f-stack/dpdk/drivers/vdpa/ifc/base/ifcvf.c

534 lines
12 KiB
C

/* SPDX-License-Identifier: BSD-3-Clause
* Copyright(c) 2018 Intel Corporation
*/
#include "ifcvf.h"
#include "ifcvf_osdep.h"
STATIC void *
get_cap_addr(struct ifcvf_hw *hw, struct ifcvf_pci_cap *cap)
{
u8 bar = cap->bar;
u32 length = cap->length;
u32 offset = cap->offset;
if (bar > IFCVF_PCI_MAX_RESOURCE - 1) {
DEBUGOUT("invalid bar: %u\n", bar);
return NULL;
}
if (offset + length < offset) {
DEBUGOUT("offset(%u) + length(%u) overflows\n",
offset, length);
return NULL;
}
if (offset + length > hw->mem_resource[cap->bar].len) {
DEBUGOUT("offset(%u) + length(%u) overflows bar length(%u)",
offset, length, (u32)hw->mem_resource[cap->bar].len);
return NULL;
}
return hw->mem_resource[bar].addr + offset;
}
int
ifcvf_init_hw(struct ifcvf_hw *hw, PCI_DEV *dev)
{
int ret;
u8 pos;
struct ifcvf_pci_cap cap;
ret = PCI_READ_CONFIG_BYTE(dev, &pos, PCI_CAPABILITY_LIST);
if (ret < 0) {
DEBUGOUT("failed to read pci capability list\n");
return -1;
}
while (pos) {
ret = PCI_READ_CONFIG_RANGE(dev, (u32 *)&cap,
sizeof(cap), pos);
if (ret < 0) {
DEBUGOUT("failed to read cap at pos: %x", pos);
break;
}
if (cap.cap_vndr != PCI_CAP_ID_VNDR)
goto next;
DEBUGOUT("cfg type: %u, bar: %u, offset: %u, "
"len: %u\n", cap.cfg_type, cap.bar,
cap.offset, cap.length);
switch (cap.cfg_type) {
case IFCVF_PCI_CAP_COMMON_CFG:
hw->common_cfg = get_cap_addr(hw, &cap);
break;
case IFCVF_PCI_CAP_NOTIFY_CFG:
ret = PCI_READ_CONFIG_DWORD(dev,
&hw->notify_off_multiplier,
pos + sizeof(cap));
if (ret < 0) {
DEBUGOUT("failed to read notify_off_multiplier\n");
return -1;
}
hw->notify_base = get_cap_addr(hw, &cap);
hw->notify_region = cap.bar;
break;
case IFCVF_PCI_CAP_ISR_CFG:
hw->isr = get_cap_addr(hw, &cap);
break;
case IFCVF_PCI_CAP_DEVICE_CFG:
hw->dev_cfg = get_cap_addr(hw, &cap);
break;
}
next:
pos = cap.cap_next;
}
hw->lm_cfg = hw->mem_resource[4].addr;
if (!hw->lm_cfg)
WARNINGOUT("HW support live migration not support!\n");
/* For some hardware implementation, for example:
* the BAR 4 of PF is NULL, while BAR 4 of VF is not.
* This code makes sure hw->mq_cfg is a valid address.
*/
if (hw->mem_resource[4].addr)
hw->mq_cfg = hw->mem_resource[4].addr + IFCVF_MQ_OFFSET;
else
hw->mq_cfg = NULL;
if (hw->common_cfg == NULL || hw->notify_base == NULL ||
hw->isr == NULL || hw->dev_cfg == NULL) {
DEBUGOUT("capability incomplete\n");
return -1;
}
DEBUGOUT("capability mapping:\n"
"common cfg: %p\n"
"notify base: %p\n"
"isr cfg: %p\n"
"device cfg: %p\n"
"multiplier: %u\n",
hw->common_cfg, hw->notify_base, hw->isr, hw->dev_cfg,
hw->notify_off_multiplier);
return 0;
}
STATIC u8
ifcvf_get_status(struct ifcvf_hw *hw)
{
return IFCVF_READ_REG8(&hw->common_cfg->device_status);
}
STATIC void
ifcvf_set_status(struct ifcvf_hw *hw, u8 status)
{
IFCVF_WRITE_REG8(status, &hw->common_cfg->device_status);
}
STATIC void
ifcvf_reset(struct ifcvf_hw *hw)
{
ifcvf_set_status(hw, 0);
/* flush status write */
while (ifcvf_get_status(hw))
msec_delay(1);
}
STATIC void
ifcvf_add_status(struct ifcvf_hw *hw, u8 status)
{
if (status != 0)
status |= ifcvf_get_status(hw);
ifcvf_set_status(hw, status);
ifcvf_get_status(hw);
}
u64
ifcvf_get_features(struct ifcvf_hw *hw)
{
u32 features_lo, features_hi;
