 8) + ACC100_DESC_FCW_OFFSET;
acc100_fcw_td_fill(op, &desc->req.fcw_td);
input = op->turbo_dec.input.data;
h_output_head = h_output = op->turbo_dec.hard_output.data;
s_output_head = s_output = op->turbo_dec.soft_output.data;
in_offset = op->turbo_dec.input.offset;
h_out_offset = op->turbo_dec.hard_output.offset;
s_out_offset = op->turbo_dec.soft_output.offset;
h_out_length = s_out_length = 0;
mbuf_total_left = op->turbo_dec.input.length;
c = op->turbo_dec.tb_params.c;
r = op->turbo_dec.tb_params.r;
while (mbuf_total_left > 0 && r < c) {
seg_total_left = rte_pktmbuf_data_len(input) - in_offset;
/* Set up DMA descriptor */
desc = q->ring_addr + ((q->sw_ring_head + total_enqueued_cbs)
& q->sw_ring_wrap_mask);
desc->req.data_ptrs[0].address = q->ring_addr_iova + fcw_offset;
desc->req.data_ptrs[0].blen = ACC100_FCW_TD_BLEN;
ret = acc100_dma_desc_td_fill(op, &desc->req, &input,
h_output, s_output, &in_offset, &h_out_offset,
&s_out_offset, &h_out_length, &s_out_length,
&mbuf_total_left, &seg_total_left, r);
if (unlikely(ret < 0))
return ret;
/* Hard output */
mbuf_append(h_output_head, h_output, h_out_length);
/* Soft output */
if (check_bit(op->turbo_dec.op_flags,
RTE_BBDEV_TURBO_SOFT_OUTPUT))
mbuf_append(s_output_head, s_output, s_out_length);
/* Set total number of CBs in TB */
desc->req.cbs_in_tb = cbs_in_tb;
#ifdef RTE_LIBRTE_BBDEV_DEBUG
rte_memdump(stderr, "FCW", &desc->req.fcw_td,
sizeof(desc->req.fcw_td) - 8);
rte_memdump(stderr, "Req Desc.", desc, sizeof(*desc));
#endif
if (seg_total_left == 0) {
/* Go to the next mbuf */
input = input->next;
in_offset = 0;
h_output = h_output->next;
h_out_offset = 0;
if (check_bit(op->turbo_dec.op_flags,
RTE_BBDEV_TURBO_SOFT_OUTPUT)) {
s_output = s_output->next;
s_out_offset = 0;
}
}
total_enqueued_cbs++;
current_enqueued_cbs++;
r++;
}
#ifdef RTE_LIBRTE_BBDEV_DEBUG
if (check_mbuf_total_left(mbuf_total_left) != 0)
return -EINVAL;
#endif
/* Set SDone on last CB descriptor for TB mode */
desc->req.sdone_enable = 1;
desc->req.irq_enable = q->irq_enable;
return current_enqueued_cbs;
}
/* Calculates number of CBs in processed encoder TB based on 'r' and input
* length.
*/
static inline uint8_t
get_num_cbs_in_tb_enc(struct rte_bbdev_op_turbo_enc *turbo_enc)
{
uint8_t c, c_neg, r, crc24_bits = 0;
uint16_t k, k_neg, k_pos;
uint8_t cbs_in_tb = 0;
int32_t length;
length = turbo_enc->input.length;
r = turbo_enc->tb_params.r;
c = turbo_enc->tb_params.c;
c_neg = turbo_enc->tb_params.c_neg;
k_neg = turbo_enc->tb_params.k_neg;
k_pos = turbo_enc->tb_params.k_pos;
crc24_bits = 0;
if (check_bit(turbo_enc->op_flags, RTE_BBDEV_TURBO_CRC_24B_ATTACH))
crc24_bits = 24;
while (length > 0 && r < c) {
k = (r < c_neg) ? k_neg : k_pos;
length -= (k - crc24_bits) >> 3;
r++;
cbs_in_tb++;
}
return cbs_in_tb;
}
/* Calculates number of CBs in processed decoder TB based on 'r' and input
* length.
*/
static inline uint16_t
get_num_cbs_in_tb_dec(struct rte_bbdev_op_turbo_dec *turbo_dec)
{
uint8_t c, c_neg, r = 0;
uint16_t kw, k, k_neg, k_pos, cbs_in_tb = 0;
int32_t length;
length = turbo_dec->input.length;
r = turbo_dec->tb_params.r;
c = turbo_dec->tb_params.c;
c_neg = turbo_dec->tb_params.c_neg;
k_neg = turbo_dec->tb_params.k_neg;
k_pos = turbo_dec->tb_params.k_pos;
while (length > 0 && r < c) {
k = (r < c_neg) ? k_neg : k_pos;
kw = RTE_ALIGN_CEIL(k + 4, 32) * 3;
length -= kw;
r++;
cbs_in_tb++;
}
return cbs_in_tb;
}
/* Calculates number of CBs in processed decoder TB based on 'r' and input
* length.
*/
static inline uint16_t
get_num_cbs_in_tb_ldpc_dec(struct rte_bbdev_op_ldpc_dec *ldpc_dec)
{
uint16_t r, cbs_in_tb = 0;
int32_t length = ldpc_dec->input.length;
r = ldpc_dec->tb_params.r;
while (length > 0 && r < ldpc_dec->tb_params.c) {
length -= (r < ldpc_dec->tb_params.cab) ?
ldpc_dec->tb_params.ea :
ldpc_dec->tb_params.eb;
r++;
cbs_in_tb++;
}
return cbs_in_tb;
}
/* Enqueue encode operations for ACC100 device in CB mode. */
static uint16_t
acc100_enqueue_enc_cb(struct rte_bbdev_queue_data *q_data,
struct rte_bbdev_enc_op **ops, uint16_t num)
{
struct acc100_queue *q = q_data->queue_private;
int32_t avail = q->sw_ring_depth + q->sw_ring_tail - q->sw_ring_head;
uint16_t i;
union acc100_dma_desc *desc;
int ret;
for (i = 0; i < num; ++i) {
/* Check if there are available space for further processing */
if (unlikely(avail - 1 < 0))
break;
avail -= 1;
ret = enqueue_enc_one_op_cb(q, ops[i], i);
if (ret < 0)
break;
}
if (unlikely(i == 0))
return 0; /* Nothing to enqueue */
/* Set SDone in last CB in enqueued ops for CB mode*/
desc = q->ring_addr + ((q->sw_ring_head + i - 1)
& q->sw_ring_wrap_mask);
desc->req.sdone_enable = 1;
desc->req.irq_enable = q->irq_enable;
acc100_dma_enqueue(q, i, &q_data->queue_stats);
/* Update stats */
q_data->queue_stats.enqueued_count += i;
q_data->queue_stats.enqueue_err_count += num - i;
return i;
}
/* Check we can mux encode operations with common FCW */
static inline bool
check_mux(struct rte_bbdev_enc_op **ops, uint16_t num) {
uint16_t i;
if (num <= 1)
return false;
for (i = 1; i < num; ++i) {
/* Only mux compatible code blocks */
if (memcmp((uint8_t *)(&ops[i]->ldpc_enc) + ACC100_ENC_OFFSET,
(uint8_t *)(&ops[0]->ldpc_enc) +
ACC100_ENC_OFFSET,
ACC100_CMP_ENC_SIZE) != 0)
return false;
}
return true;
}
/** Enqueue encode operations for ACC100 device in CB mode. */
static inline uint16_t
acc100_enqueue_ldpc_enc_cb(struct rte_bbdev_queue_data *q_data,
struct rte_bbdev_enc_op **ops, uint16_t num)
{
struct acc100_queue *q = q_data->queue_private;
int32_t avail = q->sw_ring_depth + q->sw_ring_tail - q->sw_ring_head;
uint16_t i = 0;
union acc100_dma_desc *desc;
int ret, desc_idx = 0;
int16_t enq, left = num;
while (left > 0) {
if (unlikely(avail < 1))
break;
avail--;
enq = RTE_MIN(left, ACC100_MUX_5GDL_DESC);
if (check_mux(&ops[i], enq)) {
ret = enqueue_ldpc_enc_n_op_cb(q, &ops[i],
desc_idx, enq);
if (ret < 0)
break;
i += enq;
} else {
ret = enqueue_ldpc_enc_one_op_cb(q, ops[i], desc_idx);
if (ret < 0)
break;
i++;
}
desc_idx++;
left = num - i;
