f-stack/dpdk/kernel/linux/kni/ethtool/igb/igb_vmdq.c

422 lines
12 KiB
C

// SPDX-License-Identifier: GPL-2.0
/*******************************************************************************
Intel(R) Gigabit Ethernet Linux driver
Copyright(c) 2007-2013 Intel Corporation.
Contact Information:
e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
*******************************************************************************/
#include <linux/tcp.h>
#include "igb.h"
#include "igb_vmdq.h"
#include <linux/if_vlan.h>
#ifdef CONFIG_IGB_VMDQ_NETDEV
int igb_vmdq_open(struct net_device *dev)
{
struct igb_vmdq_adapter *vadapter = netdev_priv(dev);
struct igb_adapter *adapter = vadapter->real_adapter;
struct net_device *main_netdev = adapter->netdev;
int hw_queue = vadapter->rx_ring->queue_index +
adapter->vfs_allocated_count;
if (test_bit(__IGB_DOWN, &adapter->state)) {
DPRINTK(DRV, WARNING,
"Open %s before opening this device.\n",
main_netdev->name);
return -EAGAIN;
}
netif_carrier_off(dev);
vadapter->tx_ring->vmdq_netdev = dev;
vadapter->rx_ring->vmdq_netdev = dev;
if (is_valid_ether_addr(dev->dev_addr)) {
igb_del_mac_filter(adapter, dev->dev_addr, hw_queue);
igb_add_mac_filter(adapter, dev->dev_addr, hw_queue);
}
netif_carrier_on(dev);
return 0;
}
int igb_vmdq_close(struct net_device *dev)
{
struct igb_vmdq_adapter *vadapter = netdev_priv(dev);
struct igb_adapter *adapter = vadapter->real_adapter;
int hw_queue = vadapter->rx_ring->queue_index +
adapter->vfs_allocated_count;
netif_carrier_off(dev);
igb_del_mac_filter(adapter, dev->dev_addr, hw_queue);
vadapter->tx_ring->vmdq_netdev = NULL;
vadapter->rx_ring->vmdq_netdev = NULL;
return 0;
}
netdev_tx_t igb_vmdq_xmit_frame(struct sk_buff *skb, struct net_device *dev)
{
struct igb_vmdq_adapter *vadapter = netdev_priv(dev);
return igb_xmit_frame_ring(skb, vadapter->tx_ring);
}
struct net_device_stats *igb_vmdq_get_stats(struct net_device *dev)
{
struct igb_vmdq_adapter *vadapter = netdev_priv(dev);
struct igb_adapter *adapter = vadapter->real_adapter;
struct e1000_hw *hw = &adapter->hw;
int hw_queue = vadapter->rx_ring->queue_index +
adapter->vfs_allocated_count;
vadapter->net_stats.rx_packets +=
E1000_READ_REG(hw, E1000_PFVFGPRC(hw_queue));
E1000_WRITE_REG(hw, E1000_PFVFGPRC(hw_queue), 0);
vadapter->net_stats.tx_packets +=
E1000_READ_REG(hw, E1000_PFVFGPTC(hw_queue));
E1000_WRITE_REG(hw, E1000_PFVFGPTC(hw_queue), 0);
vadapter->net_stats.rx_bytes +=
E1000_READ_REG(hw, E1000_PFVFGORC(hw_queue));
E1000_WRITE_REG(hw, E1000_PFVFGORC(hw_queue), 0);
vadapter->net_stats.tx_bytes +=
E1000_READ_REG(hw, E1000_PFVFGOTC(hw_queue));
E1000_WRITE_REG(hw, E1000_PFVFGOTC(hw_queue), 0);
vadapter->net_stats.multicast +=
E1000_READ_REG(hw, E1000_PFVFMPRC(hw_queue));
E1000_WRITE_REG(hw, E1000_PFVFMPRC(hw_queue), 0);
/* only return the current stats */
return &vadapter->net_stats;
}
/**
* igb_write_vm_addr_list - write unicast addresses to RAR table
* @netdev: network interface device structure
*
* Writes unicast address list to the RAR table.