struct ifcvf_pci_common_cfg *cfg = hw->common_cfg;
IFCVF_WRITE_REG32(0, &cfg->device_feature_select);
features_lo = IFCVF_READ_REG32(&cfg->device_feature);
IFCVF_WRITE_REG32(1, &cfg->device_feature_select);
features_hi = IFCVF_READ_REG32(&cfg->device_feature);
return ((u64)features_hi << 32) | features_lo;
}
STATIC void
ifcvf_set_features(struct ifcvf_hw *hw, u64 features)
{
struct ifcvf_pci_common_cfg *cfg = hw->common_cfg;
IFCVF_WRITE_REG32(0, &cfg->guest_feature_select);
IFCVF_WRITE_REG32(features & ((1ULL << 32) - 1), &cfg->guest_feature);
IFCVF_WRITE_REG32(1, &cfg->guest_feature_select);
IFCVF_WRITE_REG32(features >> 32, &cfg->guest_feature);
}
STATIC int
ifcvf_config_features(struct ifcvf_hw *hw)
{
u64 host_features;
host_features = ifcvf_get_features(hw);
hw->req_features &= host_features;
ifcvf_set_features(hw, hw->req_features);
ifcvf_add_status(hw, IFCVF_CONFIG_STATUS_FEATURES_OK);
if (!(ifcvf_get_status(hw) & IFCVF_CONFIG_STATUS_FEATURES_OK)) {
DEBUGOUT("failed to set FEATURES_OK status\n");
return -1;
}
return 0;
}
STATIC void
io_write64_twopart(u64 val, u32 *lo, u32 *hi)
{
IFCVF_WRITE_REG32(val & ((1ULL << 32) - 1), lo);
IFCVF_WRITE_REG32(val >> 32, hi);
}
STATIC void
ifcvf_enable_mq(struct ifcvf_hw *hw)
{
u8 *mq_cfg;
u8 qid;
int nr_queue = 0;
for (qid = 0; qid < hw->nr_vring; qid++) {
if (!hw->vring[qid].enable)
continue;
nr_queue++;
}
if (nr_queue == 0) {
WARNINGOUT("no enabled vring\n");
return;
}
mq_cfg = hw->mq_cfg;
if (mq_cfg) {
if (hw->device_type == IFCVF_BLK) {
*(u32 *)mq_cfg = nr_queue;
RTE_LOG(INFO, PMD, "%d queues are enabled\n", nr_queue);
} else {
*(u32 *)mq_cfg = nr_queue / 2;
RTE_LOG(INFO, PMD, "%d queue pairs are enabled\n",
nr_queue / 2);
}
}
}
int
ifcvf_enable_vring_hw(struct ifcvf_hw *hw, int i)
{
struct ifcvf_pci_common_cfg *cfg;
u8 *lm_cfg;
u16 notify_off;
int msix_vector;
if (i >= (int)hw->nr_vring)
return -1;
cfg = hw->common_cfg;
if (!cfg) {
RTE_LOG(ERR, PMD, "common_cfg in HW is NULL.\n");
return -1;
}
ifcvf_enable_mq(hw);
IFCVF_WRITE_REG16(i, &cfg->queue_select);
msix_vector = IFCVF_READ_REG16(&cfg->queue_msix_vector);
if (msix_vector != (i + 1)) {
IFCVF_WRITE_REG16(i + 1, &cfg->queue_msix_vector);
msix_vector = IFCVF_READ_REG16(&cfg->queue_msix_vector);
if (msix_vector == IFCVF_MSI_NO_VECTOR) {
RTE_LOG(ERR, PMD, "queue %d, msix vec alloc failed\n",
i);
return -1;
}
}
io_write64_twopart(hw->vring[i].desc, &cfg->queue_desc_lo,
&cfg->queue_desc_hi);
io_write64_twopart(hw->vring[i].avail, &cfg->queue_avail_lo,
&cfg->queue_avail_hi);
io_write64_twopart(hw->vring[i].used, &cfg->queue_used_lo,
&cfg->queue_used_hi);
IFCVF_WRITE_REG16(hw->vring[i].size, &cfg->queue_size);
lm_cfg = hw->lm_cfg;
if (lm_cfg) {
if (hw->device_type == IFCVF_BLK)
*(u32 *)(lm_cfg + IFCVF_LM_RING_STATE_OFFSET +
i * IFCVF_LM_CFG_SIZE) =
(u32)hw->vring[i].last_avail_idx |
((u32)hw->vring[i].last_used_idx << 16);
else
*(u32 *)(lm_cfg + IFCVF_LM_RING_STATE_OFFSET +
(i / 2) * IFCVF_LM_CFG_SIZE +
(i % 2) * 4) =
(u32)hw->vring[i].last_avail_idx |
((u32)hw->vring[i].last_used_idx << 16);
}
notify_off = IFCVF_READ_REG16(&cfg->queue_notify_off);
hw->notify_addr[i] = (void *)((u8 *)hw->notify_base +
notify_off * hw->notify_off_multiplier);
IFCVF_WRITE_REG16(1, &cfg->queue_enable);