}
if (unlikely(i == 0))
return 0; /* Nothing to enqueue */
/* Set SDone in last CB in enqueued ops for CB mode*/
desc = q->ring_addr + ((q->sw_ring_head + desc_idx - 1)
& q->sw_ring_wrap_mask);
desc->req.sdone_enable = 1;
desc->req.irq_enable = q->irq_enable;
acc100_dma_enqueue(q, desc_idx, &q_data->queue_stats);
/* Update stats */
q_data->queue_stats.enqueued_count += i;
q_data->queue_stats.enqueue_err_count += num - i;
return i;
}
/* Enqueue encode operations for ACC100 device in TB mode. */
static uint16_t
acc100_enqueue_enc_tb(struct rte_bbdev_queue_data *q_data,
struct rte_bbdev_enc_op **ops, uint16_t num)
{
struct acc100_queue *q = q_data->queue_private;
int32_t avail = q->sw_ring_depth + q->sw_ring_tail - q->sw_ring_head;
uint16_t i, enqueued_cbs = 0;
uint8_t cbs_in_tb;
int ret;
for (i = 0; i < num; ++i) {
cbs_in_tb = get_num_cbs_in_tb_enc(&ops[i]->turbo_enc);
/* Check if there are available space for further processing */
if (unlikely(avail - cbs_in_tb < 0))
break;
avail -= cbs_in_tb;
ret = enqueue_enc_one_op_tb(q, ops[i], enqueued_cbs, cbs_in_tb);
if (ret < 0)
break;
enqueued_cbs += ret;
}
if (unlikely(enqueued_cbs == 0))
return 0; /* Nothing to enqueue */
acc100_dma_enqueue(q, enqueued_cbs, &q_data->queue_stats);
/* Update stats */
q_data->queue_stats.enqueued_count += i;
q_data->queue_stats.enqueue_err_count += num - i;
return i;
}
/* Enqueue encode operations for ACC100 device. */
static uint16_t
acc100_enqueue_enc(struct rte_bbdev_queue_data *q_data,
struct rte_bbdev_enc_op **ops, uint16_t num)
{
if (unlikely(num == 0))
return 0;
if (ops[0]->turbo_enc.code_block_mode == RTE_BBDEV_TRANSPORT_BLOCK)
return acc100_enqueue_enc_tb(q_data, ops, num);
else
return acc100_enqueue_enc_cb(q_data, ops, num);
}
/* Enqueue encode operations for ACC100 device. */
static uint16_t
acc100_enqueue_ldpc_enc(struct rte_bbdev_queue_data *q_data,
struct rte_bbdev_enc_op **ops, uint16_t num)
{
if (unlikely(num == 0))
return 0;
if (ops[0]->ldpc_enc.code_block_mode == RTE_BBDEV_TRANSPORT_BLOCK)
return acc100_enqueue_enc_tb(q_data, ops, num);
else
return acc100_enqueue_ldpc_enc_cb(q_data, ops, num);
}
/* Enqueue decode operations for ACC100 device in CB mode */
static uint16_t
acc100_enqueue_dec_cb(struct rte_bbdev_queue_data *q_data,
struct rte_bbdev_dec_op **ops, uint16_t num)
{
struct acc100_queue *q = q_data->queue_private;
int32_t avail = q->sw_ring_depth + q->sw_ring_tail - q->sw_ring_head;
uint16_t i;
union acc100_dma_desc *desc;
int ret;
for (i = 0; i < num; ++i) {
/* Check if there are available space for further processing */
if (unlikely(avail - 1 < 0))
break;
avail -= 1;
ret = enqueue_dec_one_op_cb(q, ops[i], i);
if (ret < 0)
break;
}
if (unlikely(i == 0))
return 0; /* Nothing to enqueue */
/* Set SDone in last CB in enqueued ops for CB mode*/
desc = q->ring_addr + ((q->sw_ring_head + i - 1)
& q->sw_ring_wrap_mask);
desc->req.sdone_enable = 1;
desc->req.irq_enable = q->irq_enable;
acc100_dma_enqueue(q, i, &q_data->queue_stats);
/* Update stats */
q_data->queue_stats.enqueued_count += i;
q_data->queue_stats.enqueue_err_count += num - i;
return i;
}
/* Check we can mux encode operations with common FCW */
static inline bool
cmp_ldpc_dec_op(struct rte_bbdev_dec_op **ops) {
/* Only mux compatible code blocks */
if (memcmp((uint8_t *)(&ops[0]->ldpc_dec) + ACC100_DEC_OFFSET,
(uint8_t *)(&ops[1]->ldpc_dec) +
ACC100_DEC_OFFSET, ACC100_CMP_DEC_SIZE) != 0) {
return false;
} else
return true;
}
/* Enqueue decode operations for ACC100 device in TB mode */
static uint16_t
acc100_enqueue_ldpc_dec_tb(struct rte_bbdev_queue_data *q_data,
struct rte_bbdev_dec_op **ops, uint16_t num)
{
struct acc100_queue *q = q_data->queue_private;
int32_t avail = q->sw_ring_depth + q->sw_ring_tail - q->sw_ring_head;
uint16_t i, enqueued_cbs = 0;
uint8_t cbs_in_tb;
int ret;
for (i = 0; i < num; ++i) {
cbs_in_tb = get_num_cbs_in_tb_ldpc_dec(&ops[i]->ldpc_dec);
/* Check if there are available space for further processing */
if (unlikely(avail - cbs_in_tb < 0))
break;
avail -= cbs_in_tb;
ret = enqueue_ldpc_dec_one_op_tb(q, ops[i],
enqueued_cbs, cbs_in_tb);
if (ret < 0)
break;
enqueued_cbs += ret;
}
acc100_dma_enqueue(q, enqueued_cbs, &q_data->queue_stats);
/* Update stats */
q_data->queue_stats.enqueued_count += i;
q_data->queue_stats.enqueue_err_count += num - i;
return i;
}
/* Enqueue decode operations for ACC100 device in CB mode */
static uint16_t
acc100_enqueue_ldpc_dec_cb(struct rte_bbdev_queue_data *q_data,
struct rte_bbdev_dec_op **ops, uint16_t num)
{
struct acc100_queue *q = q_data->queue_private;
int32_t avail = q->sw_ring_depth + q->sw_ring_tail - q->sw_ring_head;
uint16_t i;
union acc100_dma_desc *desc;
int ret;
bool same_op = false;
for (i = 0; i < num; ++i) {
/* Check if there are available space for further processing */
if (unlikely(avail < 1))
break;
avail -= 1;
if (i > 0)
same_op = cmp_ldpc_dec_op(&ops[i-1]);
rte_bbdev_log(INFO, "Op %d %d %d %d %d %d %d %d %d %d %d %d\n",
i, ops[i]->ldpc_dec.op_flags, ops[i]->ldpc_dec.rv_index,
ops[i]->ldpc_dec.iter_max, ops[i]->ldpc_dec.iter_count,
ops[i]->ldpc_dec.basegraph, ops[i]->ldpc_dec.z_c,
ops[i]->ldpc_dec.n_cb, ops[i]->ldpc_dec.q_m,
ops[i]->ldpc_dec.n_filler, ops[i]->ldpc_dec.cb_params.e,
same_op);
ret = enqueue_ldpc_dec_one_op_cb(q, ops[i], i, same_op);
if (ret < 0)
break;
}
if (unlikely(i == 0))
return 0; /* Nothing to enqueue */
/* Set SDone in last CB in enqueued ops for CB mode*/
desc = q->ring_addr + ((q->sw_ring_head + i - 1)
& q->sw_ring_wrap_mask);
desc->req.sdone_enable = 1;
desc->req.irq_enable = q->irq_enable;
acc100_dma_enqueue(q, i, &q_data->queue_stats);
/* Update stats */
q_data->queue_stats.enqueued_count += i;
q_data->queue_stats.enqueue_err_count += num - i;
return i;
}
/* Enqueue decode operations for ACC100 device in TB mode */
static uint16_t
acc100_enqueue_dec_tb(struct rte_bbdev_queue_data *q_data,
struct rte_bbdev_dec_op **ops, uint16_t num)
{
struct acc100_queue *q = q_data->queue_private;