* Returns: -ENOMEM on failure/insufficient address space
* 0 on no addresses written
* X on writing X addresses to the RAR table
**/
static int igb_write_vm_addr_list(struct net_device *netdev)
{
struct igb_vmdq_adapter *vadapter = netdev_priv(netdev);
struct igb_adapter *adapter = vadapter->real_adapter;
int count = 0;
int hw_queue = vadapter->rx_ring->queue_index +
adapter->vfs_allocated_count;
/* return ENOMEM indicating insufficient memory for addresses */
if (netdev_uc_count(netdev) > igb_available_rars(adapter))
return -ENOMEM;
if (!netdev_uc_empty(netdev)) {
#ifdef NETDEV_HW_ADDR_T_UNICAST
struct netdev_hw_addr *ha;
#else
struct dev_mc_list *ha;
#endif
netdev_for_each_uc_addr(ha, netdev) {
#ifdef NETDEV_HW_ADDR_T_UNICAST
igb_del_mac_filter(adapter, ha->addr, hw_queue);
igb_add_mac_filter(adapter, ha->addr, hw_queue);
#else
igb_del_mac_filter(adapter, ha->da_addr, hw_queue);
igb_add_mac_filter(adapter, ha->da_addr, hw_queue);
#endif
count++;
}
}
return count;
}
#define E1000_VMOLR_UPE 0x20000000 /* Unicast promiscuous mode */
void igb_vmdq_set_rx_mode(struct net_device *dev)
{
struct igb_vmdq_adapter *vadapter = netdev_priv(dev);
struct igb_adapter *adapter = vadapter->real_adapter;
struct e1000_hw *hw = &adapter->hw;
u32 vmolr, rctl;
int hw_queue = vadapter->rx_ring->queue_index +
adapter->vfs_allocated_count;
/* Check for Promiscuous and All Multicast modes */
vmolr = E1000_READ_REG(hw, E1000_VMOLR(hw_queue));
/* clear the affected bits */
vmolr &= ~(E1000_VMOLR_UPE | E1000_VMOLR_MPME |
E1000_VMOLR_ROPE | E1000_VMOLR_ROMPE);
if (dev->flags & IFF_PROMISC) {
vmolr |= E1000_VMOLR_UPE;
rctl = E1000_READ_REG(hw, E1000_RCTL);
rctl |= E1000_RCTL_UPE;
E1000_WRITE_REG(hw, E1000_RCTL, rctl);
} else {
rctl = E1000_READ_REG(hw, E1000_RCTL);
rctl &= ~E1000_RCTL_UPE;
E1000_WRITE_REG(hw, E1000_RCTL, rctl);
if (dev->flags & IFF_ALLMULTI) {
vmolr |= E1000_VMOLR_MPME;
} else {
/*
* Write addresses to the MTA, if the attempt fails
* then we should just turn on promiscuous mode so
* that we can at least receive multicast traffic
*/
if (igb_write_mc_addr_list(adapter->netdev) != 0)
vmolr |= E1000_VMOLR_ROMPE;
}
#ifdef HAVE_SET_RX_MODE
/*
* Write addresses to available RAR registers, if there is not
* sufficient space to store all the addresses then enable
* unicast promiscuous mode
*/
if (igb_write_vm_addr_list(dev) < 0)
vmolr |= E1000_VMOLR_UPE;
#endif
}
E1000_WRITE_REG(hw, E1000_VMOLR(hw_queue), vmolr);
return;
}
int igb_vmdq_set_mac(struct net_device *dev, void *p)
{
struct sockaddr *addr = p;
struct igb_vmdq_adapter *vadapter = netdev_priv(dev);
struct igb_adapter *adapter = vadapter->real_adapter;
int hw_queue = vadapter->rx_ring->queue_index +
adapter->vfs_allocated_count;
igb_del_mac_filter(adapter, dev->dev_addr, hw_queue);
memcpy(dev->dev_addr, addr->sa_data, dev->addr_len);
return igb_add_mac_filter(adapter, dev->dev_addr, hw_queue);
