mirror of https://github.com/F-Stack/f-stack.git
1846 lines
57 KiB
C
1846 lines
57 KiB
C
/*******************************************************************************
|
|
|
|
Copyright (c) 2013 - 2015, Intel Corporation
|
|
All rights reserved.
|
|
|
|
Redistribution and use in source and binary forms, with or without
|
|
modification, are permitted provided that the following conditions are met:
|
|
|
|
1. Redistributions of source code must retain the above copyright notice,
|
|
this list of conditions and the following disclaimer.
|
|
|
|
2. Redistributions in binary form must reproduce the above copyright
|
|
notice, this list of conditions and the following disclaimer in the
|
|
documentation and/or other materials provided with the distribution.
|
|
|
|
3. Neither the name of the Intel Corporation nor the names of its
|
|
contributors may be used to endorse or promote products derived from
|
|
this software without specific prior written permission.
|
|
|
|
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
|
|
AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
|
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
|
|
ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
|
|
LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
|
|
CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
|
|
SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
|
|
INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
|
|
CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
|
|
ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
|
|
POSSIBILITY OF SUCH DAMAGE.
|
|
|
|
***************************************************************************/
|
|
|
|
#include "avf_type.h"
|
|
#include "avf_adminq.h"
|
|
#include "avf_prototype.h"
|
|
#include "virtchnl.h"
|
|
|
|
|
|
/**
|
|
* avf_set_mac_type - Sets MAC type
|
|
* @hw: pointer to the HW structure
|
|
*
|
|
* This function sets the mac type of the adapter based on the
|
|
* vendor ID and device ID stored in the hw structure.
|
|
**/
|
|
enum avf_status_code avf_set_mac_type(struct avf_hw *hw)
|
|
{
|
|
enum avf_status_code status = AVF_SUCCESS;
|
|
|
|
DEBUGFUNC("avf_set_mac_type\n");
|
|
|
|
if (hw->vendor_id == AVF_INTEL_VENDOR_ID) {
|
|
switch (hw->device_id) {
|
|
/* TODO: remove undefined device ID now, need to think how to
|
|
* remove them in share code
|
|
*/
|
|
case AVF_DEV_ID_ADAPTIVE_VF:
|
|
hw->mac.type = AVF_MAC_VF;
|
|
break;
|
|
default:
|
|
hw->mac.type = AVF_MAC_GENERIC;
|
|
break;
|
|
}
|
|
} else {
|
|
status = AVF_ERR_DEVICE_NOT_SUPPORTED;
|
|
}
|
|
|
|
DEBUGOUT2("avf_set_mac_type found mac: %d, returns: %d\n",
|
|
hw->mac.type, status);
|
|
return status;
|
|
}
|
|
|
|
/**
|
|
* avf_aq_str - convert AQ err code to a string
|
|
* @hw: pointer to the HW structure
|
|
* @aq_err: the AQ error code to convert
|
|
**/
|
|
const char *avf_aq_str(struct avf_hw *hw, enum avf_admin_queue_err aq_err)
|
|
{
|
|
switch (aq_err) {
|
|
case AVF_AQ_RC_OK:
|
|
return "OK";
|
|
case AVF_AQ_RC_EPERM:
|
|
return "AVF_AQ_RC_EPERM";
|
|
case AVF_AQ_RC_ENOENT:
|
|
return "AVF_AQ_RC_ENOENT";
|
|
case AVF_AQ_RC_ESRCH:
|
|
return "AVF_AQ_RC_ESRCH";
|
|
case AVF_AQ_RC_EINTR:
|
|
return "AVF_AQ_RC_EINTR";
|
|
case AVF_AQ_RC_EIO:
|
|
return "AVF_AQ_RC_EIO";
|
|
case AVF_AQ_RC_ENXIO:
|
|
return "AVF_AQ_RC_ENXIO";
|
|
case AVF_AQ_RC_E2BIG:
|
|
return "AVF_AQ_RC_E2BIG";
|
|
case AVF_AQ_RC_EAGAIN:
|
|
return "AVF_AQ_RC_EAGAIN";
|
|
case AVF_AQ_RC_ENOMEM:
|
|
return "AVF_AQ_RC_ENOMEM";
|
|
case AVF_AQ_RC_EACCES:
|
|
return "AVF_AQ_RC_EACCES";
|
|
case AVF_AQ_RC_EFAULT:
|
|
return "AVF_AQ_RC_EFAULT";
|
|
case AVF_AQ_RC_EBUSY:
|
|
return "AVF_AQ_RC_EBUSY";
|
|
case AVF_AQ_RC_EEXIST:
|
|
return "AVF_AQ_RC_EEXIST";
|
|
case AVF_AQ_RC_EINVAL:
|
|
return "AVF_AQ_RC_EINVAL";
|
|
case AVF_AQ_RC_ENOTTY:
|
|
return "AVF_AQ_RC_ENOTTY";
|
|
case AVF_AQ_RC_ENOSPC:
|
|
return "AVF_AQ_RC_ENOSPC";
|
|
case AVF_AQ_RC_ENOSYS:
|
|
return "AVF_AQ_RC_ENOSYS";
|
|
case AVF_AQ_RC_ERANGE:
|
|
return "AVF_AQ_RC_ERANGE";
|
|
case AVF_AQ_RC_EFLUSHED:
|
|
return "AVF_AQ_RC_EFLUSHED";
|
|
case AVF_AQ_RC_BAD_ADDR:
|
|
return "AVF_AQ_RC_BAD_ADDR";
|
|
case AVF_AQ_RC_EMODE:
|
|
return "AVF_AQ_RC_EMODE";
|
|
case AVF_AQ_RC_EFBIG:
|
|
return "AVF_AQ_RC_EFBIG";
|
|
}
|
|
|
|
snprintf(hw->err_str, sizeof(hw->err_str), "%d", aq_err);
|
|
return hw->err_str;
|
|
}
|
|
|
|
/**
|
|
* avf_stat_str - convert status err code to a string
|
|
* @hw: pointer to the HW structure
|
|
* @stat_err: the status error code to convert
|
|
**/
|
|
const char *avf_stat_str(struct avf_hw *hw, enum avf_status_code stat_err)
|
|
{
|
|
switch (stat_err) {
|
|
case AVF_SUCCESS:
|
|
return "OK";
|
|
case AVF_ERR_NVM:
|
|
return "AVF_ERR_NVM";
|
|
case AVF_ERR_NVM_CHECKSUM:
|
|
return "AVF_ERR_NVM_CHECKSUM";
|
|
case AVF_ERR_PHY:
|
|
return "AVF_ERR_PHY";
|
|
case AVF_ERR_CONFIG:
|
|
return "AVF_ERR_CONFIG";
|
|
case AVF_ERR_PARAM:
|
|
return "AVF_ERR_PARAM";
|
|
case AVF_ERR_MAC_TYPE:
|
|
return "AVF_ERR_MAC_TYPE";
|
|
case AVF_ERR_UNKNOWN_PHY:
|
|
return "AVF_ERR_UNKNOWN_PHY";
|
|
case AVF_ERR_LINK_SETUP:
|
|
return "AVF_ERR_LINK_SETUP";
|
|
case AVF_ERR_ADAPTER_STOPPED:
|
|
return "AVF_ERR_ADAPTER_STOPPED";
|
|
case AVF_ERR_INVALID_MAC_ADDR:
|
|
return "AVF_ERR_INVALID_MAC_ADDR";
|
|
case AVF_ERR_DEVICE_NOT_SUPPORTED:
|
|
return "AVF_ERR_DEVICE_NOT_SUPPORTED";
|
|
case AVF_ERR_MASTER_REQUESTS_PENDING:
|
|
return "AVF_ERR_MASTER_REQUESTS_PENDING";
|
|
case AVF_ERR_INVALID_LINK_SETTINGS:
|
|
return "AVF_ERR_INVALID_LINK_SETTINGS";
|
|
case AVF_ERR_AUTONEG_NOT_COMPLETE:
|
|
return "AVF_ERR_AUTONEG_NOT_COMPLETE";
|
|
case AVF_ERR_RESET_FAILED:
|
|
return "AVF_ERR_RESET_FAILED";
|
|
case AVF_ERR_SWFW_SYNC:
|
|
return "AVF_ERR_SWFW_SYNC";
|
|
case AVF_ERR_NO_AVAILABLE_VSI:
|
|
return "AVF_ERR_NO_AVAILABLE_VSI";
|
|
case AVF_ERR_NO_MEMORY:
|
|
return "AVF_ERR_NO_MEMORY";
|
|
case AVF_ERR_BAD_PTR:
|
|
return "AVF_ERR_BAD_PTR";
|
|
case AVF_ERR_RING_FULL:
|
|
return "AVF_ERR_RING_FULL";
|
|
case AVF_ERR_INVALID_PD_ID:
|
|
return "AVF_ERR_INVALID_PD_ID";
|
|