int32_t avail = q->sw_ring_depth + q->sw_ring_tail - q->sw_ring_head;
uint16_t i, enqueued_cbs = 0;
uint8_t cbs_in_tb;
int ret;
for (i = 0; i < num; ++i) {
cbs_in_tb = get_num_cbs_in_tb_dec(&ops[i]->turbo_dec);
/* Check if there are available space for further processing */
if (unlikely(avail - cbs_in_tb < 0))
break;
avail -= cbs_in_tb;
ret = enqueue_dec_one_op_tb(q, ops[i], enqueued_cbs, cbs_in_tb);
if (ret < 0)
break;
enqueued_cbs += ret;
}
acc100_dma_enqueue(q, enqueued_cbs, &q_data->queue_stats);
/* Update stats */
q_data->queue_stats.enqueued_count += i;
q_data->queue_stats.enqueue_err_count += num - i;
return i;
}
/* Enqueue decode operations for ACC100 device. */
static uint16_t
acc100_enqueue_dec(struct rte_bbdev_queue_data *q_data,
struct rte_bbdev_dec_op **ops, uint16_t num)
{
if (unlikely(num == 0))
return 0;
if (ops[0]->turbo_dec.code_block_mode == RTE_BBDEV_TRANSPORT_BLOCK)
return acc100_enqueue_dec_tb(q_data, ops, num);
else
return acc100_enqueue_dec_cb(q_data, ops, num);
}
/* Enqueue decode operations for ACC100 device. */
static uint16_t
acc100_enqueue_ldpc_dec(struct rte_bbdev_queue_data *q_data,
struct rte_bbdev_dec_op **ops, uint16_t num)
{
struct acc100_queue *q = q_data->queue_private;
int32_t aq_avail = q->aq_depth +
(q->aq_dequeued - q->aq_enqueued) / 128;
if (unlikely((aq_avail == 0) || (num == 0)))
return 0;
if (ops[0]->ldpc_dec.code_block_mode == RTE_BBDEV_TRANSPORT_BLOCK)
return acc100_enqueue_ldpc_dec_tb(q_data, ops, num);
else
return acc100_enqueue_ldpc_dec_cb(q_data, ops, num);
}
/* Dequeue one encode operations from ACC100 device in CB mode */
static inline int
dequeue_enc_one_op_cb(struct acc100_queue *q, struct rte_bbdev_enc_op **ref_op,
uint16_t total_dequeued_cbs, uint32_t *aq_dequeued)
{
union acc100_dma_desc *desc, atom_desc;
union acc100_dma_rsp_desc rsp;
struct rte_bbdev_enc_op *op;
int i;
desc = q->ring_addr + ((q->sw_ring_tail + total_dequeued_cbs)
& q->sw_ring_wrap_mask);
atom_desc.atom_hdr = __atomic_load_n((uint64_t *)desc,
__ATOMIC_RELAXED);
/* Check fdone bit */
if (!(atom_desc.rsp.val & ACC100_FDONE))
return -1;
rsp.val = atom_desc.rsp.val;
rte_bbdev_log_debug("Resp. desc %p: %x", desc, rsp.val);
/* Dequeue */
op = desc->req.op_addr;
/* Clearing status, it will be set based on response */
op->status = 0;
op->status |= ((rsp.input_err)
? (1 << RTE_BBDEV_DATA_ERROR) : 0);
op->status |= ((rsp.dma_err) ? (1 << RTE_BBDEV_DRV_ERROR) : 0);
op->status |= ((rsp.fcw_err) ? (1 << RTE_BBDEV_DRV_ERROR) : 0);
if (desc->req.last_desc_in_batch) {
(*aq_dequeued)++;
desc->req.last_desc_in_batch = 0;
}
desc->rsp.val = ACC100_DMA_DESC_TYPE;
desc->rsp.add_info_0 = 0; /*Reserved bits */
desc->rsp.add_info_1 = 0; /*Reserved bits */
/* Flag that the muxing cause loss of opaque data */
op->opaque_data = (void *)-1;
for (i = 0 ; i < desc->req.numCBs; i++)
ref_op[i] = op;
/* One CB (op) was successfully dequeued */
return desc->req.numCBs;
}
/* Dequeue one encode operations from ACC100 device in TB mode */
static inline int
dequeue_enc_one_op_tb(struct acc100_queue *q, struct rte_bbdev_enc_op **ref_op,
uint16_t total_dequeued_cbs, uint32_t *aq_dequeued)
{
union acc100_dma_desc *desc, *last_desc, atom_desc;
union acc100_dma_rsp_desc rsp;
struct rte_bbdev_enc_op *op;
uint8_t i = 0;
uint16_t current_dequeued_cbs = 0, cbs_in_tb;
desc = q->ring_addr + ((q->sw_ring_tail + total_dequeued_cbs)
& q->sw_ring_wrap_mask);
atom_desc.atom_hdr = __atomic_load_n((uint64_t *)desc,
__ATOMIC_RELAXED);
/* Check fdone bit */
if (!(atom_desc.rsp.val & ACC100_FDONE))
return -1;
/* Get number of CBs in dequeued TB */
cbs_in_tb = desc->req.cbs_in_tb;
/* Get last CB */
last_desc = q->ring_addr + ((q->sw_ring_tail
+ total_dequeued_cbs + cbs_in_tb - 1)
& q->sw_ring_wrap_mask);
/* Check if last CB in TB is ready to dequeue (and thus
* the whole TB) - checking sdone bit. If not return.
*/
atom_desc.atom_hdr = __atomic_load_n((uint64_t *)last_desc,
__ATOMIC_RELAXED);
if (!(atom_desc.rsp.val & ACC100_SDONE))
return -1;
/* Dequeue */
op = desc->req.op_addr;
/* Clearing status, it will be set based on response */
op->status = 0;
while (i < cbs_in_tb) {
desc = q->ring_addr + ((q->sw_ring_tail
+ total_dequeued_cbs)
& q->sw_ring_wrap_mask);
atom_desc.atom_hdr = __atomic_load_n((uint64_t *)desc,
__ATOMIC_RELAXED);
rsp.val = atom_desc.rsp.val;
rte_bbdev_log_debug("Resp. desc %p: %x", desc,
rsp.val);
op->status |= ((rsp.input_err)
? (1 << RTE_BBDEV_DATA_ERROR) : 0);
op->status |= ((rsp.dma_err) ? (1 << RTE_BBDEV_DRV_ERROR) : 0);
op->status |= ((rsp.fcw_err) ? (1 << RTE_BBDEV_DRV_ERROR) : 0);
if (desc->req.last_desc_in_batch) {
(*aq_dequeued)++;
desc->req.last_desc_in_batch = 0;
}
desc->rsp.val = ACC100_DMA_DESC_TYPE;
desc->rsp.add_info_0 = 0;
desc->rsp.add_info_1 = 0;
total_dequeued_cbs++;
current_dequeued_cbs++;
i++;
}
*ref_op = op;
return current_dequeued_cbs;
}
/* Dequeue one decode operation from ACC100 device in CB mode */
static inline int
dequeue_dec_one_op_cb(struct rte_bbdev_queue_data *q_data,
struct acc100_queue *q, struct rte_bbdev_dec_op **ref_op,
uint16_t dequeued_cbs, uint32_t *aq_dequeued)
{
union acc100_dma_desc *desc, atom_desc;
union acc100_dma_rsp_desc rsp;
struct rte_bbdev_dec_op *op;
desc = q->ring_addr + ((q->sw_ring_tail + dequeued_cbs)
& q->sw_ring_wrap_mask);
atom_desc.atom_hdr = __atomic_load_n((uint64_t *)desc,
__ATOMIC_RELAXED);
/* Check fdone bit */
if (!(atom_desc.rsp.val & ACC100_FDONE))
return -1;
rsp.val = atom_desc.rsp.val;
rte_bbdev_log_debug("Resp. desc %p: %x", desc, rsp.val);
/* Dequeue */
op = desc->req.op_addr;
/* Clearing status, it will be set based on response */
op->status = 0;
op->status |= ((rsp.input_err)
? (1 << RTE_BBDEV_DATA_ERROR) : 0);
op->status |= ((rsp.dma_err) ? (1 << RTE_BBDEV_DRV_ERROR) : 0);
op->status |= ((rsp.fcw_err) ? (1 << RTE_BBDEV_DRV_ERROR) : 0);
if (op->status != 0) {
q_data->queue_stats.dequeue_err_count++;
acc100_check_ir(q->d);
}
/* CRC invalid if error exists */
if (!op->status)
op->status |= rsp.crc_status << RTE_BBDEV_CRC_ERROR;