}
int igb_vmdq_change_mtu(struct net_device *dev, int new_mtu)
{
struct igb_vmdq_adapter *vadapter = netdev_priv(dev);
struct igb_adapter *adapter = vadapter->real_adapter;
if (adapter->netdev->mtu < new_mtu) {
DPRINTK(PROBE, INFO,
"Set MTU on %s to >= %d "
"before changing MTU on %s\n",
adapter->netdev->name, new_mtu, dev->name);
return -EINVAL;
}
dev->mtu = new_mtu;
return 0;
}
void igb_vmdq_tx_timeout(struct net_device *dev)
{
return;
}
void igb_vmdq_vlan_rx_register(struct net_device *dev, struct vlan_group *grp)
{
struct igb_vmdq_adapter *vadapter = netdev_priv(dev);
struct igb_adapter *adapter = vadapter->real_adapter;
struct e1000_hw *hw = &adapter->hw;
int hw_queue = vadapter->rx_ring->queue_index +
adapter->vfs_allocated_count;
vadapter->vlgrp = grp;
igb_enable_vlan_tags(adapter);
E1000_WRITE_REG(hw, E1000_VMVIR(hw_queue), 0);
return;
}
void igb_vmdq_vlan_rx_add_vid(struct net_device *dev, unsigned short vid)
{
struct igb_vmdq_adapter *vadapter = netdev_priv(dev);
struct igb_adapter *adapter = vadapter->real_adapter;
#ifndef HAVE_NETDEV_VLAN_FEATURES
struct net_device *v_netdev;
#endif
int hw_queue = vadapter->rx_ring->queue_index +
adapter->vfs_allocated_count;
/* attempt to add filter to vlvf array */
igb_vlvf_set(adapter, vid, TRUE, hw_queue);
#ifndef HAVE_NETDEV_VLAN_FEATURES
/* Copy feature flags from netdev to the vlan netdev for this vid.
* This allows things like TSO to bubble down to our vlan device.
*/
v_netdev = vlan_group_get_device(vadapter->vlgrp, vid);
v_netdev->features |= adapter->netdev->features;
vlan_group_set_device(vadapter->vlgrp, vid, v_netdev);
#endif
return;
}
void igb_vmdq_vlan_rx_kill_vid(struct net_device *dev, unsigned short vid)
{
struct igb_vmdq_adapter *vadapter = netdev_priv(dev);
struct igb_adapter *adapter = vadapter->real_adapter;
int hw_queue = vadapter->rx_ring->queue_index +
adapter->vfs_allocated_count;
vlan_group_set_device(vadapter->vlgrp, vid, NULL);
/* remove vlan from VLVF table array */
igb_vlvf_set(adapter, vid, FALSE, hw_queue);
return;
}
static int igb_vmdq_get_settings(struct net_device *netdev,
struct ethtool_cmd *ecmd)
{
struct igb_vmdq_adapter *vadapter = netdev_priv(netdev);
struct igb_adapter *adapter = vadapter->real_adapter;
struct e1000_hw *hw = &adapter->hw;
u32 status;
if (hw->phy.media_type == e1000_media_type_copper) {
ecmd->supported = (SUPPORTED_10baseT_Half |
SUPPORTED_10baseT_Full |
SUPPORTED_100baseT_Half |
SUPPORTED_100baseT_Full |
SUPPORTED_1000baseT_Full|
SUPPORTED_Autoneg |
SUPPORTED_TP);
ecmd->advertising = ADVERTISED_TP;
if (hw->mac.autoneg == 1) {
ecmd->advertising |= ADVERTISED_Autoneg;
/* the e1000 autoneg seems to match ethtool nicely */
ecmd->advertising |= hw->phy.autoneg_advertised;
}
ecmd->port = PORT_TP;
ecmd->phy_address = hw->phy.addr;
} else {
ecmd->supported = (SUPPORTED_1000baseT_Full |
SUPPORTED_FIBRE |
SUPPORTED_Autoneg);
