f-stack/dpdk/lib/ethdev/sff_common.c

320 lines
11 KiB
C

/* SPDX-License-Identifier: BSD-3-Clause
* Copyright(c) 2022 Intel Corporation
* Implements SFF-8024 Rev 4.0 of pluggable I/O configuration and some
* common utilities for SFF-8436/8636 and SFF-8472/8079
*/
#include <math.h>
#include "sff_common.h"
double sff_convert_mw_to_dbm(double mw)
{
return (10. * log10(mw / 1000.)) + 30.;
}
void sff_show_value_with_unit(const uint8_t *data, unsigned int reg,
const char *name, unsigned int mult,
const char *unit, struct rte_tel_data *d)
{
unsigned int val = data[reg];
char val_string[SFF_ITEM_VAL_COMPOSE_SIZE];
snprintf(val_string, sizeof(val_string), "%u%s", val * mult, unit);
ssf_add_dict_string(d, name, val_string);
}
void sff_show_ascii(const uint8_t *data, unsigned int first_reg,
unsigned int last_reg, const char *name, struct rte_tel_data *d)
{
unsigned int reg, val;
char tmp[3];
char val_string[SFF_ITEM_VAL_COMPOSE_SIZE];
memset(val_string, 0, sizeof(val_string));
while (first_reg <= last_reg && data[last_reg] == ' ')
last_reg--;
for (reg = first_reg; reg <= last_reg; reg++) {
val = data[reg];
if ((val >= 32) && (val <= 126)) {
snprintf(tmp, sizeof(tmp), "%c", val);
strlcat(val_string, tmp, sizeof(val_string));
} else {
strlcat(val_string, "_", sizeof(val_string));
}
}
ssf_add_dict_string(d, name, val_string);
}
void sff_8024_show_oui(const uint8_t *data, int id_offset, struct rte_tel_data *d)
{
char val_string[SFF_ITEM_VAL_COMPOSE_SIZE];
snprintf(val_string, sizeof(val_string), "%02x:%02x:%02x",
data[id_offset], data[(id_offset) + 1], data[(id_offset) + 2]);
ssf_add_dict_string(d, "Vendor OUI", val_string);
}
void sff_8024_show_identifier(const uint8_t *data, int id_offset, struct rte_tel_data *d)
{
char val_string[SFF_ITEM_VAL_COMPOSE_SIZE];
snprintf(val_string, sizeof(val_string), "0x%02x", data[id_offset]);
switch (data[id_offset]) {
case SFF_8024_ID_UNKNOWN:
strlcat(val_string, " (no module present, unknown, or unspecified)",
sizeof(val_string));
break;
case SFF_8024_ID_GBIC:
strlcat(val_string, " (GBIC)", sizeof(val_string));
break;
case SFF_8024_ID_SOLDERED_MODULE:
strlcat(val_string, " (module soldered to motherboard)", sizeof(val_string));
break;
case SFF_8024_ID_SFP:
strlcat(val_string, " (SFP)", sizeof(val_string));
break;
case SFF_8024_ID_300_PIN_XBI:
strlcat(val_string, " (300 pin XBI)", sizeof(val_string));
break;
case SFF_8024_ID_XENPAK:
strlcat(val_string, " (XENPAK)", sizeof(val_string));
break;
case SFF_8024_ID_XFP:
strlcat(val_string, " (XFP)", sizeof(val_string));
break;
case SFF_8024_ID_XFF:
strlcat(val_string, " (XFF)", sizeof(val_string));
break;
case SFF_8024_ID_XFP_E:
strlcat(val_string, " (XFP-E)", sizeof(val_string));
break;
case SFF_8024_ID_XPAK:
strlcat(val_string, " (XPAK)", sizeof(val_string));
break;
case SFF_8024_ID_X2:
strlcat(val_string, " (X2)", sizeof(val_string));
break;
case SFF_8024_ID_DWDM_SFP:
strlcat(val_string, " (DWDM-SFP)", sizeof(val_string));
break;
case SFF_8024_ID_QSFP:
strlcat(val_string, " (QSFP)", sizeof(val_string));
break;
case SFF_8024_ID_QSFP_PLUS:
strlcat(val_string, " (QSFP+)", sizeof(val_string));
break;
case SFF_8024_ID_CXP:
strlcat(val_string, " (CXP)", sizeof(val_string));
break;
case SFF_8024_ID_HD4X:
strlcat(val_string, " (Shielded Mini Multilane HD 4X)", sizeof(val_string));
break;
case SFF_8024_ID_HD8X:
strlcat(val_string, " (Shielded Mini Multilane HD 8X)", sizeof(val_string));
break;
case SFF_8024_ID_QSFP28:
strlcat(val_string, " (QSFP28)", sizeof(val_string));
break;
case SFF_8024_ID_CXP2:
strlcat(val_string, " (CXP2/CXP28)", sizeof(val_string));
break;
case SFF_8024_ID_CDFP:
strlcat(val_string, " (CDFP Style 1/Style 2)", sizeof(val_string));
break;
case SFF_8024_ID_HD4X_FANOUT:
strlcat(val_string, " (Shielded Mini Multilane HD 4X Fanout Cable)",
sizeof(val_string));
break;
case SFF_8024_ID_HD8X_FANOUT:
strlcat(val_string, " (Shielded Mini Multilane HD 8X Fanout Cable)",
sizeof(val_string));
break;
case SFF_8024_ID_CDFP_S3:
strlcat(val_string, " (CDFP Style 3)", sizeof(val_string));
break;
case SFF_8024_ID_MICRO_QSFP:
strlcat(val_string, " (microQSFP)", sizeof(val_string));
break;
default:
strlcat(val_string, " (reserved or unknown)", sizeof(val_string));
break;
}
ssf_add_dict_string(d, "Identifier", val_string);
}
void sff_8024_show_connector(const uint8_t *data, int ctor_offset, struct rte_tel_data *d)
{
char val_string[SFF_ITEM_VAL_COMPOSE_SIZE];
snprintf(val_string, sizeof(val_string), "0x%02x", data[ctor_offset]);
switch (data[ctor_offset]) {
case SFF_8024_CTOR_UNKNOWN:
strlcat(val_string, " (unknown or unspecified)", sizeof(val_string));
break;
case SFF_8024_CTOR_SC:
strlcat(val_string, " (SC)", sizeof(val_string));
break;
case SFF_8024_CTOR_FC_STYLE_1:
strlcat(val_string, " (Fibre Channel Style 1 copper)", sizeof(val_string));
break;
case SFF_8024_CTOR_FC_STYLE_2:
strlcat(val_string, " (Fibre Channel Style 2 copper)", sizeof(val_string));
break;
case SFF_8024_CTOR_BNC_TNC:
strlcat(val_string, " (BNC/TNC)", sizeof(val_string));
break;
case SFF_8024_CTOR_FC_COAX:
strlcat(val_string, " (Fibre Channel coaxial headers)", sizeof(val_string));
break;
case SFF_8024_CTOR_FIBER_JACK:
strlcat(val_string, " (FibreJack)", sizeof(val_string));
break;
case SFF_8024_CTOR_LC:
strlcat(val_string, " (LC)", sizeof(val_string));
break;
case SFF_8024_CTOR_MT_RJ:
strlcat(val_string, " (MT-RJ)", sizeof(val_string));
break;
case SFF_8024_CTOR_MU:
strlcat(val_string, " (MU)", sizeof(val_string));
break;
case SFF_8024_CTOR_SG:
strlcat(val_string, " (SG)", sizeof(val_string));
break;
case SFF_8024_CTOR_OPT_PT:
strlcat(val_string, " (Optical pigtail)", sizeof(val_string));
break;
case SFF_8024_CTOR_MPO:
strlcat(val_string, " (MPO Parallel Optic)", sizeof(val_string));
break;
case SFF_8024_CTOR_MPO_2:
strlcat(val_string, " (MPO Parallel Optic - 2x16)", sizeof(val_string));
break;
case SFF_8024_CTOR_HSDC_II:
strlcat(val_string, " (HSSDC II)", sizeof(val_string));
break;
case SFF_8024_CTOR_COPPER_PT:
strlcat(val_string, " (Copper pigtail)", sizeof(val_string));
break;
case SFF_8024_CTOR_RJ45:
strlcat(val_string, " (RJ45)", sizeof(val_string));
break;
case SFF_8024_CTOR_NO_SEPARABLE:
strlcat(val_string, " (No separable connector)", sizeof(val_string));
break;
case SFF_8024_CTOR_MXC_2x16:
strlcat(val_string, " (MXC 2x16)", sizeof(val_string));
break;
default:
strlcat(val_string, " (reserved or unknown)", sizeof(val_string));
break;
}
ssf_add_dict_string(d, "Connector", val_string);
}
void sff_8024_show_encoding(const uint8_t *data, int encoding_offset,
int sff_type, struct rte_tel_data *d)
{
char val_string[SFF_ITEM_VAL_COMPOSE_SIZE];
snprintf(val_string, sizeof(val_string), "0x%02x", data[encoding_offset]);
switch (data[encoding_offset]) {
case SFF_8024_ENCODING_UNSPEC:
strlcat(val_string, " (unspecified)", sizeof(val_string));
break;
case SFF_8024_ENCODING_8B10B:
strlcat(val_string, " (8B/10B)", sizeof(val_string));
break;
case SFF_8024_ENCODING_4B5B:
strlcat(val_string, " (4B/5B)", sizeof(val_string));
break;
case SFF_8024_ENCODING_NRZ:
strlcat(val_string, " (NRZ)", sizeof(val_string));
break;
case SFF_8024_ENCODING_4h:
if (sff_type == RTE_ETH_MODULE_SFF_8472)
strlcat(val_string, " (Manchester)", sizeof(val_string));
else if (sff_type == RTE_ETH_MODULE_SFF_8636)