op->turbo_dec.iter_count = (uint8_t) rsp.iter_cnt / 2;
/* Check if this is the last desc in batch (Atomic Queue) */
if (desc->req.last_desc_in_batch) {
(*aq_dequeued)++;
desc->req.last_desc_in_batch = 0;
}
desc->rsp.val = ACC100_DMA_DESC_TYPE;
desc->rsp.add_info_0 = 0;
desc->rsp.add_info_1 = 0;
*ref_op = op;
/* One CB (op) was successfully dequeued */
return 1;
}
/* Dequeue one decode operations from ACC100 device in CB mode */
static inline int
dequeue_ldpc_dec_one_op_cb(struct rte_bbdev_queue_data *q_data,
struct acc100_queue *q, struct rte_bbdev_dec_op **ref_op,
uint16_t dequeued_cbs, uint32_t *aq_dequeued)
{
union acc100_dma_desc *desc, atom_desc;
union acc100_dma_rsp_desc rsp;
struct rte_bbdev_dec_op *op;
desc = q->ring_addr + ((q->sw_ring_tail + dequeued_cbs)
& q->sw_ring_wrap_mask);
atom_desc.atom_hdr = __atomic_load_n((uint64_t *)desc,
__ATOMIC_RELAXED);
/* Check fdone bit */
if (!(atom_desc.rsp.val & ACC100_FDONE))
return -1;
rsp.val = atom_desc.rsp.val;
/* Dequeue */
op = desc->req.op_addr;
/* Clearing status, it will be set based on response */
op->status = 0;
op->status |= rsp.input_err << RTE_BBDEV_DATA_ERROR;
op->status |= rsp.dma_err << RTE_BBDEV_DRV_ERROR;
op->status |= rsp.fcw_err << RTE_BBDEV_DRV_ERROR;
if (op->status != 0)
q_data->queue_stats.dequeue_err_count++;
op->status |= rsp.crc_status << RTE_BBDEV_CRC_ERROR;
if (op->ldpc_dec.hard_output.length > 0 && !rsp.synd_ok)
op->status |= 1 << RTE_BBDEV_SYNDROME_ERROR;
op->ldpc_dec.iter_count = (uint8_t) rsp.iter_cnt;
if (op->status & (1 << RTE_BBDEV_DRV_ERROR))
acc100_check_ir(q->d);
/* Check if this is the last desc in batch (Atomic Queue) */
if (desc->req.last_desc_in_batch) {
(*aq_dequeued)++;
desc->req.last_desc_in_batch = 0;
}
desc->rsp.val = ACC100_DMA_DESC_TYPE;
desc->rsp.add_info_0 = 0;
desc->rsp.add_info_1 = 0;
*ref_op = op;
/* One CB (op) was successfully dequeued */
return 1;
}
/* Dequeue one decode operations from ACC100 device in TB mode. */
static inline int
dequeue_dec_one_op_tb(struct acc100_queue *q, struct rte_bbdev_dec_op **ref_op,
uint16_t dequeued_cbs, uint32_t *aq_dequeued)
{
union acc100_dma_desc *desc, *last_desc, atom_desc;
union acc100_dma_rsp_desc rsp;
struct rte_bbdev_dec_op *op;
uint8_t cbs_in_tb = 1, cb_idx = 0;
desc = q->ring_addr + ((q->sw_ring_tail + dequeued_cbs)
& q->sw_ring_wrap_mask);
atom_desc.atom_hdr = __atomic_load_n((uint64_t *)desc,
__ATOMIC_RELAXED);
/* Check fdone bit */
if (!(atom_desc.rsp.val & ACC100_FDONE))
return -1;
/* Dequeue */
op = desc->req.op_addr;
/* Get number of CBs in dequeued TB */
cbs_in_tb = desc->req.cbs_in_tb;
/* Get last CB */
last_desc = q->ring_addr + ((q->sw_ring_tail
+ dequeued_cbs + cbs_in_tb - 1)
& q->sw_ring_wrap_mask);
/* Check if last CB in TB is ready to dequeue (and thus
* the whole TB) - checking sdone bit. If not return.
*/
atom_desc.atom_hdr = __atomic_load_n((uint64_t *)last_desc,
__ATOMIC_RELAXED);
if (!(atom_desc.rsp.val & ACC100_SDONE))
return -1;
/* Clearing status, it will be set based on response */
op->status = 0;
/* Read remaining CBs if exists */
while (cb_idx < cbs_in_tb) {
desc = q->ring_addr + ((q->sw_ring_tail + dequeued_cbs)
& q->sw_ring_wrap_mask);
atom_desc.atom_hdr = __atomic_load_n((uint64_t *)desc,
__ATOMIC_RELAXED);
rsp.val = atom_desc.rsp.val;
rte_bbdev_log_debug("Resp. desc %p: %x", desc,
rsp.val);
op->status |= ((rsp.input_err)
? (1 << RTE_BBDEV_DATA_ERROR) : 0);
op->status |= ((rsp.dma_err) ? (1 << RTE_BBDEV_DRV_ERROR) : 0);
op->status |= ((rsp.fcw_err) ? (1 << RTE_BBDEV_DRV_ERROR) : 0);
/* CRC invalid if error exists */
if (!op->status)
op->status |= rsp.crc_status << RTE_BBDEV_CRC_ERROR;
op->turbo_dec.iter_count = RTE_MAX((uint8_t) rsp.iter_cnt,
op->turbo_dec.iter_count);
/* Check if this is the last desc in batch (Atomic Queue) */
if (desc->req.last_desc_in_batch) {
(*aq_dequeued)++;
desc->req.last_desc_in_batch = 0;
}
desc->rsp.val = ACC100_DMA_DESC_TYPE;
desc->rsp.add_info_0 = 0;
desc->rsp.add_info_1 = 0;
dequeued_cbs++;
cb_idx++;
}
*ref_op = op;
return cb_idx;
}
/* Dequeue encode operations from ACC100 device. */
static uint16_t
acc100_dequeue_enc(struct rte_bbdev_queue_data *q_data,
struct rte_bbdev_enc_op **ops, uint16_t num)
{
struct acc100_queue *q = q_data->queue_private;
uint16_t dequeue_num;
uint32_t avail = q->sw_ring_head - q->sw_ring_tail;
uint32_t aq_dequeued = 0;
uint16_t i, dequeued_cbs = 0;
struct rte_bbdev_enc_op *op;
int ret;
#ifdef RTE_LIBRTE_BBDEV_DEBUG
if (unlikely(ops == NULL || q == NULL)) {
rte_bbdev_log_debug("Unexpected undefined pointer");
return 0;
}
#endif
dequeue_num = (avail < num) ? avail : num;
for (i = 0; i < dequeue_num; ++i) {
op = (q->ring_addr + ((q->sw_ring_tail + dequeued_cbs)
& q->sw_ring_wrap_mask))->req.op_addr;
if (op->turbo_enc.code_block_mode == RTE_BBDEV_TRANSPORT_BLOCK)
ret = dequeue_enc_one_op_tb(q, &ops[i], dequeued_cbs,
&aq_dequeued);
else
ret = dequeue_enc_one_op_cb(q, &ops[i], dequeued_cbs,
&aq_dequeued);
if (ret < 0)
break;
dequeued_cbs += ret;
}
q->aq_dequeued += aq_dequeued;
q->sw_ring_tail += dequeued_cbs;
/* Update enqueue stats */
q_data->queue_stats.dequeued_count += i;
return i;
}
/* Dequeue LDPC encode operations from ACC100 device. */
static uint16_t
acc100_dequeue_ldpc_enc(struct rte_bbdev_queue_data *q_data,
struct rte_bbdev_enc_op **ops, uint16_t num)
{
struct acc100_queue *q = q_data->queue_private;
uint32_t avail = q->sw_ring_head - q->sw_ring_tail;
uint32_t aq_dequeued = 0;
uint16_t dequeue_num, i, dequeued_cbs = 0, dequeued_descs = 0;
int ret;
#ifdef RTE_LIBRTE_BBDEV_DEBUG
if (unlikely(ops == 0 && q == NULL))
return 0;
#endif
dequeue_num = RTE_MIN(avail, num);
for (i = 0; i < dequeue_num; i++) {
ret = dequeue_enc_one_op_cb(q, &ops[dequeued_cbs],
dequeued_descs, &aq_dequeued);
if (ret < 0)
break;
dequeued_cbs += ret;
dequeued_descs++;
if (dequeued_cbs >= num)
break;
}
q->aq_dequeued += aq_dequeued;
q->sw_ring_tail += dequeued_descs;
/* Update enqueue stats */
q_data->queue_stats.dequeued_count += dequeued_cbs;