case AVF_ERR_INVALID_QP_ID:
|
|
return "AVF_ERR_INVALID_QP_ID";
|
|
case AVF_ERR_INVALID_CQ_ID:
|
|
return "AVF_ERR_INVALID_CQ_ID";
|
|
case AVF_ERR_INVALID_CEQ_ID:
|
|
return "AVF_ERR_INVALID_CEQ_ID";
|
|
case AVF_ERR_INVALID_AEQ_ID:
|
|
return "AVF_ERR_INVALID_AEQ_ID";
|
|
case AVF_ERR_INVALID_SIZE:
|
|
return "AVF_ERR_INVALID_SIZE";
|
|
case AVF_ERR_INVALID_ARP_INDEX:
|
|
return "AVF_ERR_INVALID_ARP_INDEX";
|
|
case AVF_ERR_INVALID_FPM_FUNC_ID:
|
|
return "AVF_ERR_INVALID_FPM_FUNC_ID";
|
|
case AVF_ERR_QP_INVALID_MSG_SIZE:
|
|
return "AVF_ERR_QP_INVALID_MSG_SIZE";
|
|
case AVF_ERR_QP_TOOMANY_WRS_POSTED:
|
|
return "AVF_ERR_QP_TOOMANY_WRS_POSTED";
|
|
case AVF_ERR_INVALID_FRAG_COUNT:
|
|
return "AVF_ERR_INVALID_FRAG_COUNT";
|
|
case AVF_ERR_QUEUE_EMPTY:
|
|
return "AVF_ERR_QUEUE_EMPTY";
|
|
case AVF_ERR_INVALID_ALIGNMENT:
|
|
return "AVF_ERR_INVALID_ALIGNMENT";
|
|
case AVF_ERR_FLUSHED_QUEUE:
|
|
return "AVF_ERR_FLUSHED_QUEUE";
|
|
case AVF_ERR_INVALID_PUSH_PAGE_INDEX:
|
|
return "AVF_ERR_INVALID_PUSH_PAGE_INDEX";
|
|
case AVF_ERR_INVALID_IMM_DATA_SIZE:
|
|
return "AVF_ERR_INVALID_IMM_DATA_SIZE";
|
|
case AVF_ERR_TIMEOUT:
|
|
return "AVF_ERR_TIMEOUT";
|
|
case AVF_ERR_OPCODE_MISMATCH:
|
|
return "AVF_ERR_OPCODE_MISMATCH";
|
|
case AVF_ERR_CQP_COMPL_ERROR:
|
|
return "AVF_ERR_CQP_COMPL_ERROR";
|
|
case AVF_ERR_INVALID_VF_ID:
|
|
return "AVF_ERR_INVALID_VF_ID";
|
|
case AVF_ERR_INVALID_HMCFN_ID:
|
|
return "AVF_ERR_INVALID_HMCFN_ID";
|
|
case AVF_ERR_BACKING_PAGE_ERROR:
|
|
return "AVF_ERR_BACKING_PAGE_ERROR";
|
|
case AVF_ERR_NO_PBLCHUNKS_AVAILABLE:
|
|
return "AVF_ERR_NO_PBLCHUNKS_AVAILABLE";
|
|
case AVF_ERR_INVALID_PBLE_INDEX:
|
|
return "AVF_ERR_INVALID_PBLE_INDEX";
|
|
case AVF_ERR_INVALID_SD_INDEX:
|
|
return "AVF_ERR_INVALID_SD_INDEX";
|
|
case AVF_ERR_INVALID_PAGE_DESC_INDEX:
|
|
return "AVF_ERR_INVALID_PAGE_DESC_INDEX";
|
|
case AVF_ERR_INVALID_SD_TYPE:
|
|
return "AVF_ERR_INVALID_SD_TYPE";
|
|
case AVF_ERR_MEMCPY_FAILED:
|
|
return "AVF_ERR_MEMCPY_FAILED";
|
|
case AVF_ERR_INVALID_HMC_OBJ_INDEX:
|
|
return "AVF_ERR_INVALID_HMC_OBJ_INDEX";
|
|
case AVF_ERR_INVALID_HMC_OBJ_COUNT:
|
|
return "AVF_ERR_INVALID_HMC_OBJ_COUNT";
|
|
case AVF_ERR_INVALID_SRQ_ARM_LIMIT:
|
|
return "AVF_ERR_INVALID_SRQ_ARM_LIMIT";
|
|
case AVF_ERR_SRQ_ENABLED:
|
|
return "AVF_ERR_SRQ_ENABLED";
|
|
case AVF_ERR_ADMIN_QUEUE_ERROR:
|
|
return "AVF_ERR_ADMIN_QUEUE_ERROR";
|
|
case AVF_ERR_ADMIN_QUEUE_TIMEOUT:
|
|
return "AVF_ERR_ADMIN_QUEUE_TIMEOUT";
|
|
case AVF_ERR_BUF_TOO_SHORT:
|
|
return "AVF_ERR_BUF_TOO_SHORT";
|
|
case AVF_ERR_ADMIN_QUEUE_FULL:
|
|
return "AVF_ERR_ADMIN_QUEUE_FULL";
|
|
case AVF_ERR_ADMIN_QUEUE_NO_WORK:
|
|
return "AVF_ERR_ADMIN_QUEUE_NO_WORK";
|
|
case AVF_ERR_BAD_IWARP_CQE:
|
|
return "AVF_ERR_BAD_IWARP_CQE";
|
|
case AVF_ERR_NVM_BLANK_MODE:
|
|
return "AVF_ERR_NVM_BLANK_MODE";
|
|
case AVF_ERR_NOT_IMPLEMENTED:
|
|
return "AVF_ERR_NOT_IMPLEMENTED";
|
|
case AVF_ERR_PE_DOORBELL_NOT_ENABLED:
|
|
return "AVF_ERR_PE_DOORBELL_NOT_ENABLED";
|
|
case AVF_ERR_DIAG_TEST_FAILED:
|
|
return "AVF_ERR_DIAG_TEST_FAILED";
|
|
case AVF_ERR_NOT_READY:
|
|
return "AVF_ERR_NOT_READY";
|
|
case AVF_NOT_SUPPORTED:
|
|
return "AVF_NOT_SUPPORTED";
|
|
case AVF_ERR_FIRMWARE_API_VERSION:
|
|
return "AVF_ERR_FIRMWARE_API_VERSION";
|
|
case AVF_ERR_ADMIN_QUEUE_CRITICAL_ERROR:
|
|
return "AVF_ERR_ADMIN_QUEUE_CRITICAL_ERROR";
|
|
}
|
|
|
|
snprintf(hw->err_str, sizeof(hw->err_str), "%d", stat_err);
|
|
return hw->err_str;
|
|
}
|
|
|
|
/**
|
|
* avf_debug_aq
|
|
* @hw: debug mask related to admin queue
|
|
* @mask: debug mask
|
|
* @desc: pointer to admin queue descriptor
|
|
* @buffer: pointer to command buffer
|
|
* @buf_len: max length of buffer
|
|
*
|
|
* Dumps debug log about adminq command with descriptor contents.
|
|
**/
|
|
void avf_debug_aq(struct avf_hw *hw, enum avf_debug_mask mask, void *desc,
|
|
void *buffer, u16 buf_len)
|
|
{
|
|
struct avf_aq_desc *aq_desc = (struct avf_aq_desc *)desc;
|
|
u8 *buf = (u8 *)buffer;
|
|
u16 len;
|
|
u16 i = 0;
|
|
|
|
if ((!(mask & hw->debug_mask)) || (desc == NULL))
|
|
return;
|
|
|
|
len = LE16_TO_CPU(aq_desc->datalen);
|
|
|
|
avf_debug(hw, mask,
|
|
"AQ CMD: opcode 0x%04X, flags 0x%04X, datalen 0x%04X, retval 0x%04X\n",
|
|
LE16_TO_CPU(aq_desc->opcode),
|
|
LE16_TO_CPU(aq_desc->flags),
|
|
LE16_TO_CPU(aq_desc->datalen),
|
|
LE16_TO_CPU(aq_desc->retval));
|
|
avf_debug(hw, mask, "\tcookie (h,l) 0x%08X 0x%08X\n",
|
|
LE32_TO_CPU(aq_desc->cookie_high),
|
|
LE32_TO_CPU(aq_desc->cookie_low));
|
|
avf_debug(hw, mask, "\tparam (0,1) 0x%08X 0x%08X\n",
|
|
LE32_TO_CPU(aq_desc->params.internal.param0),
|
|
LE32_TO_CPU(aq_desc->params.internal.param1));
|
|
avf_debug(hw, mask, "\taddr (h,l) 0x%08X 0x%08X\n",
|
|
LE32_TO_CPU(aq_desc->params.external.addr_high),
|
|
LE32_TO_CPU(aq_desc->params.external.addr_low));
|
|
|
|
if ((buffer != NULL) && (aq_desc->datalen != 0)) {
|
|
avf_debug(hw, mask, "AQ CMD Buffer:\n");
|
|
if (buf_len < len)
|
|
len = buf_len;
|
|
/* write the full 16-byte chunks */
|
|
for (i = 0; i < (len - 16); i += 16)
|
|
avf_debug(hw, mask,
|
|
"\t0x%04X %02X %02X %02X %02X %02X %02X %02X %02X %02X %02X %02X %02X %02X %02X %02X %02X\n",
|
|
i, buf[i], buf[i+1], buf[i+2], buf[i+3],
|
|
buf[i+4], buf[i+5], buf[i+6], buf[i+7],
|
|
buf[i+8], buf[i+9], buf[i+10], buf[i+11],
|
|
buf[i+12], buf[i+13], buf[i+14], buf[i+15]);
|
|
/* the most we could have left is 16 bytes, pad with zeros */
|
|
if (i < len) {
|
|
char d_buf[16];
|
|
int j, i_sav;
|
|
|
|
i_sav = i;
|
|
memset(d_buf, 0, sizeof(d_buf));
|
|
for (j = 0; i < len; j++, i++)
|
|
d_buf[j] = buf[i];
|
|
avf_debug(hw, mask,
|
|
"\t0x%04X %02X %02X %02X %02X %02X %02X %02X %02X %02X %02X %02X %02X %02X %02X %02X %02X\n",
|
|
i_sav, d_buf[0], d_buf[1], d_buf[2], d_buf[3],
|
|
d_buf[4], d_buf[5], d_buf[6], d_buf[7],
|
|
d_buf[8], d_buf[9], d_buf[10], d_buf[11],
|
|
d_buf[12], d_buf[13], d_buf[14], d_buf[15]);
|
|
}
|
|
}
|
|
}
|
|
|
|
/**
|
|
* avf_check_asq_alive
|
|
* @hw: pointer to the hw struct
|
|
*
|
|
* Returns true if Queue is enabled else false.