ecmd->advertising = (ADVERTISED_1000baseT_Full |
ADVERTISED_FIBRE |
ADVERTISED_Autoneg);
ecmd->port = PORT_FIBRE;
}
ecmd->transceiver = XCVR_INTERNAL;
status = E1000_READ_REG(hw, E1000_STATUS);
if (status & E1000_STATUS_LU) {
if ((status & E1000_STATUS_SPEED_1000) ||
hw->phy.media_type != e1000_media_type_copper)
ecmd->speed = SPEED_1000;
else if (status & E1000_STATUS_SPEED_100)
ecmd->speed = SPEED_100;
else
ecmd->speed = SPEED_10;
if ((status & E1000_STATUS_FD) ||
hw->phy.media_type != e1000_media_type_copper)
ecmd->duplex = DUPLEX_FULL;
else
ecmd->duplex = DUPLEX_HALF;
} else {
ecmd->speed = -1;
ecmd->duplex = -1;
}
ecmd->autoneg = hw->mac.autoneg ? AUTONEG_ENABLE : AUTONEG_DISABLE;
return 0;
}
static u32 igb_vmdq_get_msglevel(struct net_device *netdev)
{
struct igb_vmdq_adapter *vadapter = netdev_priv(netdev);
struct igb_adapter *adapter = vadapter->real_adapter;
return adapter->msg_enable;
}
static void igb_vmdq_get_drvinfo(struct net_device *netdev,
struct ethtool_drvinfo *drvinfo)
{
struct igb_vmdq_adapter *vadapter = netdev_priv(netdev);
struct igb_adapter *adapter = vadapter->real_adapter;
struct net_device *main_netdev = adapter->netdev;
strncpy(drvinfo->driver, igb_driver_name, 32);
strncpy(drvinfo->version, igb_driver_version, 32);
strncpy(drvinfo->fw_version, "N/A", 4);
snprintf(drvinfo->bus_info, 32, "%s VMDQ %d", main_netdev->name,
vadapter->rx_ring->queue_index);
drvinfo->n_stats = 0;
drvinfo->testinfo_len = 0;
drvinfo->regdump_len = 0;
}
static void igb_vmdq_get_ringparam(struct net_device *netdev,
struct ethtool_ringparam *ring)
{
struct igb_vmdq_adapter *vadapter = netdev_priv(netdev);
struct igb_ring *tx_ring = vadapter->tx_ring;
struct igb_ring *rx_ring = vadapter->rx_ring;
ring->rx_max_pending = IGB_MAX_RXD;
ring->tx_max_pending = IGB_MAX_TXD;
ring->rx_mini_max_pending = 0;
ring->rx_jumbo_max_pending = 0;
ring->rx_pending = rx_ring->count;
ring->tx_pending = tx_ring->count;
ring->rx_mini_pending = 0;
ring->rx_jumbo_pending = 0;
}
static u32 igb_vmdq_get_rx_csum(struct net_device *netdev)
{
struct igb_vmdq_adapter *vadapter = netdev_priv(netdev);
struct igb_adapter *adapter = vadapter->real_adapter;
return test_bit(IGB_RING_FLAG_RX_CSUM, &adapter->rx_ring[0]->flags);
}
static struct ethtool_ops igb_vmdq_ethtool_ops = {
.get_settings = igb_vmdq_get_settings,
.get_drvinfo = igb_vmdq_get_drvinfo,
.get_link = ethtool_op_get_link,
.get_ringparam = igb_vmdq_get_ringparam,
.get_rx_csum = igb_vmdq_get_rx_csum,
.get_tx_csum = ethtool_op_get_tx_csum,
.get_sg = ethtool_op_get_sg,
.set_sg = ethtool_op_set_sg,
.get_msglevel = igb_vmdq_get_msglevel,
#ifdef NETIF_F_TSO
.get_tso = ethtool_op_get_tso,
#endif
#ifdef HAVE_ETHTOOL_GET_PERM_ADDR
.get_perm_addr = ethtool_op_get_perm_addr,
#endif
};
void igb_vmdq_set_ethtool_ops(struct net_device *netdev)
{
SET_ETHTOOL_OPS(netdev, &igb_vmdq_ethtool_ops);
}
#endif /* CONFIG_IGB_VMDQ_NETDEV */