return dequeued_cbs;
}
/* Dequeue decode operations from ACC100 device. */
static uint16_t
acc100_dequeue_dec(struct rte_bbdev_queue_data *q_data,
struct rte_bbdev_dec_op **ops, uint16_t num)
{
struct acc100_queue *q = q_data->queue_private;
uint16_t dequeue_num;
uint32_t avail = q->sw_ring_head - q->sw_ring_tail;
uint32_t aq_dequeued = 0;
uint16_t i;
uint16_t dequeued_cbs = 0;
struct rte_bbdev_dec_op *op;
int ret;
#ifdef RTE_LIBRTE_BBDEV_DEBUG
if (unlikely(ops == 0 && q == NULL))
return 0;
#endif
dequeue_num = (avail < num) ? avail : num;
for (i = 0; i < dequeue_num; ++i) {
op = (q->ring_addr + ((q->sw_ring_tail + dequeued_cbs)
& q->sw_ring_wrap_mask))->req.op_addr;
if (op->turbo_dec.code_block_mode == RTE_BBDEV_TRANSPORT_BLOCK)
ret = dequeue_dec_one_op_tb(q, &ops[i], dequeued_cbs,
&aq_dequeued);
else
ret = dequeue_dec_one_op_cb(q_data, q, &ops[i],
dequeued_cbs, &aq_dequeued);
if (ret < 0)
break;
dequeued_cbs += ret;
}
q->aq_dequeued += aq_dequeued;
q->sw_ring_tail += dequeued_cbs;
/* Update enqueue stats */
q_data->queue_stats.dequeued_count += i;
return i;
}
/* Dequeue decode operations from ACC100 device. */
static uint16_t
acc100_dequeue_ldpc_dec(struct rte_bbdev_queue_data *q_data,
struct rte_bbdev_dec_op **ops, uint16_t num)
{
struct acc100_queue *q = q_data->queue_private;
uint16_t dequeue_num;
uint32_t avail = q->sw_ring_head - q->sw_ring_tail;
uint32_t aq_dequeued = 0;
uint16_t i;
uint16_t dequeued_cbs = 0;
struct rte_bbdev_dec_op *op;
int ret;
#ifdef RTE_LIBRTE_BBDEV_DEBUG
if (unlikely(ops == 0 && q == NULL))
return 0;
#endif
dequeue_num = RTE_MIN(avail, num);
for (i = 0; i < dequeue_num; ++i) {
op = (q->ring_addr + ((q->sw_ring_tail + dequeued_cbs)
& q->sw_ring_wrap_mask))->req.op_addr;
if (op->ldpc_dec.code_block_mode == RTE_BBDEV_TRANSPORT_BLOCK)
ret = dequeue_dec_one_op_tb(q, &ops[i], dequeued_cbs,
&aq_dequeued);
else
ret = dequeue_ldpc_dec_one_op_cb(
q_data, q, &ops[i], dequeued_cbs,
&aq_dequeued);
if (ret < 0)
break;
dequeued_cbs += ret;
}
q->aq_dequeued += aq_dequeued;
q->sw_ring_tail += dequeued_cbs;
/* Update enqueue stats */
q_data->queue_stats.dequeued_count += i;
return i;
}
/* Initialization Function */
static void
acc100_bbdev_init(struct rte_bbdev *dev, struct rte_pci_driver *drv)
{
struct rte_pci_device *pci_dev = RTE_DEV_TO_PCI(dev->device);
dev->dev_ops = &acc100_bbdev_ops;
dev->enqueue_enc_ops = acc100_enqueue_enc;
dev->enqueue_dec_ops = acc100_enqueue_dec;
dev->dequeue_enc_ops = acc100_dequeue_enc;
dev->dequeue_dec_ops = acc100_dequeue_dec;
dev->enqueue_ldpc_enc_ops = acc100_enqueue_ldpc_enc;
dev->enqueue_ldpc_dec_ops = acc100_enqueue_ldpc_dec;
dev->dequeue_ldpc_enc_ops = acc100_dequeue_ldpc_enc;
dev->dequeue_ldpc_dec_ops = acc100_dequeue_ldpc_dec;
((struct acc100_device *) dev->data->dev_private)->pf_device =
!strcmp(drv->driver.name,
RTE_STR(ACC100PF_DRIVER_NAME));
((struct acc100_device *) dev->data->dev_private)->mmio_base =
pci_dev->mem_resource[0].addr;
rte_bbdev_log_debug("Init device %s [%s] @ vaddr %p paddr %#"PRIx64"",
drv->driver.name, dev->data->name,
(void *)pci_dev->mem_resource[0].addr,
pci_dev->mem_resource[0].phys_addr);
}
static int acc100_pci_probe(struct rte_pci_driver *pci_drv,
struct rte_pci_device *pci_dev)
{
struct rte_bbdev *bbdev = NULL;
char dev_name[RTE_BBDEV_NAME_MAX_LEN];
if (pci_dev == NULL) {
rte_bbdev_log(ERR, "NULL PCI device");
return -EINVAL;
}
rte_pci_device_name(&pci_dev->addr, dev_name, sizeof(dev_name));
/* Allocate memory to be used privately by drivers */
bbdev = rte_bbdev_allocate(pci_dev->device.name);
if (bbdev == NULL)
return -ENODEV;
/* allocate device private memory */
bbdev->data->dev_private = rte_zmalloc_socket(dev_name,
sizeof(struct acc100_device), RTE_CACHE_LINE_SIZE,
pci_dev->device.numa_node);
if (bbdev->data->dev_private == NULL) {
rte_bbdev_log(CRIT,
"Allocate of %zu bytes for device \"%s\" failed",
sizeof(struct acc100_device), dev_name);
rte_bbdev_release(bbdev);
return -ENOMEM;
}
/* Fill HW specific part of device structure */
bbdev->device = &pci_dev->device;
bbdev->intr_handle = pci_dev->intr_handle;
bbdev->data->socket_id = pci_dev->device.numa_node;
/* Invoke ACC100 device initialization function */
acc100_bbdev_init(bbdev, pci_drv);
rte_bbdev_log_debug("Initialised bbdev %s (id = %u)",
dev_name, bbdev->data->dev_id);
return 0;
}
static int acc100_pci_remove(struct rte_pci_device *pci_dev)
{
struct rte_bbdev *bbdev;
int ret;
uint8_t dev_id;
if (pci_dev == NULL)
return -EINVAL;
/* Find device */
bbdev = rte_bbdev_get_named_dev(pci_dev->device.name);
if (bbdev == NULL) {
rte_bbdev_log(CRIT,
"Couldn't find HW dev \"%s\" to uninitialise it",
pci_dev->device.name);
return -ENODEV;
}
dev_id = bbdev->data->dev_id;
/* free device private memory before close */
rte_free(bbdev->data->dev_private);
/* Close device */
ret = rte_bbdev_close(dev_id);
if (ret < 0)
rte_bbdev_log(ERR,
"Device %i failed to close during uninit: %i",
dev_id, ret);
/* release bbdev from library */
rte_bbdev_release(bbdev);
rte_bbdev_log_debug("Destroyed bbdev = %u", dev_id);
return 0;
}
static struct rte_pci_driver acc100_pci_pf_driver = {
.probe = acc100_pci_probe,
.remove = acc100_pci_remove,
.id_table = pci_id_acc100_pf_map,
.drv_flags = RTE_PCI_DRV_NEED_MAPPING
};
static struct rte_pci_driver acc100_pci_vf_driver = {
.probe = acc100_pci_probe,
.remove = acc100_pci_remove,
.id_table = pci_id_acc100_vf_map,
.drv_flags = RTE_PCI_DRV_NEED_MAPPING
};
RTE_PMD_REGISTER_PCI(ACC100PF_DRIVER_NAME, acc100_pci_pf_driver);
RTE_PMD_REGISTER_PCI_TABLE(ACC100PF_DRIVER_NAME, pci_id_acc100_pf_map);
RTE_PMD_REGISTER_PCI(ACC100VF_DRIVER_NAME, acc100_pci_vf_driver);
RTE_PMD_REGISTER_PCI_TABLE(ACC100VF_DRIVER_NAME, pci_id_acc100_vf_map);
/*
* Workaround implementation to fix the power on status of some 5GUL engines
* This requires DMA permission if ported outside DPDK
* It consists in resolving the state of these engines by running a
* dummy operation and resetting the engines to ensure state are reliably
* defined.