return 0;
}
void
ifcvf_disable_vring_hw(struct ifcvf_hw *hw, int i)
{
struct ifcvf_pci_common_cfg *cfg;
u32 ring_state;
u8 *lm_cfg;
if (i >= (int)hw->nr_vring)
return;
cfg = hw->common_cfg;
if (!cfg) {
RTE_LOG(ERR, PMD, "common_cfg in HW is NULL.\n");
return;
}
IFCVF_WRITE_REG16(i, &cfg->queue_select);
IFCVF_WRITE_REG16(0, &cfg->queue_enable);
lm_cfg = hw->lm_cfg;
if (lm_cfg) {
if (hw->device_type == IFCVF_BLK) {
ring_state = *(u32 *)(lm_cfg +
IFCVF_LM_RING_STATE_OFFSET +
i * IFCVF_LM_CFG_SIZE);
hw->vring[i].last_avail_idx =
(u16)(ring_state & IFCVF_16_BIT_MASK);
} else {
ring_state = *(u32 *)(lm_cfg +
IFCVF_LM_RING_STATE_OFFSET +
(i / 2) * IFCVF_LM_CFG_SIZE +
(i % 2) * 4);
hw->vring[i].last_avail_idx = (u16)(ring_state >> 16);
}
hw->vring[i].last_used_idx = (u16)(ring_state >> 16);
}
}
STATIC int
ifcvf_hw_enable(struct ifcvf_hw *hw)
{
struct ifcvf_pci_common_cfg *cfg;
u8 *lm_cfg;
u32 i;
u16 notify_off;
cfg = hw->common_cfg;
lm_cfg = hw->lm_cfg;
IFCVF_WRITE_REG16(0, &cfg->msix_config);
if (IFCVF_READ_REG16(&cfg->msix_config) == IFCVF_MSI_NO_VECTOR) {
DEBUGOUT("msix vec alloc failed for device config\n");
return -1;
}
ifcvf_enable_mq(hw);
for (i = 0; i < hw->nr_vring; i++) {
if (!hw->vring[i].enable)
continue;
IFCVF_WRITE_REG16(i, &cfg->queue_select);
io_write64_twopart(hw->vring[i].desc, &cfg->queue_desc_lo,
&cfg->queue_desc_hi);
io_write64_twopart(hw->vring[i].avail, &cfg->queue_avail_lo,
&cfg->queue_avail_hi);
io_write64_twopart(hw->vring[i].used, &cfg->queue_used_lo,
&cfg->queue_used_hi);
IFCVF_WRITE_REG16(hw->vring[i].size, &cfg->queue_size);
if (lm_cfg) {
if (hw->device_type == IFCVF_BLK)
*(u32 *)(lm_cfg + IFCVF_LM_RING_STATE_OFFSET +
i * IFCVF_LM_CFG_SIZE) =
(u32)hw->vring[i].last_avail_idx |
((u32)hw->vring[i].last_used_idx << 16);
else
*(u32 *)(lm_cfg + IFCVF_LM_RING_STATE_OFFSET +
(i / 2) * IFCVF_LM_CFG_SIZE +
(i % 2) * 4) =
(u32)hw->vring[i].last_avail_idx |
((u32)hw->vring[i].last_used_idx << 16);
}
IFCVF_WRITE_REG16(i + 1, &cfg->queue_msix_vector);
if (IFCVF_READ_REG16(&cfg->queue_msix_vector) ==
IFCVF_MSI_NO_VECTOR) {
DEBUGOUT("queue %u, msix vec alloc failed\n",
i);
return -1;
}
notify_off = IFCVF_READ_REG16(&cfg->queue_notify_off);
hw->notify_addr[i] = (void *)((u8 *)hw->notify_base +
notify_off * hw->notify_off_multiplier);
IFCVF_WRITE_REG16(1, &cfg->queue_enable);
}
return 0;
}
STATIC void
ifcvf_hw_disable(struct ifcvf_hw *hw)
{
u32 i;
struct ifcvf_pci_common_cfg *cfg;
u32 ring_state;
int q_disable_try;
cfg = hw->common_cfg;
if (!cfg) {
DEBUGOUT("common_cfg in HW is NULL.\n");
return;
}
IFCVF_WRITE_REG16(IFCVF_MSI_NO_VECTOR, &cfg->msix_config);
for (i = 0; i < hw->nr_vring; i++) {
IFCVF_WRITE_REG16(i, &cfg->queue_select);
IFCVF_WRITE_REG16(0, &cfg->queue_enable);
IFCVF_WRITE_REG16(IFCVF_MSI_NO_VECTOR, &cfg->queue_msix_vector);
if (!hw->lm_cfg) {
DEBUGOUT("live migration cfg in HW is NULL.\n");
continue;
}
/* Some ifc hardware require synchronization between disabling a
* queue and saving queue-state from LM registers. When queue is
* disabled from vDPA driver, ifc device stops executing new
* virtio-cmds and then updates LM registers with used/avail
* index. Before saving the queue-state, vDPA driver waits until
* the queue is disabled from backend.