strlcat(val_string, " (SONET Scrambled)", sizeof(val_string));
break;
case SFF_8024_ENCODING_5h:
if (sff_type == RTE_ETH_MODULE_SFF_8472)
strlcat(val_string, " (SONET Scrambled)", sizeof(val_string));
else if (sff_type == RTE_ETH_MODULE_SFF_8636)
strlcat(val_string, " (64B/66B)", sizeof(val_string));
break;
case SFF_8024_ENCODING_6h:
if (sff_type == RTE_ETH_MODULE_SFF_8472)
strlcat(val_string, " (64B/66B)", sizeof(val_string));
else if (sff_type == RTE_ETH_MODULE_SFF_8636)
strlcat(val_string, " (Manchester)", sizeof(val_string));
break;
case SFF_8024_ENCODING_256B:
strlcat(val_string,
" ((256B/257B (transcoded FEC-enabled data))", sizeof(val_string));
break;
case SFF_8024_ENCODING_PAM4:
strlcat(val_string, " (PAM4)", sizeof(val_string));
break;
default:
strlcat(val_string, " (reserved or unknown)", sizeof(val_string));
break;
}
ssf_add_dict_string(d, "Encoding", val_string);
}
void sff_show_thresholds(struct sff_diags sd, struct rte_tel_data *d)
{
char val_string[SFF_ITEM_VAL_COMPOSE_SIZE];
SFF_SPRINT_BIAS(val_string, sd.bias_cur[SFF_HALRM]);
ssf_add_dict_string(d, "Laser bias current high alarm threshold", val_string);
SFF_SPRINT_BIAS(val_string, sd.bias_cur[SFF_LALRM]);
ssf_add_dict_string(d, "Laser bias current low alarm threshold", val_string);
SFF_SPRINT_BIAS(val_string, sd.bias_cur[SFF_HWARN]);
ssf_add_dict_string(d, "Laser bias current high warning threshold", val_string);
SFF_SPRINT_BIAS(val_string, sd.bias_cur[SFF_LWARN]);
ssf_add_dict_string(d, "Laser bias current low warning threshold", val_string);
SFF_SPRINT_xX_PWR(val_string, sd.tx_power[SFF_HALRM]);
ssf_add_dict_string(d, "Laser output power high alarm threshold", val_string);
SFF_SPRINT_xX_PWR(val_string, sd.tx_power[SFF_LALRM]);
ssf_add_dict_string(d, "Laser output power low alarm threshold", val_string);
SFF_SPRINT_xX_PWR(val_string, sd.tx_power[SFF_HWARN]);
ssf_add_dict_string(d, "Laser output power high warning threshold", val_string);
SFF_SPRINT_xX_PWR(val_string, sd.tx_power[SFF_LWARN]);
ssf_add_dict_string(d, "Laser output power low warning threshold", val_string);
SFF_SPRINT_TEMP(val_string, sd.sfp_temp[SFF_HALRM]);
ssf_add_dict_string(d, "Module temperature high alarm threshold", val_string);
SFF_SPRINT_TEMP(val_string, sd.sfp_temp[SFF_LALRM]);
ssf_add_dict_string(d, "Module temperature low alarm threshold", val_string);
SFF_SPRINT_TEMP(val_string, sd.sfp_temp[SFF_HWARN]);
ssf_add_dict_string(d, "Module temperature high warning threshold", val_string);
SFF_SPRINT_TEMP(val_string, sd.sfp_temp[SFF_LWARN]);
ssf_add_dict_string(d, "Module temperature low warning threshold", val_string);
SFF_SPRINT_VCC(val_string, sd.sfp_voltage[SFF_HALRM]);
ssf_add_dict_string(d, "Module voltage high alarm threshold", val_string);
SFF_SPRINT_VCC(val_string, sd.sfp_voltage[SFF_LALRM]);
ssf_add_dict_string(d, "Module voltage low alarm threshold", val_string);
SFF_SPRINT_VCC(val_string, sd.sfp_voltage[SFF_HWARN]);
ssf_add_dict_string(d, "Module voltage high warning threshold", val_string);
SFF_SPRINT_VCC(val_string, sd.sfp_voltage[SFF_LWARN]);
ssf_add_dict_string(d, "Module voltage low alarm threshold", val_string);
SFF_SPRINT_xX_PWR(val_string, sd.rx_power[SFF_HALRM]);
ssf_add_dict_string(d, "Laser rx power high alarm threshold", val_string);
SFF_SPRINT_xX_PWR(val_string, sd.rx_power[SFF_LALRM]);
ssf_add_dict_string(d, "Laser rx power low alarm threshold", val_string);
SFF_SPRINT_xX_PWR(val_string, sd.rx_power[SFF_HWARN]);
ssf_add_dict_string(d, "Laser rx power high warning threshold", val_string);
SFF_SPRINT_xX_PWR(val_string, sd.rx_power[SFF_LWARN]);
ssf_add_dict_string(d, "Laser rx power low warning threshold", val_string);
}