*/
static void
poweron_cleanup(struct rte_bbdev *bbdev, struct acc100_device *d,
struct rte_acc100_conf *conf)
{
int i, template_idx, qg_idx;
uint32_t address, status, value;
printf("Need to clear power-on 5GUL status in internal memory\n");
/* Reset LDPC Cores */
for (i = 0; i < ACC100_ENGINES_MAX; i++)
acc100_reg_write(d, HWPfFecUl5gCntrlReg +
ACC100_ENGINE_OFFSET * i, ACC100_RESET_HI);
usleep(ACC100_LONG_WAIT);
for (i = 0; i < ACC100_ENGINES_MAX; i++)
acc100_reg_write(d, HWPfFecUl5gCntrlReg +
ACC100_ENGINE_OFFSET * i, ACC100_RESET_LO);
usleep(ACC100_LONG_WAIT);
/* Prepare dummy workload */
alloc_2x64mb_sw_rings_mem(bbdev, d, 0);
/* Set base addresses */
uint32_t phys_high = (uint32_t)(d->sw_rings_iova >> 32);
uint32_t phys_low = (uint32_t)(d->sw_rings_iova &
~(ACC100_SIZE_64MBYTE-1));
acc100_reg_write(d, HWPfDmaFec5GulDescBaseHiRegVf, phys_high);
acc100_reg_write(d, HWPfDmaFec5GulDescBaseLoRegVf, phys_low);
/* Descriptor for a dummy 5GUL code block processing*/
union acc100_dma_desc *desc = NULL;
desc = d->sw_rings;
desc->req.data_ptrs[0].address = d->sw_rings_iova +
ACC100_DESC_FCW_OFFSET;
desc->req.data_ptrs[0].blen = ACC100_FCW_LD_BLEN;
desc->req.data_ptrs[0].blkid = ACC100_DMA_BLKID_FCW;
desc->req.data_ptrs[0].last = 0;
desc->req.data_ptrs[0].dma_ext = 0;
desc->req.data_ptrs[1].address = d->sw_rings_iova + 512;
desc->req.data_ptrs[1].blkid = ACC100_DMA_BLKID_IN;
desc->req.data_ptrs[1].last = 1;
desc->req.data_ptrs[1].dma_ext = 0;
desc->req.data_ptrs[1].blen = 44;
desc->req.data_ptrs[2].address = d->sw_rings_iova + 1024;
desc->req.data_ptrs[2].blkid = ACC100_DMA_BLKID_OUT_ENC;
desc->req.data_ptrs[2].last = 1;
desc->req.data_ptrs[2].dma_ext = 0;
desc->req.data_ptrs[2].blen = 5;
/* Dummy FCW */
desc->req.fcw_ld.FCWversion = ACC100_FCW_VER;
desc->req.fcw_ld.qm = 1;
desc->req.fcw_ld.nfiller = 30;
desc->req.fcw_ld.BG = 2 - 1;
desc->req.fcw_ld.Zc = 7;
desc->req.fcw_ld.ncb = 350;
desc->req.fcw_ld.rm_e = 4;
desc->req.fcw_ld.itmax = 10;
desc->req.fcw_ld.gain_i = 1;
desc->req.fcw_ld.gain_h = 1;
int engines_to_restart[ACC100_SIG_UL_5G_LAST + 1] = {0};
int num_failed_engine = 0;
/* Detect engines in undefined state */
for (template_idx = ACC100_SIG_UL_5G;
template_idx <= ACC100_SIG_UL_5G_LAST;
template_idx++) {
/* Check engine power-on status */
address = HwPfFecUl5gIbDebugReg +
ACC100_ENGINE_OFFSET * template_idx;
status = (acc100_reg_read(d, address) >> 4) & 0xF;
if (status == 0) {
engines_to_restart[num_failed_engine] = template_idx;
num_failed_engine++;
}
}
int numQqsAcc = conf->q_ul_5g.num_qgroups;
int numQgs = conf->q_ul_5g.num_qgroups;
value = 0;
for (qg_idx = numQqsAcc; qg_idx < (numQgs + numQqsAcc); qg_idx++)
value |= (1 << qg_idx);
/* Force each engine which is in unspecified state */
for (i = 0; i < num_failed_engine; i++) {
int failed_engine = engines_to_restart[i];
printf("Force engine %d\n", failed_engine);
for (template_idx = ACC100_SIG_UL_5G;
template_idx <= ACC100_SIG_UL_5G_LAST;
template_idx++) {
address = HWPfQmgrGrpTmplateReg4Indx
+ ACC100_BYTES_IN_WORD * template_idx;
if (template_idx == failed_engine)
acc100_reg_write(d, address, value);
else
acc100_reg_write(d, address, 0);
}
/* Reset descriptor header */
desc->req.word0 = ACC100_DMA_DESC_TYPE;
desc->req.word1 = 0;
desc->req.word2 = 0;
desc->req.word3 = 0;
desc->req.numCBs = 1;
desc->req.m2dlen = 2;
desc->req.d2mlen = 1;
/* Enqueue the code block for processing */
union acc100_enqueue_reg_fmt enq_req;
enq_req.val = 0;
enq_req.addr_offset = ACC100_DESC_OFFSET;
enq_req.num_elem = 1;
enq_req.req_elem_addr = 0;
rte_wmb();
acc100_reg_write(d, HWPfQmgrIngressAq + 0x100, enq_req.val);
usleep(ACC100_LONG_WAIT * 100);
if (desc->req.word0 != 2)
printf("DMA Response %#"PRIx32"\n", desc->req.word0);
}
/* Reset LDPC Cores */
for (i = 0; i < ACC100_ENGINES_MAX; i++)
acc100_reg_write(d, HWPfFecUl5gCntrlReg +
ACC100_ENGINE_OFFSET * i,
ACC100_RESET_HI);
usleep(ACC100_LONG_WAIT);
for (i = 0; i < ACC100_ENGINES_MAX; i++)
acc100_reg_write(d, HWPfFecUl5gCntrlReg +
ACC100_ENGINE_OFFSET * i,
ACC100_RESET_LO);
usleep(ACC100_LONG_WAIT);
acc100_reg_write(d, HWPfHi5GHardResetReg, ACC100_RESET_HARD);
usleep(ACC100_LONG_WAIT);
int numEngines = 0;
/* Check engine power-on status again */
for (template_idx = ACC100_SIG_UL_5G;
template_idx <= ACC100_SIG_UL_5G_LAST;
template_idx++) {
address = HwPfFecUl5gIbDebugReg +
ACC100_ENGINE_OFFSET * template_idx;
status = (acc100_reg_read(d, address) >> 4) & 0xF;
address = HWPfQmgrGrpTmplateReg4Indx
+ ACC100_BYTES_IN_WORD * template_idx;
if (status == 1) {
acc100_reg_write(d, address, value);
numEngines++;
} else
acc100_reg_write(d, address, 0);
}
printf("Number of 5GUL engines %d\n", numEngines);
if (d->sw_rings_base != NULL)
rte_free(d->sw_rings_base);
usleep(ACC100_LONG_WAIT);
}
/* Initial configuration of a ACC100 device prior to running configure() */
int
rte_acc100_configure(const char *dev_name, struct rte_acc100_conf *conf)
{
rte_bbdev_log(INFO, "rte_acc100_configure");
uint32_t value, address, status;
int qg_idx, template_idx, vf_idx, acc, i, j;
struct rte_bbdev *bbdev = rte_bbdev_get_named_dev(dev_name);
/* Compile time checks */
RTE_BUILD_BUG_ON(sizeof(struct acc100_dma_req_desc) != 256);
RTE_BUILD_BUG_ON(sizeof(union acc100_dma_desc) != 256);
RTE_BUILD_BUG_ON(sizeof(struct acc100_fcw_td) != 24);
RTE_BUILD_BUG_ON(sizeof(struct acc100_fcw_te) != 32);
if (bbdev == NULL) {
rte_bbdev_log(ERR,
"Invalid dev_name (%s), or device is not yet initialised",
dev_name);
return -ENODEV;
}
struct acc100_device *d = bbdev->data->dev_private;
/* Store configuration */
rte_memcpy(&d->acc100_conf, conf, sizeof(d->acc100_conf));
value = acc100_reg_read(d, HwPfPcieGpexBridgeControl);
bool firstCfg = (value != ACC100_CFG_PCI_BRIDGE);
/* PCIe Bridge configuration */
acc100_reg_write(d, HwPfPcieGpexBridgeControl, ACC100_CFG_PCI_BRIDGE);