|
|
**/
|
|
bool avf_check_asq_alive(struct avf_hw *hw)
|
|
{
|
|
if (hw->aq.asq.len)
|
|
#ifdef INTEGRATED_VF
|
|
if (avf_is_vf(hw))
|
|
return !!(rd32(hw, hw->aq.asq.len) &
|
|
AVF_ATQLEN1_ATQENABLE_MASK);
|
|
#else
|
|
return !!(rd32(hw, hw->aq.asq.len) &
|
|
AVF_ATQLEN1_ATQENABLE_MASK);
|
|
#endif /* INTEGRATED_VF */
|
|
return false;
|
|
}
|
|
|
|
/**
|
|
* avf_aq_queue_shutdown
|
|
* @hw: pointer to the hw struct
|
|
* @unloading: is the driver unloading itself
|
|
*
|
|
* Tell the Firmware that we're shutting down the AdminQ and whether
|
|
* or not the driver is unloading as well.
|
|
**/
|
|
enum avf_status_code avf_aq_queue_shutdown(struct avf_hw *hw,
|
|
bool unloading)
|
|
{
|
|
struct avf_aq_desc desc;
|
|
struct avf_aqc_queue_shutdown *cmd =
|
|
(struct avf_aqc_queue_shutdown *)&desc.params.raw;
|
|
enum avf_status_code status;
|
|
|
|
avf_fill_default_direct_cmd_desc(&desc,
|
|
avf_aqc_opc_queue_shutdown);
|
|
|
|
if (unloading)
|
|
cmd->driver_unloading = CPU_TO_LE32(AVF_AQ_DRIVER_UNLOADING);
|
|
status = avf_asq_send_command(hw, &desc, NULL, 0, NULL);
|
|
|
|
return status;
|
|
}
|
|
|
|
/**
|
|
* avf_aq_get_set_rss_lut
|
|
* @hw: pointer to the hardware structure
|
|
* @vsi_id: vsi fw index
|
|
* @pf_lut: for PF table set true, for VSI table set false
|
|
* @lut: pointer to the lut buffer provided by the caller
|
|
* @lut_size: size of the lut buffer
|
|
* @set: set true to set the table, false to get the table
|
|
*
|
|
* Internal function to get or set RSS look up table
|
|
**/
|
|
STATIC enum avf_status_code avf_aq_get_set_rss_lut(struct avf_hw *hw,
|
|
u16 vsi_id, bool pf_lut,
|
|
u8 *lut, u16 lut_size,
|
|
bool set)
|
|
{
|
|
enum avf_status_code status;
|
|
struct avf_aq_desc desc;
|
|
struct avf_aqc_get_set_rss_lut *cmd_resp =
|
|
(struct avf_aqc_get_set_rss_lut *)&desc.params.raw;
|
|
|
|
if (set)
|
|
avf_fill_default_direct_cmd_desc(&desc,
|
|
avf_aqc_opc_set_rss_lut);
|
|
else
|
|
avf_fill_default_direct_cmd_desc(&desc,
|
|
avf_aqc_opc_get_rss_lut);
|
|
|
|
/* Indirect command */
|
|
desc.flags |= CPU_TO_LE16((u16)AVF_AQ_FLAG_BUF);
|
|
desc.flags |= CPU_TO_LE16((u16)AVF_AQ_FLAG_RD);
|
|
|
|
cmd_resp->vsi_id =
|
|
CPU_TO_LE16((u16)((vsi_id <<
|
|
AVF_AQC_SET_RSS_LUT_VSI_ID_SHIFT) &
|
|
AVF_AQC_SET_RSS_LUT_VSI_ID_MASK));
|
|
cmd_resp->vsi_id |= CPU_TO_LE16((u16)AVF_AQC_SET_RSS_LUT_VSI_VALID);
|
|
|
|
if (pf_lut)
|
|
cmd_resp->flags |= CPU_TO_LE16((u16)
|
|
((AVF_AQC_SET_RSS_LUT_TABLE_TYPE_PF <<
|
|
AVF_AQC_SET_RSS_LUT_TABLE_TYPE_SHIFT) &
|
|
AVF_AQC_SET_RSS_LUT_TABLE_TYPE_MASK));
|
|
else
|
|
cmd_resp->flags |= CPU_TO_LE16((u16)
|
|
((AVF_AQC_SET_RSS_LUT_TABLE_TYPE_VSI <<
|
|
AVF_AQC_SET_RSS_LUT_TABLE_TYPE_SHIFT) &
|
|
AVF_AQC_SET_RSS_LUT_TABLE_TYPE_MASK));
|
|
|
|
status = avf_asq_send_command(hw, &desc, lut, lut_size, NULL);
|
|
|
|
return status;
|
|
}
|
|
|
|
/**
|
|
* avf_aq_get_rss_lut
|
|
* @hw: pointer to the hardware structure
|
|
* @vsi_id: vsi fw index
|
|
* @pf_lut: for PF table set true, for VSI table set false
|
|
* @lut: pointer to the lut buffer provided by the caller
|
|
* @lut_size: size of the lut buffer
|
|
*
|
|
* get the RSS lookup table, PF or VSI type
|
|
**/
|
|
enum avf_status_code avf_aq_get_rss_lut(struct avf_hw *hw, u16 vsi_id,
|
|
bool pf_lut, u8 *lut, u16 lut_size)
|
|
{
|
|
return avf_aq_get_set_rss_lut(hw, vsi_id, pf_lut, lut, lut_size,
|
|
false);
|
|
}
|
|
|
|
/**
|
|
* avf_aq_set_rss_lut
|
|
* @hw: pointer to the hardware structure
|
|
* @vsi_id: vsi fw index
|
|
* @pf_lut: for PF table set true, for VSI table set false
|
|
* @lut: pointer to the lut buffer provided by the caller
|
|
* @lut_size: size of the lut buffer
|
|
*
|
|
* set the RSS lookup table, PF or VSI type
|
|
**/
|
|
enum avf_status_code avf_aq_set_rss_lut(struct avf_hw *hw, u16 vsi_id,
|
|
bool pf_lut, u8 *lut, u16 lut_size)
|
|
{
|
|
return avf_aq_get_set_rss_lut(hw, vsi_id, pf_lut, lut, lut_size, true);
|
|
}
|
|
|
|
/**
|
|
* avf_aq_get_set_rss_key
|
|
* @hw: pointer to the hw struct
|
|
* @vsi_id: vsi fw index
|
|
* @key: pointer to key info struct
|
|
* @set: set true to set the key, false to get the key
|
|
*
|
|
* get the RSS key per VSI
|
|
**/
|
|
STATIC enum avf_status_code avf_aq_get_set_rss_key(struct avf_hw *hw,
|
|
u16 vsi_id,
|
|
struct avf_aqc_get_set_rss_key_data *key,
|
|
bool set)
|
|
{
|
|
enum avf_status_code status;
|
|
struct avf_aq_desc desc;
|
|
struct avf_aqc_get_set_rss_key *cmd_resp =
|
|
(struct avf_aqc_get_set_rss_key *)&desc.params.raw;
|
|
u16 key_size = sizeof(struct avf_aqc_get_set_rss_key_data);
|
|
|
|
if (set)
|
|
avf_fill_default_direct_cmd_desc(&desc,
|
|
avf_aqc_opc_set_rss_key);
|
|
else
|
|
avf_fill_default_direct_cmd_desc(&desc,
|
|
avf_aqc_opc_get_rss_key);
|
|
|
|
/* Indirect command */
|
|
desc.flags |= CPU_TO_LE16((u16)AVF_AQ_FLAG_BUF);
|
|
desc.flags |= CPU_TO_LE16((u16)AVF_AQ_FLAG_RD);
|
|
|
|
cmd_resp->vsi_id =
|
|
CPU_TO_LE16((u16)((vsi_id <<
|
|
AVF_AQC_SET_RSS_KEY_VSI_ID_SHIFT) &
|
|
AVF_AQC_SET_RSS_KEY_VSI_ID_MASK));
|
|
cmd_resp->vsi_id |= CPU_TO_LE16((u16)AVF_AQC_SET_RSS_KEY_VSI_VALID);
|
|
|
|
status = avf_asq_send_command(hw, &desc, key, key_size, NULL);
|
|
|
|
return status;
|
|
}
|
|
|
|
/**
|
|
* avf_aq_get_rss_key
|
|
* @hw: pointer to the hw struct
|
|
* @vsi_id: vsi fw index
|
|
* @key: pointer to key info struct
|
|
*
|
|
**/
|
|
enum avf_status_code avf_aq_get_rss_key(struct avf_hw *hw,
|
|
u16 vsi_id,
|
|
struct avf_aqc_get_set_rss_key_data *key)
|
|
{
|
|
return avf_aq_get_set_rss_key(hw, vsi_id, key, false);
|
|
}
|
|
|
|
/**
|
|
* avf_aq_set_rss_key
|
|
* @hw: pointer to the hw struct
|
|
* @vsi_id: vsi fw index
|
|
* @key: pointer to key info struct
|
|
*
|
|
* set the RSS key per VSI
|
|
**/
|
|
enum avf_status_code avf_aq_set_rss_key(struct avf_hw *hw,
|
|
u16 vsi_id,
|
|
struct avf_aqc_get_set_rss_key_data *key)
|
|
{
|
|
return avf_aq_get_set_rss_key(hw, vsi_id, key, true);
|
|
}
|
|
|
|
/* The avf_ptype_lookup table is used to convert from the 8-bit ptype in the
|
|
* hardware to a bit-field that can be used by SW to more easily determine the
|
|
* packet type.