*/
q_disable_try = 10;
while (q_disable_try-- && IFCVF_READ_REG16(&cfg->queue_enable))
msec_delay(10);
if (!q_disable_try)
WARNINGOUT("Failed to disable Q:%u, Saved state could be invalid\n", i);
if (hw->device_type == IFCVF_BLK)
ring_state = *(u32 *)(hw->lm_cfg +
IFCVF_LM_RING_STATE_OFFSET +
i * IFCVF_LM_CFG_SIZE);
else
ring_state = *(u32 *)(hw->lm_cfg +
IFCVF_LM_RING_STATE_OFFSET +
(i / 2) * IFCVF_LM_CFG_SIZE +
(i % 2) * 4);
if (hw->device_type == IFCVF_BLK)
hw->vring[i].last_avail_idx =
(u16)(ring_state & IFCVF_16_BIT_MASK);
else
hw->vring[i].last_avail_idx = (u16)(ring_state >> 16);
hw->vring[i].last_used_idx = (u16)(ring_state >> 16);
}
}
int
ifcvf_start_hw(struct ifcvf_hw *hw)
{
ifcvf_reset(hw);
ifcvf_add_status(hw, IFCVF_CONFIG_STATUS_ACK);
ifcvf_add_status(hw, IFCVF_CONFIG_STATUS_DRIVER);
if (ifcvf_config_features(hw) < 0)
return -1;
if (ifcvf_hw_enable(hw) < 0)
return -1;
ifcvf_add_status(hw, IFCVF_CONFIG_STATUS_DRIVER_OK);
return 0;
}
void
ifcvf_stop_hw(struct ifcvf_hw *hw)
{
ifcvf_hw_disable(hw);
ifcvf_reset(hw);
}
void
ifcvf_enable_logging(struct ifcvf_hw *hw, u64 log_base, u64 log_size)
{
u8 *lm_cfg;
lm_cfg = hw->lm_cfg;
if (!lm_cfg)
return;
*(u32 *)(lm_cfg + IFCVF_LM_BASE_ADDR_LOW) =
log_base & IFCVF_32_BIT_MASK;
*(u32 *)(lm_cfg + IFCVF_LM_BASE_ADDR_HIGH) =
(log_base >> 32) & IFCVF_32_BIT_MASK;
*(u32 *)(lm_cfg + IFCVF_LM_END_ADDR_LOW) =
(log_base + log_size) & IFCVF_32_BIT_MASK;
*(u32 *)(lm_cfg + IFCVF_LM_END_ADDR_HIGH) =
((log_base + log_size) >> 32) & IFCVF_32_BIT_MASK;
*(u32 *)(lm_cfg + IFCVF_LM_LOGGING_CTRL) = IFCVF_LM_ENABLE_VF;
}
void
ifcvf_disable_logging(struct ifcvf_hw *hw)
{
u8 *lm_cfg;
lm_cfg = hw->lm_cfg;
if (!lm_cfg)
return;
*(u32 *)(lm_cfg + IFCVF_LM_LOGGING_CTRL) = IFCVF_LM_DISABLE;
}
void
ifcvf_notify_queue(struct ifcvf_hw *hw, u16 qid)
{
IFCVF_WRITE_REG16(qid, hw->notify_addr[qid]);
}
u8
ifcvf_get_notify_region(struct ifcvf_hw *hw)
{
return hw->notify_region;
}
u64
ifcvf_get_queue_notify_off(struct ifcvf_hw *hw, int qid)
{
return (u8 *)hw->notify_addr[qid] -
(u8 *)hw->mem_resource[hw->notify_region].addr;
}