for (i = 1; i < ACC100_GPEX_AXIMAP_NUM; i++)
acc100_reg_write(d,
HwPfPcieGpexAxiAddrMappingWindowPexBaseHigh
+ i * 16, 0);
/* Prevent blocking AXI read on BRESP for AXI Write */
address = HwPfPcieGpexAxiPioControl;
value = ACC100_CFG_PCI_AXI;
acc100_reg_write(d, address, value);
/* 5GDL PLL phase shift */
acc100_reg_write(d, HWPfChaDl5gPllPhshft0, 0x1);
/* Explicitly releasing AXI as this may be stopped after PF FLR/BME */
address = HWPfDmaAxiControl;
value = 1;
acc100_reg_write(d, address, value);
/* Enable granular dynamic clock gating */
address = HWPfHiClkGateHystReg;
value = ACC100_CLOCK_GATING_EN;
acc100_reg_write(d, address, value);
/* Set default descriptor signature */
address = HWPfDmaDescriptorSignatuture;
value = 0;
acc100_reg_write(d, address, value);
/* Enable the Error Detection in DMA */
value = ACC100_CFG_DMA_ERROR;
address = HWPfDmaErrorDetectionEn;
acc100_reg_write(d, address, value);
/* AXI Cache configuration */
value = ACC100_CFG_AXI_CACHE;
address = HWPfDmaAxcacheReg;
acc100_reg_write(d, address, value);
/* Adjust PCIe Lane adaptation */
for (i = 0; i < ACC100_QUAD_NUMS; i++)
for (j = 0; j < ACC100_LANES_PER_QUAD; j++)
acc100_reg_write(d, HwPfPcieLnAdaptctrl + i * ACC100_PCIE_QUAD_OFFSET
+ j * ACC100_PCIE_LANE_OFFSET, ACC100_ADAPT);
/* Enable PCIe live adaptation */
for (i = 0; i < ACC100_QUAD_NUMS; i++)
acc100_reg_write(d, HwPfPciePcsEqControl +
i * ACC100_PCIE_QUAD_OFFSET, ACC100_PCS_EQ);
/* Default DMA Configuration (Qmgr Enabled) */
address = HWPfDmaConfig0Reg;
value = 0;
acc100_reg_write(d, address, value);
address = HWPfDmaQmanen;
value = 0;
acc100_reg_write(d, address, value);
/* Default RLIM/ALEN configuration */
address = HWPfDmaConfig1Reg;
value = (1 << 31) + (23 << 8) + (1 << 6) + 7;
acc100_reg_write(d, address, value);
/* Configure DMA Qmanager addresses */
address = HWPfDmaQmgrAddrReg;
value = HWPfQmgrEgressQueuesTemplate;
acc100_reg_write(d, address, value);
/* Default Fabric Mode */
address = HWPfFabricMode;
value = ACC100_FABRIC_MODE;
acc100_reg_write(d, address, value);
/* ===== Qmgr Configuration ===== */
/* Configuration of the AQueue Depth QMGR_GRP_0_DEPTH_LOG2 for UL */
int totalQgs = conf->q_ul_4g.num_qgroups +
conf->q_ul_5g.num_qgroups +
conf->q_dl_4g.num_qgroups +
conf->q_dl_5g.num_qgroups;
for (qg_idx = 0; qg_idx < totalQgs; qg_idx++) {
address = HWPfQmgrDepthLog2Grp +
ACC100_BYTES_IN_WORD * qg_idx;
value = aqDepth(qg_idx, conf);
acc100_reg_write(d, address, value);
address = HWPfQmgrTholdGrp +
ACC100_BYTES_IN_WORD * qg_idx;
value = (1 << 16) + (1 << (aqDepth(qg_idx, conf) - 1));
acc100_reg_write(d, address, value);
}
/* Template Priority in incremental order */
for (template_idx = 0; template_idx < ACC100_NUM_TMPL; template_idx++) {
address = HWPfQmgrGrpTmplateReg0Indx + ACC100_BYTES_IN_WORD * template_idx;
value = ACC100_TMPL_PRI_0;
acc100_reg_write(d, address, value);
address = HWPfQmgrGrpTmplateReg1Indx + ACC100_BYTES_IN_WORD * template_idx;
value = ACC100_TMPL_PRI_1;
acc100_reg_write(d, address, value);
address = HWPfQmgrGrpTmplateReg2indx + ACC100_BYTES_IN_WORD * template_idx;
value = ACC100_TMPL_PRI_2;
acc100_reg_write(d, address, value);
address = HWPfQmgrGrpTmplateReg3Indx + ACC100_BYTES_IN_WORD * template_idx;
value = ACC100_TMPL_PRI_3;
acc100_reg_write(d, address, value);
}
address = HWPfQmgrGrpPriority;
value = ACC100_CFG_QMGR_HI_P;
acc100_reg_write(d, address, value);
/* Template Configuration */
for (template_idx = 0; template_idx < ACC100_NUM_TMPL;
template_idx++) {
value = 0;
address = HWPfQmgrGrpTmplateReg4Indx
+ ACC100_BYTES_IN_WORD * template_idx;
acc100_reg_write(d, address, value);
}
/* 4GUL */
int numQgs = conf->q_ul_4g.num_qgroups;
int numQqsAcc = 0;
value = 0;
for (qg_idx = numQqsAcc; qg_idx < (numQgs + numQqsAcc); qg_idx++)
value |= (1 << qg_idx);
for (template_idx = ACC100_SIG_UL_4G;
template_idx <= ACC100_SIG_UL_4G_LAST;
template_idx++) {
address = HWPfQmgrGrpTmplateReg4Indx
+ ACC100_BYTES_IN_WORD * template_idx;
acc100_reg_write(d, address, value);
}
/* 5GUL */
numQqsAcc += numQgs;
numQgs = conf->q_ul_5g.num_qgroups;
value = 0;
int numEngines = 0;
for (qg_idx = numQqsAcc; qg_idx < (numQgs + numQqsAcc); qg_idx++)
value |= (1 << qg_idx);
for (template_idx = ACC100_SIG_UL_5G;
template_idx <= ACC100_SIG_UL_5G_LAST;
template_idx++) {
/* Check engine power-on status */
address = HwPfFecUl5gIbDebugReg +
ACC100_ENGINE_OFFSET * template_idx;
status = (acc100_reg_read(d, address) >> 4) & 0xF;
address = HWPfQmgrGrpTmplateReg4Indx
+ ACC100_BYTES_IN_WORD * template_idx;
if (status == 1) {
acc100_reg_write(d, address, value);
numEngines++;
} else
acc100_reg_write(d, address, 0);
}
printf("Number of 5GUL engines %d\n", numEngines);
/* 4GDL */
numQqsAcc += numQgs;
numQgs = conf->q_dl_4g.num_qgroups;
value = 0;
for (qg_idx = numQqsAcc; qg_idx < (numQgs + numQqsAcc); qg_idx++)
value |= (1 << qg_idx);
for (template_idx = ACC100_SIG_DL_4G;
template_idx <= ACC100_SIG_DL_4G_LAST;
template_idx++) {
address = HWPfQmgrGrpTmplateReg4Indx
+ ACC100_BYTES_IN_WORD * template_idx;
acc100_reg_write(d, address, value);
}
/* 5GDL */
numQqsAcc += numQgs;
numQgs = conf->q_dl_5g.num_qgroups;
value = 0;
for (qg_idx = numQqsAcc; qg_idx < (numQgs + numQqsAcc); qg_idx++)
value |= (1 << qg_idx);
for (template_idx = ACC100_SIG_DL_5G;
template_idx <= ACC100_SIG_DL_5G_LAST;
template_idx++) {
address = HWPfQmgrGrpTmplateReg4Indx
+ ACC100_BYTES_IN_WORD * template_idx;
acc100_reg_write(d, address, value);
}
/* Queue Group Function mapping */
int qman_func_id[8] = {0, 2, 1, 3, 4, 0, 0, 0};
address = HWPfQmgrGrpFunction0;
value = 0;
for (qg_idx = 0; qg_idx < 8; qg_idx++) {
acc = accFromQgid(qg_idx, conf);
value |= qman_func_id[acc]<<(qg_idx * 4);
}
acc100_reg_write(d, address, value);
/* Configuration of the Arbitration QGroup depth to 1 */
for (qg_idx = 0; qg_idx < totalQgs; qg_idx++) {