|
|
*
|
|
* Macros are used to shorten the table lines and make this table human
|
|
* readable.
|
|
*
|
|
* We store the PTYPE in the top byte of the bit field - this is just so that
|
|
* we can check that the table doesn't have a row missing, as the index into
|
|
* the table should be the PTYPE.
|
|
*
|
|
* Typical work flow:
|
|
*
|
|
* IF NOT avf_ptype_lookup[ptype].known
|
|
* THEN
|
|
* Packet is unknown
|
|
* ELSE IF avf_ptype_lookup[ptype].outer_ip == AVF_RX_PTYPE_OUTER_IP
|
|
* Use the rest of the fields to look at the tunnels, inner protocols, etc
|
|
* ELSE
|
|
* Use the enum avf_rx_l2_ptype to decode the packet type
|
|
* ENDIF
|
|
*/
|
|
|
|
/* macro to make the table lines short */
|
|
#define AVF_PTT(PTYPE, OUTER_IP, OUTER_IP_VER, OUTER_FRAG, T, TE, TEF, I, PL)\
|
|
{ PTYPE, \
|
|
1, \
|
|
AVF_RX_PTYPE_OUTER_##OUTER_IP, \
|
|
AVF_RX_PTYPE_OUTER_##OUTER_IP_VER, \
|
|
AVF_RX_PTYPE_##OUTER_FRAG, \
|
|
AVF_RX_PTYPE_TUNNEL_##T, \
|
|
AVF_RX_PTYPE_TUNNEL_END_##TE, \
|
|
AVF_RX_PTYPE_##TEF, \
|
|
AVF_RX_PTYPE_INNER_PROT_##I, \
|
|
AVF_RX_PTYPE_PAYLOAD_LAYER_##PL }
|
|
|
|
#define AVF_PTT_UNUSED_ENTRY(PTYPE) \
|
|
{ PTYPE, 0, 0, 0, 0, 0, 0, 0, 0, 0 }
|
|
|
|
/* shorter macros makes the table fit but are terse */
|
|
#define AVF_RX_PTYPE_NOF AVF_RX_PTYPE_NOT_FRAG
|
|
#define AVF_RX_PTYPE_FRG AVF_RX_PTYPE_FRAG
|
|
#define AVF_RX_PTYPE_INNER_PROT_TS AVF_RX_PTYPE_INNER_PROT_TIMESYNC
|
|
|
|
/* Lookup table mapping the HW PTYPE to the bit field for decoding */
|
|
struct avf_rx_ptype_decoded avf_ptype_lookup[] = {
|
|
/* L2 Packet types */
|
|
AVF_PTT_UNUSED_ENTRY(0),
|
|
AVF_PTT(1, L2, NONE, NOF, NONE, NONE, NOF, NONE, PAY2),
|
|
AVF_PTT(2, L2, NONE, NOF, NONE, NONE, NOF, TS, PAY2),
|
|
AVF_PTT(3, L2, NONE, NOF, NONE, NONE, NOF, NONE, PAY2),
|
|
AVF_PTT_UNUSED_ENTRY(4),
|
|
AVF_PTT_UNUSED_ENTRY(5),
|
|
AVF_PTT(6, L2, NONE, NOF, NONE, NONE, NOF, NONE, PAY2),
|
|
AVF_PTT(7, L2, NONE, NOF, NONE, NONE, NOF, NONE, PAY2),
|
|
AVF_PTT_UNUSED_ENTRY(8),
|
|
AVF_PTT_UNUSED_ENTRY(9),
|
|
AVF_PTT(10, L2, NONE, NOF, NONE, NONE, NOF, NONE, PAY2),
|
|
AVF_PTT(11, L2, NONE, NOF, NONE, NONE, NOF, NONE, NONE),
|
|
AVF_PTT(12, L2, NONE, NOF, NONE, NONE, NOF, NONE, PAY3),
|
|
AVF_PTT(13, L2, NONE, NOF, NONE, NONE, NOF, NONE, PAY3),
|
|
AVF_PTT(14, L2, NONE, NOF, NONE, NONE, NOF, NONE, PAY3),
|
|
AVF_PTT(15, L2, NONE, NOF, NONE, NONE, NOF, NONE, PAY3),
|
|
AVF_PTT(16, L2, NONE, NOF, NONE, NONE, NOF, NONE, PAY3),
|
|
AVF_PTT(17, L2, NONE, NOF, NONE, NONE, NOF, NONE, PAY3),
|
|
AVF_PTT(18, L2, NONE, NOF, NONE, NONE, NOF, NONE, PAY3),
|
|
AVF_PTT(19, L2, NONE, NOF, NONE, NONE, NOF, NONE, PAY3),
|
|
AVF_PTT(20, L2, NONE, NOF, NONE, NONE, NOF, NONE, PAY3),
|
|
AVF_PTT(21, L2, NONE, NOF, NONE, NONE, NOF, NONE, PAY3),
|
|
|
|
/* Non Tunneled IPv4 */
|
|
AVF_PTT(22, IP, IPV4, FRG, NONE, NONE, NOF, NONE, PAY3),
|
|
AVF_PTT(23, IP, IPV4, NOF, NONE, NONE, NOF, NONE, PAY3),
|
|
AVF_PTT(24, IP, IPV4, NOF, NONE, NONE, NOF, UDP, PAY4),
|
|
AVF_PTT_UNUSED_ENTRY(25),
|
|
AVF_PTT(26, IP, IPV4, NOF, NONE, NONE, NOF, TCP, PAY4),
|
|
AVF_PTT(27, IP, IPV4, NOF, NONE, NONE, NOF, SCTP, PAY4),
|
|
AVF_PTT(28, IP, IPV4, NOF, NONE, NONE, NOF, ICMP, PAY4),
|
|
|
|
/* IPv4 --> IPv4 */
|
|
AVF_PTT(29, IP, IPV4, NOF, IP_IP, IPV4, FRG, NONE, PAY3),
|
|
AVF_PTT(30, IP, IPV4, NOF, IP_IP, IPV4, NOF, NONE, PAY3),
|
|
AVF_PTT(31, IP, IPV4, NOF, IP_IP, IPV4, NOF, UDP, PAY4),
|
|
AVF_PTT_UNUSED_ENTRY(32),
|
|
AVF_PTT(33, IP, IPV4, NOF, IP_IP, IPV4, NOF, TCP, PAY4),
|
|
AVF_PTT(34, IP, IPV4, NOF, IP_IP, IPV4, NOF, SCTP, PAY4),
|
|
AVF_PTT(35, IP, IPV4, NOF, IP_IP, IPV4, NOF, ICMP, PAY4),
|
|
|
|
/* IPv4 --> IPv6 */
|
|
AVF_PTT(36, IP, IPV4, NOF, IP_IP, IPV6, FRG, NONE, PAY3),
|
|
AVF_PTT(37, IP, IPV4, NOF, IP_IP, IPV6, NOF, NONE, PAY3),
|
|
AVF_PTT(38, IP, IPV4, NOF, IP_IP, IPV6, NOF, UDP, PAY4),
|
|
AVF_PTT_UNUSED_ENTRY(39),
|
|
AVF_PTT(40, IP, IPV4, NOF, IP_IP, IPV6, NOF, TCP, PAY4),
|
|
AVF_PTT(41, IP, IPV4, NOF, IP_IP, IPV6, NOF, SCTP, PAY4),
|
|
AVF_PTT(42, IP, IPV4, NOF, IP_IP, IPV6, NOF, ICMP, PAY4),
|
|
|
|
/* IPv4 --> GRE/NAT */
|
|
AVF_PTT(43, IP, IPV4, NOF, IP_GRENAT, NONE, NOF, NONE, PAY3),
|
|
|
|
/* IPv4 --> GRE/NAT --> IPv4 */
|
|
AVF_PTT(44, IP, IPV4, NOF, IP_GRENAT, IPV4, FRG, NONE, PAY3),
|
|
AVF_PTT(45, IP, IPV4, NOF, IP_GRENAT, IPV4, NOF, NONE, PAY3),
|
|
AVF_PTT(46, IP, IPV4, NOF, IP_GRENAT, IPV4, NOF, UDP, PAY4),
|
|
AVF_PTT_UNUSED_ENTRY(47),
|
|
AVF_PTT(48, IP, IPV4, NOF, IP_GRENAT, IPV4, NOF, TCP, PAY4),
|
|
AVF_PTT(49, IP, IPV4, NOF, IP_GRENAT, IPV4, NOF, SCTP, PAY4),
|
|
AVF_PTT(50, IP, IPV4, NOF, IP_GRENAT, IPV4, NOF, ICMP, PAY4),
|
|
|
|
/* IPv4 --> GRE/NAT --> IPv6 */
|
|
AVF_PTT(51, IP, IPV4, NOF, IP_GRENAT, IPV6, FRG, NONE, PAY3),
|
|
AVF_PTT(52, IP, IPV4, NOF, IP_GRENAT, IPV6, NOF, NONE, PAY3),
|
|
AVF_PTT(53, IP, IPV4, NOF, IP_GRENAT, IPV6, NOF, UDP, PAY4),
|
|
AVF_PTT_UNUSED_ENTRY(54),
|
|
AVF_PTT(55, IP, IPV4, NOF, IP_GRENAT, IPV6, NOF, TCP, PAY4),
|
|
AVF_PTT(56, IP, IPV4, NOF, IP_GRENAT, IPV6, NOF, SCTP, PAY4),
|
|