address = HWPfQmgrArbQDepthGrp +
ACC100_BYTES_IN_WORD * qg_idx;
value = 0;
acc100_reg_write(d, address, value);
}
/* Enabling AQueues through the Queue hierarchy*/
for (vf_idx = 0; vf_idx < ACC100_NUM_VFS; vf_idx++) {
for (qg_idx = 0; qg_idx < ACC100_NUM_QGRPS; qg_idx++) {
value = 0;
if (vf_idx < conf->num_vf_bundles &&
qg_idx < totalQgs)
value = (1 << aqNum(qg_idx, conf)) - 1;
address = HWPfQmgrAqEnableVf
+ vf_idx * ACC100_BYTES_IN_WORD;
value += (qg_idx << 16);
acc100_reg_write(d, address, value);
}
}
/* This pointer to ARAM (128kB) is shifted by 2 (4B per register) */
uint32_t aram_address = 0;
for (qg_idx = 0; qg_idx < totalQgs; qg_idx++) {
for (vf_idx = 0; vf_idx < conf->num_vf_bundles; vf_idx++) {
address = HWPfQmgrVfBaseAddr + vf_idx
* ACC100_BYTES_IN_WORD + qg_idx
* ACC100_BYTES_IN_WORD * 64;
value = aram_address;
acc100_reg_write(d, address, value);
/* Offset ARAM Address for next memory bank
* - increment of 4B
*/
aram_address += aqNum(qg_idx, conf) *
(1 << aqDepth(qg_idx, conf));
}
}
if (aram_address > ACC100_WORDS_IN_ARAM_SIZE) {
rte_bbdev_log(ERR, "ARAM Configuration not fitting %d %d\n",
aram_address, ACC100_WORDS_IN_ARAM_SIZE);
return -EINVAL;
}
/* ==== HI Configuration ==== */
/* No Info Ring/MSI by default */
acc100_reg_write(d, HWPfHiInfoRingIntWrEnRegPf, 0);
acc100_reg_write(d, HWPfHiInfoRingVf2pfLoWrEnReg, 0);
acc100_reg_write(d, HWPfHiCfgMsiIntWrEnRegPf, 0xFFFFFFFF);
acc100_reg_write(d, HWPfHiCfgMsiVf2pfLoWrEnReg, 0xFFFFFFFF);
/* Prevent Block on Transmit Error */
address = HWPfHiBlockTransmitOnErrorEn;
value = 0;
acc100_reg_write(d, address, value);
/* Prevents to drop MSI */
address = HWPfHiMsiDropEnableReg;
value = 0;
acc100_reg_write(d, address, value);
/* Set the PF Mode register */
address = HWPfHiPfMode;
value = (conf->pf_mode_en) ? ACC100_PF_VAL : 0;
acc100_reg_write(d, address, value);
/* QoS overflow init */
value = 1;
address = HWPfQosmonAEvalOverflow0;
acc100_reg_write(d, address, value);
address = HWPfQosmonBEvalOverflow0;
acc100_reg_write(d, address, value);
/* HARQ DDR Configuration */
unsigned int ddrSizeInMb = ACC100_HARQ_DDR;
for (vf_idx = 0; vf_idx < conf->num_vf_bundles; vf_idx++) {
address = HWPfDmaVfDdrBaseRw + vf_idx
* 0x10;
value = ((vf_idx * (ddrSizeInMb / 64)) << 16) +
(ddrSizeInMb - 1);
acc100_reg_write(d, address, value);
}
usleep(ACC100_LONG_WAIT);
/* Workaround in case some 5GUL engines are in an unexpected state */
if (numEngines < (ACC100_SIG_UL_5G_LAST + 1))
poweron_cleanup(bbdev, d, conf);
uint32_t version = 0;
for (i = 0; i < 4; i++)
version += acc100_reg_read(d,
HWPfDdrPhyIdtmFwVersion + 4 * i) << (8 * i);
if (version != ACC100_PRQ_DDR_VER) {
printf("* Note: Not on DDR PRQ version %8x != %08x\n",
version, ACC100_PRQ_DDR_VER);
} else if (firstCfg) {
/* ---- DDR configuration at boot up --- */
/* Read Clear Ddr training status */
acc100_reg_read(d, HWPfChaDdrStDoneStatus);
/* Reset PHY/IDTM/UMMC */
acc100_reg_write(d, HWPfChaDdrWbRstCfg, 3);
acc100_reg_write(d, HWPfChaDdrApbRstCfg, 2);
acc100_reg_write(d, HWPfChaDdrPhyRstCfg, 2);
acc100_reg_write(d, HWPfChaDdrCpuRstCfg, 3);
acc100_reg_write(d, HWPfChaDdrSifRstCfg, 2);
usleep(ACC100_MS_IN_US);
/* Reset WB and APB resets */
acc100_reg_write(d, HWPfChaDdrWbRstCfg, 2);
acc100_reg_write(d, HWPfChaDdrApbRstCfg, 3);
/* Configure PHY-IDTM */
acc100_reg_write(d, HWPfDdrPhyIdletimeout, 0x3e8);
/* IDTM timing registers */
acc100_reg_write(d, HWPfDdrPhyRdLatency, 0x13);
acc100_reg_write(d, HWPfDdrPhyRdLatencyDbi, 0x15);
acc100_reg_write(d, HWPfDdrPhyWrLatency, 0x10011);
/* Configure SDRAM MRS registers */
acc100_reg_write(d, HWPfDdrPhyMr01Dimm, 0x3030b70);
acc100_reg_write(d, HWPfDdrPhyMr01DimmDbi, 0x3030b50);
acc100_reg_write(d, HWPfDdrPhyMr23Dimm, 0x30);
acc100_reg_write(d, HWPfDdrPhyMr67Dimm, 0xc00);
acc100_reg_write(d, HWPfDdrPhyMr45Dimm, 0x4000000);
/* Configure active lanes */
acc100_reg_write(d, HWPfDdrPhyDqsCountMax, 0x9);
acc100_reg_write(d, HWPfDdrPhyDqsCountNum, 0x9);
/* Configure WR/RD leveling timing registers */
acc100_reg_write(d, HWPfDdrPhyWrlvlWwRdlvlRr, 0x101212);
/* Configure what trainings to execute */
acc100_reg_write(d, HWPfDdrPhyTrngType, 0x2d3c);
/* Releasing PHY reset */
acc100_reg_write(d, HWPfChaDdrPhyRstCfg, 3);
/* Configure Memory Controller registers */
acc100_reg_write(d, HWPfDdrMemInitPhyTrng0, 0x3);
acc100_reg_write(d, HWPfDdrBcDram, 0x3c232003);
acc100_reg_write(d, HWPfDdrBcAddrMap, 0x31);
/* Configure UMMC BC timing registers */
acc100_reg_write(d, HWPfDdrBcRef, 0xa22);
acc100_reg_write(d, HWPfDdrBcTim0, 0x4050501);
acc100_reg_write(d, HWPfDdrBcTim1, 0xf0b0476);
acc100_reg_write(d, HWPfDdrBcTim2, 0x103);
acc100_reg_write(d, HWPfDdrBcTim3, 0x144050a1);
acc100_reg_write(d, HWPfDdrBcTim4, 0x23300);
acc100_reg_write(d, HWPfDdrBcTim5, 0x4230276);
acc100_reg_write(d, HWPfDdrBcTim6, 0x857914);
acc100_reg_write(d, HWPfDdrBcTim7, 0x79100232);
acc100_reg_write(d, HWPfDdrBcTim8, 0x100007ce);
acc100_reg_write(d, HWPfDdrBcTim9, 0x50020);
acc100_reg_write(d, HWPfDdrBcTim10, 0x40ee);
/* Configure UMMC DFI timing registers */
acc100_reg_write(d, HWPfDdrDfiInit, 0x5000);
acc100_reg_write(d, HWPfDdrDfiTim0, 0x15030006);
acc100_reg_write(d, HWPfDdrDfiTim1, 0x11305);
acc100_reg_write(d, HWPfDdrDfiPhyUpdEn, 0x1);
acc100_reg_write(d, HWPfDdrUmmcIntEn, 0x1f);
/* Release IDTM CPU out of reset */
acc100_reg_write(d, HWPfChaDdrCpuRstCfg, 0x2);
/* Wait PHY-IDTM to finish static training */
for (i = 0; i < ACC100_DDR_TRAINING_MAX; i++) {
usleep(ACC100_MS_IN_US);
value = acc100_reg_read(d,
HWPfChaDdrStDoneStatus);
if (value & 1)
break;
}
printf("DDR Training completed in %d ms", i);
/* Enable Memory Controller */
acc100_reg_write(d, HWPfDdrUmmcCtrl, 0x401);
/* Release AXI interface reset */
acc100_reg_write(d, HWPfChaDdrSifRstCfg, 3);
}
rte_bbdev_log_debug("PF Tip configuration complete for %s", dev_name);
return 0;
}