AVF_PTT(57, IP, IPV4, NOF, IP_GRENAT, IPV6, NOF, ICMP, PAY4),
|
|
|
|
/* IPv4 --> GRE/NAT --> MAC */
|
|
AVF_PTT(58, IP, IPV4, NOF, IP_GRENAT_MAC, NONE, NOF, NONE, PAY3),
|
|
|
|
/* IPv4 --> GRE/NAT --> MAC --> IPv4 */
|
|
AVF_PTT(59, IP, IPV4, NOF, IP_GRENAT_MAC, IPV4, FRG, NONE, PAY3),
|
|
AVF_PTT(60, IP, IPV4, NOF, IP_GRENAT_MAC, IPV4, NOF, NONE, PAY3),
|
|
AVF_PTT(61, IP, IPV4, NOF, IP_GRENAT_MAC, IPV4, NOF, UDP, PAY4),
|
|
AVF_PTT_UNUSED_ENTRY(62),
|
|
AVF_PTT(63, IP, IPV4, NOF, IP_GRENAT_MAC, IPV4, NOF, TCP, PAY4),
|
|
AVF_PTT(64, IP, IPV4, NOF, IP_GRENAT_MAC, IPV4, NOF, SCTP, PAY4),
|
|
AVF_PTT(65, IP, IPV4, NOF, IP_GRENAT_MAC, IPV4, NOF, ICMP, PAY4),
|
|
|
|
/* IPv4 --> GRE/NAT -> MAC --> IPv6 */
|
|
AVF_PTT(66, IP, IPV4, NOF, IP_GRENAT_MAC, IPV6, FRG, NONE, PAY3),
|
|
AVF_PTT(67, IP, IPV4, NOF, IP_GRENAT_MAC, IPV6, NOF, NONE, PAY3),
|
|
AVF_PTT(68, IP, IPV4, NOF, IP_GRENAT_MAC, IPV6, NOF, UDP, PAY4),
|
|
AVF_PTT_UNUSED_ENTRY(69),
|
|
AVF_PTT(70, IP, IPV4, NOF, IP_GRENAT_MAC, IPV6, NOF, TCP, PAY4),
|
|
AVF_PTT(71, IP, IPV4, NOF, IP_GRENAT_MAC, IPV6, NOF, SCTP, PAY4),
|
|
AVF_PTT(72, IP, IPV4, NOF, IP_GRENAT_MAC, IPV6, NOF, ICMP, PAY4),
|
|
|
|
/* IPv4 --> GRE/NAT --> MAC/VLAN */
|
|
AVF_PTT(73, IP, IPV4, NOF, IP_GRENAT_MAC_VLAN, NONE, NOF, NONE, PAY3),
|
|
|
|
/* IPv4 ---> GRE/NAT -> MAC/VLAN --> IPv4 */
|
|
AVF_PTT(74, IP, IPV4, NOF, IP_GRENAT_MAC_VLAN, IPV4, FRG, NONE, PAY3),
|
|
AVF_PTT(75, IP, IPV4, NOF, IP_GRENAT_MAC_VLAN, IPV4, NOF, NONE, PAY3),
|
|
AVF_PTT(76, IP, IPV4, NOF, IP_GRENAT_MAC_VLAN, IPV4, NOF, UDP, PAY4),
|
|
AVF_PTT_UNUSED_ENTRY(77),
|
|
AVF_PTT(78, IP, IPV4, NOF, IP_GRENAT_MAC_VLAN, IPV4, NOF, TCP, PAY4),
|
|
AVF_PTT(79, IP, IPV4, NOF, IP_GRENAT_MAC_VLAN, IPV4, NOF, SCTP, PAY4),
|
|
AVF_PTT(80, IP, IPV4, NOF, IP_GRENAT_MAC_VLAN, IPV4, NOF, ICMP, PAY4),
|
|
|
|
/* IPv4 -> GRE/NAT -> MAC/VLAN --> IPv6 */
|
|
AVF_PTT(81, IP, IPV4, NOF, IP_GRENAT_MAC_VLAN, IPV6, FRG, NONE, PAY3),
|
|
AVF_PTT(82, IP, IPV4, NOF, IP_GRENAT_MAC_VLAN, IPV6, NOF, NONE, PAY3),
|
|
AVF_PTT(83, IP, IPV4, NOF, IP_GRENAT_MAC_VLAN, IPV6, NOF, UDP, PAY4),
|
|
AVF_PTT_UNUSED_ENTRY(84),
|
|
AVF_PTT(85, IP, IPV4, NOF, IP_GRENAT_MAC_VLAN, IPV6, NOF, TCP, PAY4),
|
|
AVF_PTT(86, IP, IPV4, NOF, IP_GRENAT_MAC_VLAN, IPV6, NOF, SCTP, PAY4),
|
|
AVF_PTT(87, IP, IPV4, NOF, IP_GRENAT_MAC_VLAN, IPV6, NOF, ICMP, PAY4),
|
|
|
|
/* Non Tunneled IPv6 */
|
|
AVF_PTT(88, IP, IPV6, FRG, NONE, NONE, NOF, NONE, PAY3),
|
|
AVF_PTT(89, IP, IPV6, NOF, NONE, NONE, NOF, NONE, PAY3),
|
|
AVF_PTT(90, IP, IPV6, NOF, NONE, NONE, NOF, UDP, PAY4),
|
|
AVF_PTT_UNUSED_ENTRY(91),
|
|
AVF_PTT(92, IP, IPV6, NOF, NONE, NONE, NOF, TCP, PAY4),
|
|
AVF_PTT(93, IP, IPV6, NOF, NONE, NONE, NOF, SCTP, PAY4),
|
|
AVF_PTT(94, IP, IPV6, NOF, NONE, NONE, NOF, ICMP, PAY4),
|
|
|
|
/* IPv6 --> IPv4 */
|
|
AVF_PTT(95, IP, IPV6, NOF, IP_IP, IPV4, FRG, NONE, PAY3),
|
|
AVF_PTT(96, IP, IPV6, NOF, IP_IP, IPV4, NOF, NONE, PAY3),
|
|
AVF_PTT(97, IP, IPV6, NOF, IP_IP, IPV4, NOF, UDP, PAY4),
|
|
AVF_PTT_UNUSED_ENTRY(98),
|
|
AVF_PTT(99, IP, IPV6, NOF, IP_IP, IPV4, NOF, TCP, PAY4),
|
|
AVF_PTT(100, IP, IPV6, NOF, IP_IP, IPV4, NOF, SCTP, PAY4),
|
|
AVF_PTT(101, IP, IPV6, NOF, IP_IP, IPV4, NOF, ICMP, PAY4),
|
|
|
|
/* IPv6 --> IPv6 */
|
|
AVF_PTT(102, IP, IPV6, NOF, IP_IP, IPV6, FRG, NONE, PAY3),
|
|
AVF_PTT(103, IP, IPV6, NOF, IP_IP, IPV6, NOF, NONE, PAY3),
|
|
AVF_PTT(104, IP, IPV6, NOF, IP_IP, IPV6, NOF, UDP, PAY4),
|
|
AVF_PTT_UNUSED_ENTRY(105),
|
|
AVF_PTT(106, IP, IPV6, NOF, IP_IP, IPV6, NOF, TCP, PAY4),
|
|
AVF_PTT(107, IP, IPV6, NOF, IP_IP, IPV6, NOF, SCTP, PAY4),
|
|
AVF_PTT(108, IP, IPV6, NOF, IP_IP, IPV6, NOF, ICMP, PAY4),
|
|
|
|
/* IPv6 --> GRE/NAT */
|
|
AVF_PTT(109, IP, IPV6, NOF, IP_GRENAT, NONE, NOF, NONE, PAY3),
|
|
|
|
/* IPv6 --> GRE/NAT -> IPv4 */
|
|
AVF_PTT(110, IP, IPV6, NOF, IP_GRENAT, IPV4, FRG, NONE, PAY3),
|
|
AVF_PTT(111, IP, IPV6, NOF, IP_GRENAT, IPV4, NOF, NONE, PAY3),
|
|
AVF_PTT(112, IP, IPV6, NOF, IP_GRENAT, IPV4, NOF, UDP, PAY4),
|
|
AVF_PTT_UNUSED_ENTRY(113),
|
|
AVF_PTT(114, IP, IPV6, NOF, IP_GRENAT, IPV4, NOF, TCP, PAY4),
|
|
AVF_PTT(115, IP, IPV6, NOF, IP_GRENAT, IPV4, NOF, SCTP, PAY4),
|
|
AVF_PTT(116, IP, IPV6, NOF, IP_GRENAT, IPV4, NOF, ICMP, PAY4),
|
|
|
|
/* IPv6 --> GRE/NAT -> IPv6 */
|
|
AVF_PTT(117, IP, IPV6, NOF, IP_GRENAT, IPV6, FRG, NONE, PAY3),
|
|
AVF_PTT(118, IP, IPV6, NOF, IP_GRENAT, IPV6, NOF, NONE, PAY3),
|
|
AVF_PTT(119, IP, IPV6, NOF, IP_GRENAT, IPV6, NOF, UDP, PAY4),
|
|
AVF_PTT_UNUSED_ENTRY(120),
|
|
AVF_PTT(121, IP, IPV6, NOF, IP_GRENAT, IPV6, NOF, TCP, PAY4),
|
|
AVF_PTT(122, IP, IPV6, NOF, IP_GRENAT, IPV6, NOF, SCTP, PAY4),
|
|
AVF_PTT(123, IP, IPV6, NOF, IP_GRENAT, IPV6, NOF, ICMP, PAY4),
|
|
|
|
/* IPv6 --> GRE/NAT -> MAC */
|
|
AVF_PTT(124, IP, IPV6, NOF, IP_GRENAT_MAC, NONE, NOF, NONE, PAY3),
|
|
|
|
/* IPv6 --> GRE/NAT -> MAC -> IPv4 */
|
|
AVF_PTT(125, IP, IPV6, NOF, IP_GRENAT_MAC, IPV4, FRG, NONE, PAY3),
|
|
AVF_PTT(126, IP, IPV6, NOF, IP_GRENAT_MAC, IPV4, NOF, NONE, PAY3),
|
|
AVF_PTT(127, IP, IPV6, NOF, IP_GRENAT_MAC, IPV4, NOF, UDP, PAY4),
|
|
AVF_PTT_UNUSED_ENTRY(128),
|
|
AVF_PTT(129, IP, IPV6, NOF, IP_GRENAT_MAC, IPV4, NOF, TCP, PAY4),
|
|
AVF_PTT(130, IP, IPV6, NOF, IP_GRENAT_MAC, IPV4, NOF, SCTP, PAY4),
|
|
AVF_PTT(131, IP, IPV6, NOF, IP_GRENAT_MAC, IPV4, NOF, ICMP, PAY4),
|
|
|
|
/* IPv6 --> GRE/NAT -> MAC -> IPv6 */
|
|
AVF_PTT(132, IP, IPV6, NOF, IP_GRENAT_MAC, IPV6, FRG, NONE, PAY3),
|
|
AVF_PTT(133, IP, IPV6, NOF, IP_GRENAT_MAC, IPV6, NOF, NONE, PAY3),
|
|
AVF_PTT(134, IP, IPV6, NOF, IP_GRENAT_MAC, IPV6, NOF, UDP, PAY4),
|
|
AVF_PTT_UNUSED_ENTRY(135),
|
|
AVF_PTT(136, IP, IPV6, NOF, IP_GRENAT_MAC, IPV6, NOF, TCP, PAY4),
|
|
AVF_PTT(137, IP, IPV6, NOF, IP_GRENAT_MAC, IPV6, NOF, SCTP, PAY4),
|
|
AVF_PTT(138, IP, IPV6, NOF, IP_GRENAT_MAC, IPV6, NOF, ICMP, PAY4),
|
|
|
|
/* IPv6 --> GRE/NAT -> MAC/VLAN */
|
|
AVF_PTT(139, IP, IPV6, NOF, IP_GRENAT_MAC_VLAN, NONE, NOF, NONE, PAY3),
|
|
|
|
/* IPv6 --> GRE/NAT -> MAC/VLAN --> IPv4 */
|
|
AVF_PTT(140, IP, IPV6, NOF, IP_GRENAT_MAC_VLAN, IPV4, FRG, NONE, PAY3),
|
|
AVF_PTT(141, IP, IPV6, NOF, IP_GRENAT_MAC_VLAN, IPV4, NOF, NONE, PAY3),
|
|
AVF_PTT(142, IP, IPV6, NOF, IP_GRENAT_MAC_VLAN, IPV4, NOF, UDP, PAY4),
|
|
AVF_PTT_UNUSED_ENTRY(143),
|
|
AVF_PTT(144, IP, IPV6, NOF, IP_GRENAT_MAC_VLAN, IPV4, NOF, TCP, PAY4),
|
|
AVF_PTT(145, IP, IPV6, NOF, IP_GRENAT_MAC_VLAN, IPV4, NOF, SCTP, PAY4),
|
|
AVF_PTT(146, IP, IPV6, NOF, IP_GRENAT_MAC_VLAN, IPV4, NOF, ICMP, PAY4),
|
|
|
|
/* IPv6 --> GRE/NAT -> MAC/VLAN --> IPv6 */
|
|
AVF_PTT(147, IP, IPV6, NOF, IP_GRENAT_MAC_VLAN, IPV6, FRG, NONE, PAY3),
|
|
AVF_PTT(148, IP, IPV6, NOF, IP_GRENAT_MAC_VLAN, IPV6, NOF, NONE, PAY3),
|
|
AVF_PTT(149, IP, IPV6, NOF, IP_GRENAT_MAC_VLAN, IPV6, NOF, UDP, PAY4),
|
|
AVF_PTT_UNUSED_ENTRY(150),
|
|
AVF_PTT(151, IP, IPV6, NOF, IP_GRENAT_MAC_VLAN, IPV6, NOF, TCP, PAY4),
|
|
AVF_PTT(152, IP, IPV6, NOF, IP_GRENAT_MAC_VLAN, IPV6, NOF, SCTP, PAY4),
|
|
AVF_PTT(153, IP, IPV6, NOF, IP_GRENAT_MAC_VLAN, IPV6, NOF, ICMP, PAY4),
|
|
|
|
/* unused entries */
|
|
AVF_PTT_UNUSED_ENTRY(154),
|
|
AVF_PTT_UNUSED_ENTRY(155),
|
|
AVF_PTT_UNUSED_ENTRY(156),
|
|
AVF_PTT_UNUSED_ENTRY(157),
|
|
AVF_PTT_UNUSED_ENTRY(158),
|
|
AVF_PTT_UNUSED_ENTRY(159),
|
|
|
|
AVF_PTT_UNUSED_ENTRY(160),
|
|
AVF_PTT_UNUSED_ENTRY(161),
|
|
AVF_PTT_UNUSED_ENTRY(162),
|
|
AVF_PTT_UNUSED_ENTRY(163),
|
|
AVF_PTT_UNUSED_ENTRY(164),
|
|
AVF_PTT_UNUSED_ENTRY(165),
|
|
AVF_PTT_UNUSED_ENTRY(166),
|
|
AVF_PTT_UNUSED_ENTRY(167),
|
|
AVF_PTT_UNUSED_ENTRY(168),
|
|
AVF_PTT_UNUSED_ENTRY(169),
|
|
|
|
AVF_PTT_UNUSED_ENTRY(170),
|
|
AVF_PTT_UNUSED_ENTRY(171),
|
|
AVF_PTT_UNUSED_ENTRY(172),
|
|
AVF_PTT_UNUSED_ENTRY(173),
|
|
AVF_PTT_UNUSED_ENTRY(174),
|
|
AVF_PTT_UNUSED_ENTRY(175),
|
|
AVF_PTT_UNUSED_ENTRY(176),
|
|
AVF_PTT_UNUSED_ENTRY(177),
|
|
AVF_PTT_UNUSED_ENTRY(178),
|
|
AVF_PTT_UNUSED_ENTRY(179),
|
|
|
|
AVF_PTT_UNUSED_ENTRY(180),
|
|
AVF_PTT_UNUSED_ENTRY(181),
|
|
AVF_PTT_UNUSED_ENTRY(182),
|
|
AVF_PTT_UNUSED_ENTRY(183),
|
|
AVF_PTT_UNUSED_ENTRY(184),
|
|
AVF_PTT_UNUSED_ENTRY(185),
|
|
AVF_PTT_UNUSED_ENTRY(186),
|
|
AVF_PTT_UNUSED_ENTRY(187),
|
|
AVF_PTT_UNUSED_ENTRY(188),
|
|
AVF_PTT_UNUSED_ENTRY(189),
|
|
|
|
AVF_PTT_UNUSED_ENTRY(190),
|
|
AVF_PTT_UNUSED_ENTRY(191),
|
|
AVF_PTT_UNUSED_ENTRY(192),
|
|
AVF_PTT_UNUSED_ENTRY(193),
|
|
AVF_PTT_UNUSED_ENTRY(194),
|
|
AVF_PTT_UNUSED_ENTRY(195),
|
|
AVF_PTT_UNUSED_ENTRY(196),
|
|
AVF_PTT_UNUSED_ENTRY(197),
|
|
AVF_PTT_UNUSED_ENTRY(198),
|
|
AVF_PTT_UNUSED_ENTRY(199),
|
|
|
|
AVF_PTT_UNUSED_ENTRY(200),
|
|
AVF_PTT_UNUSED_ENTRY(201),
|
|
AVF_PTT_UNUSED_ENTRY(202),
|
|
AVF_PTT_UNUSED_ENTRY(203),
|
|
AVF_PTT_UNUSED_ENTRY(204),
|
|
AVF_PTT_UNUSED_ENTRY(205),
|
|
AVF_PTT_UNUSED_ENTRY(206),
|
|
AVF_PTT_UNUSED_ENTRY(207),
|
|
AVF_PTT_UNUSED_ENTRY(208),
|
|
AVF_PTT_UNUSED_ENTRY(209),
|
|
|
|
AVF_PTT_UNUSED_ENTRY(210),
|
|
AVF_PTT_UNUSED_ENTRY(211),
|
|
AVF_PTT_UNUSED_ENTRY(212),
|
|
AVF_PTT_UNUSED_ENTRY(213),
|
|
AVF_PTT_UNUSED_ENTRY(214),
|
|
AVF_PTT_UNUSED_ENTRY(215),
|
|
AVF_PTT_UNUSED_ENTRY(216),
|
|
AVF_PTT_UNUSED_ENTRY(217),
|
|
AVF_PTT_UNUSED_ENTRY(218),
|
|
AVF_PTT_UNUSED_ENTRY(219),
|
|
|
|
AVF_PTT_UNUSED_ENTRY(220),
|
|
AVF_PTT_UNUSED_ENTRY(221),
|
|
AVF_PTT_UNUSED_ENTRY(222),
|
|
AVF_PTT_UNUSED_ENTRY(223),
|
|
AVF_PTT_UNUSED_ENTRY(224),
|
|
AVF_PTT_UNUSED_ENTRY(225),
|
|
AVF_PTT_UNUSED_ENTRY(226),
|
|
AVF_PTT_UNUSED_ENTRY(227),
|
|
AVF_PTT_UNUSED_ENTRY(228),
|
|
AVF_PTT_UNUSED_ENTRY(229),
|
|
|
|
AVF_PTT_UNUSED_ENTRY(230),
|
|
AVF_PTT_UNUSED_ENTRY(231),
|
|
AVF_PTT_UNUSED_ENTRY(232),
|
|
AVF_PTT_UNUSED_ENTRY(233),
|
|
AVF_PTT_UNUSED_ENTRY(234),
|
|
AVF_PTT_UNUSED_ENTRY(235),
|
|
AVF_PTT_UNUSED_ENTRY(236),
|
|
AVF_PTT_UNUSED_ENTRY(237),
|
|
AVF_PTT_UNUSED_ENTRY(238),
|
|
AVF_PTT_UNUSED_ENTRY(239),
|
|
|
|
AVF_PTT_UNUSED_ENTRY(240),
|
|
AVF_PTT_UNUSED_ENTRY(241),
|
|
AVF_PTT_UNUSED_ENTRY(242),
|
|
AVF_PTT_UNUSED_ENTRY(243),
|
|
AVF_PTT_UNUSED_ENTRY(244),
|
|
AVF_PTT_UNUSED_ENTRY(245),
|
|
AVF_PTT_UNUSED_ENTRY(246),
|
|
AVF_PTT_UNUSED_ENTRY(247),
|
|
AVF_PTT_UNUSED_ENTRY(248),
|
|
AVF_PTT_UNUSED_ENTRY(249),
|
|
|
|
AVF_PTT_UNUSED_ENTRY(250),
|
|
AVF_PTT_UNUSED_ENTRY(251),
|
|
AVF_PTT_UNUSED_ENTRY(252),
|
|
AVF_PTT_UNUSED_ENTRY(253),
|
|
AVF_PTT_UNUSED_ENTRY(254),
|
|
AVF_PTT_UNUSED_ENTRY(255)
|
|
};
|
|
|
|
|
|
/**
|
|
* avf_validate_mac_addr - Validate unicast MAC address
|
|
* @mac_addr: pointer to MAC address
|
|
*
|
|
* Tests a MAC address to ensure it is a valid Individual Address
|
|
**/
|
|
enum avf_status_code avf_validate_mac_addr(u8 *mac_addr)
|
|
{
|
|
enum avf_status_code status = AVF_SUCCESS;
|
|
|
|
DEBUGFUNC("avf_validate_mac_addr");
|
|
|
|
/* Broadcast addresses ARE multicast addresses
|
|
* Make sure it is not a multicast address
|
|
* Reject the zero address
|
|
*/
|
|
if (AVF_IS_MULTICAST(mac_addr) ||
|
|
(mac_addr[0] == 0 && mac_addr[1] == 0 && mac_addr[2] == 0 &&
|
|
mac_addr[3] == 0 && mac_addr[4] == 0 && mac_addr[5] == 0))
|
|
status = AVF_ERR_INVALID_MAC_ADDR;
|
|
|
|
return status;
|
|
}
|
|
|
|
/**
|
|
* avf_aq_rx_ctl_read_register - use FW to read from an Rx control register
|
|
* @hw: pointer to the hw struct
|
|
* @reg_addr: register address
|
|
* @reg_val: ptr to register value
|
|
* @cmd_details: pointer to command details structure or NULL
|
|
*
|
|
* Use the firmware to read the Rx control register,
|
|
* especially useful if the Rx unit is under heavy pressure
|
|
**/
|
|
enum avf_status_code avf_aq_rx_ctl_read_register(struct avf_hw *hw,
|
|
u32 reg_addr, u32 *reg_val,
|
|
struct avf_asq_cmd_details *cmd_details)
|
|
{
|
|
struct avf_aq_desc desc;
|
|
struct avf_aqc_rx_ctl_reg_read_write *cmd_resp =
|
|
(struct avf_aqc_rx_ctl_reg_read_write *)&desc.params.raw;
|
|
enum avf_status_code status;
|
|
|
|
if (reg_val == NULL)
|
|
return AVF_ERR_PARAM;
|
|
|
|
avf_fill_default_direct_cmd_desc(&desc, avf_aqc_opc_rx_ctl_reg_read);
|
|
|
|
cmd_resp->address = CPU_TO_LE32(reg_addr);
|
|
|
|
status = avf_asq_send_command(hw, &desc, NULL, 0, cmd_details);
|
|
|
|
if (status == AVF_SUCCESS)
|
|
*reg_val = LE32_TO_CPU(cmd_resp->value);
|
|
|
|
return status;
|
|
}
|
|
|
|
/**
|
|
* avf_read_rx_ctl - read from an Rx control register
|
|
* @hw: pointer to the hw struct
|
|
* @reg_addr: register address
|
|
**/
|
|
u32 avf_read_rx_ctl(struct avf_hw *hw, u32 reg_addr)
|
|
{
|
|
enum avf_status_code status = AVF_SUCCESS;
|
|
bool use_register;
|
|
int retry = 5;
|
|
u32 val = 0;
|
|
|
|
use_register = (((hw->aq.api_maj_ver == 1) &&
|
|
(hw->aq.api_min_ver < 5)) ||
|
|
(hw->mac.type == AVF_MAC_X722));
|
|
if (!use_register) {
|
|
do_retry:
|
|
status = avf_aq_rx_ctl_read_register(hw, reg_addr, &val, NULL);
|
|
if (hw->aq.asq_last_status == AVF_AQ_RC_EAGAIN && retry) {
|
|
avf_msec_delay(1);
|
|
retry--;
|
|
goto do_retry;
|
|
}
|
|
}
|
|
|
|
/* if the AQ access failed, try the old-fashioned way */
|
|
if (status || use_register)
|
|
val = rd32(hw, reg_addr);
|
|
|
|
return val;
|
|
}
|
|
|
|
/**
|
|
* avf_aq_rx_ctl_write_register
|
|
* @hw: pointer to the hw struct
|
|
* @reg_addr: register address
|
|
* @reg_val: register value
|
|
* @cmd_details: pointer to command details structure or NULL
|
|
*
|
|
* Use the firmware to write to an Rx control register,
|
|
* especially useful if the Rx unit is under heavy pressure
|
|
**/
|
|
enum avf_status_code avf_aq_rx_ctl_write_register(struct avf_hw *hw,
|
|
u32 reg_addr, u32 reg_val,
|
|
struct avf_asq_cmd_details *cmd_details)
|
|
{
|
|
struct avf_aq_desc desc;
|
|
struct avf_aqc_rx_ctl_reg_read_write *cmd =
|
|
(struct avf_aqc_rx_ctl_reg_read_write *)&desc.params.raw;
|
|
enum avf_status_code status;
|
|
|
|
avf_fill_default_direct_cmd_desc(&desc, avf_aqc_opc_rx_ctl_reg_write);
|
|
|
|
cmd->address = CPU_TO_LE32(reg_addr);
|
|
cmd->value = CPU_TO_LE32(reg_val);
|
|
|
|
status = avf_asq_send_command(hw, &desc, NULL, 0, cmd_details);
|
|
|
|
return status;
|
|
}
|
|
|
|
/**
|
|
* avf_write_rx_ctl - write to an Rx control register
|
|
* @hw: pointer to the hw struct
|
|
* @reg_addr: register address
|
|
* @reg_val: register value
|
|
**/
|
|
void avf_write_rx_ctl(struct avf_hw *hw, u32 reg_addr, u32 reg_val)
|
|
{
|
|
enum avf_status_code status = AVF_SUCCESS;
|
|
bool use_register;
|
|
int retry = 5;
|
|
|
|
use_register = (((hw->aq.api_maj_ver == 1) &&
|
|
(hw->aq.api_min_ver < 5)) ||
|
|
(hw->mac.type == AVF_MAC_X722));
|
|
if (!use_register) {
|
|
do_retry:
|
|
status = avf_aq_rx_ctl_write_register(hw, reg_addr,
|
|
reg_val, NULL);
|
|
if (hw->aq.asq_last_status == AVF_AQ_RC_EAGAIN && retry) {
|
|
avf_msec_delay(1);
|
|
retry--;
|
|
goto do_retry;
|
|
}
|
|
}
|
|
|
|
/* if the AQ access failed, try the old-fashioned way */
|
|
if (status || use_register)
|
|
wr32(hw, reg_addr, reg_val);
|
|
}
|
|
|
|
/**
|
|
* avf_aq_set_phy_register
|
|
* @hw: pointer to the hw struct
|
|
* @phy_select: select which phy should be accessed
|
|
* @dev_addr: PHY device address
|
|
* @reg_addr: PHY register address
|
|
* @reg_val: new register value
|
|
* @cmd_details: pointer to command details structure or NULL
|
|
*
|
|
* Write the external PHY register.
|
|
**/
|
|
enum avf_status_code avf_aq_set_phy_register(struct avf_hw *hw,
|
|
u8 phy_select, u8 dev_addr,
|
|
u32 reg_addr, u32 reg_val,
|
|
struct avf_asq_cmd_details *cmd_details)
|
|
{
|
|
struct avf_aq_desc desc;
|
|
struct avf_aqc_phy_register_access *cmd =
|
|
(struct avf_aqc_phy_register_access *)&desc.params.raw;
|
|
enum avf_status_code status;
|
|
|
|
avf_fill_default_direct_cmd_desc(&desc,
|
|
avf_aqc_opc_set_phy_register);
|
|
|
|
cmd->phy_interface = phy_select;
|
|
cmd->dev_addres = dev_addr;
|
|
cmd->reg_address = CPU_TO_LE32(reg_addr);
|
|
cmd->reg_value = CPU_TO_LE32(reg_val);
|
|
|
|
status = avf_asq_send_command(hw, &desc, NULL, 0, cmd_details);
|
|
|
|
return status;
|
|
}
|
|
|
|
/**
|
|
* avf_aq_get_phy_register
|
|
* @hw: pointer to the hw struct
|
|
* @phy_select: select which phy should be accessed
|
|
* @dev_addr: PHY device address
|
|
* @reg_addr: PHY register address
|
|
* @reg_val: read register value
|
|
* @cmd_details: pointer to command details structure or NULL
|
|
*
|
|
* Read the external PHY register.
|
|
**/
|
|
enum avf_status_code avf_aq_get_phy_register(struct avf_hw *hw,
|
|
u8 phy_select, u8 dev_addr,
|
|
u32 reg_addr, u32 *reg_val,
|
|
struct avf_asq_cmd_details *cmd_details)
|
|
{
|
|
struct avf_aq_desc desc;
|
|
struct avf_aqc_phy_register_access *cmd =
|
|
(struct avf_aqc_phy_register_access *)&desc.params.raw;
|
|
enum avf_status_code status;
|
|
|
|
avf_fill_default_direct_cmd_desc(&desc,
|
|
avf_aqc_opc_get_phy_register);
|
|
|
|
cmd->phy_interface = phy_select;
|
|
cmd->dev_addres = dev_addr;
|
|
cmd->reg_address = CPU_TO_LE32(reg_addr);
|
|
|
|
status = avf_asq_send_command(hw, &desc, NULL, 0, cmd_details);
|
|
if (!status)
|
|
*reg_val = LE32_TO_CPU(cmd->reg_value);
|
|
|
|
return status;
|
|
}
|
|
|
|
|
|
/**
|
|
* avf_aq_send_msg_to_pf
|
|
* @hw: pointer to the hardware structure
|
|
* @v_opcode: opcodes for VF-PF communication
|
|
* @v_retval: return error code
|
|
* @msg: pointer to the msg buffer
|
|
* @msglen: msg length
|
|
* @cmd_details: pointer to command details
|
|
*
|
|
* Send message to PF driver using admin queue. By default, this message
|
|
* is sent asynchronously, i.e. avf_asq_send_command() does not wait for
|
|
* completion before returning.
|
|
**/
|
|
enum avf_status_code avf_aq_send_msg_to_pf(struct avf_hw *hw,
|
|
enum virtchnl_ops v_opcode,
|
|
enum avf_status_code v_retval,
|
|
u8 *msg, u16 msglen,
|
|
struct avf_asq_cmd_details *cmd_details)
|
|
{
|
|
struct avf_aq_desc desc;
|
|
struct avf_asq_cmd_details details;
|
|
enum avf_status_code status;
|
|
|
|
avf_fill_default_direct_cmd_desc(&desc, avf_aqc_opc_send_msg_to_pf);
|
|
desc.flags |= CPU_TO_LE16((u16)AVF_AQ_FLAG_SI);
|
|
desc.cookie_high = CPU_TO_LE32(v_opcode);
|
|
desc.cookie_low = CPU_TO_LE32(v_retval);
|
|
if (msglen) {
|
|
desc.flags |= CPU_TO_LE16((u16)(AVF_AQ_FLAG_BUF
|
|
| AVF_AQ_FLAG_RD));
|
|
if (msglen > AVF_AQ_LARGE_BUF)
|
|
desc.flags |= CPU_TO_LE16((u16)AVF_AQ_FLAG_LB);
|
|
desc.datalen = CPU_TO_LE16(msglen);
|
|
}
|
|
if (!cmd_details) {
|
|
avf_memset(&details, 0, sizeof(details), AVF_NONDMA_MEM);
|
|
details.async = true;
|
|
cmd_details = &details;
|
|
}
|
|
status = avf_asq_send_command(hw, (struct avf_aq_desc *)&desc, msg,
|
|
msglen, cmd_details);
|
|
return status;
|
|
}
|
|
|
|
/**
|
|
* avf_parse_hw_config
|
|
* @hw: pointer to the hardware structure
|
|
* @msg: pointer to the virtual channel VF resource structure
|
|
*
|
|
* Given a VF resource message from the PF, populate the hw struct
|
|
* with appropriate information.
|
|
**/
|
|
void avf_parse_hw_config(struct avf_hw *hw,
|
|
struct virtchnl_vf_resource *msg)
|
|
{
|
|
struct virtchnl_vsi_resource *vsi_res;
|
|
int i;
|
|
|
|
vsi_res = &msg->vsi_res[0];
|
|
|
|
hw->dev_caps.num_vsis = msg->num_vsis;
|
|
hw->dev_caps.num_rx_qp = msg->num_queue_pairs;
|
|
hw->dev_caps.num_tx_qp = msg->num_queue_pairs;
|
|
hw->dev_caps.num_msix_vectors_vf = msg->max_vectors;
|
|
hw->dev_caps.dcb = msg->vf_cap_flags &
|
|
VIRTCHNL_VF_OFFLOAD_L2;
|
|
hw->dev_caps.iwarp = (msg->vf_cap_flags &
|
|
VIRTCHNL_VF_OFFLOAD_IWARP) ? 1 : 0;
|
|
for (i = 0; i < msg->num_vsis; i++) {
|
|
if (vsi_res->vsi_type == VIRTCHNL_VSI_SRIOV) {
|
|
avf_memcpy(hw->mac.perm_addr,
|
|
vsi_res->default_mac_addr,
|
|
ETH_ALEN,
|
|
AVF_NONDMA_TO_NONDMA);
|
|
avf_memcpy(hw->mac.addr, vsi_res->default_mac_addr,
|
|
ETH_ALEN,
|
|
AVF_NONDMA_TO_NONDMA);
|
|
}
|
|
vsi_res++;
|
|
}
|
|
}
|
|
|
|
/**
|
|
* avf_reset
|
|
* @hw: pointer to the hardware structure
|
|
*
|
|
* Send a VF_RESET message to the PF. Does not wait for response from PF
|
|
* as none will be forthcoming. Immediately after calling this function,
|
|
* the admin queue should be shut down and (optionally) reinitialized.
|
|
**/
|
|
enum avf_status_code avf_reset(struct avf_hw *hw)
|
|
{
|
|
return avf_aq_send_msg_to_pf(hw, VIRTCHNL_OP_RESET_VF,
|
|
AVF_SUCCESS, NULL, 0, NULL);
|
|
}
|
|
|
|
/**
|
|
* avf_aq_set_arp_proxy_config
|
|
* @hw: pointer to the HW structure
|
|
* @proxy_config: pointer to proxy config command table struct
|
|
* @cmd_details: pointer to command details
|
|
*
|
|
* Set ARP offload parameters from pre-populated
|
|
* avf_aqc_arp_proxy_data struct
|
|
**/
|
|
enum avf_status_code avf_aq_set_arp_proxy_config(struct avf_hw *hw,
|
|
struct avf_aqc_arp_proxy_data *proxy_config,
|
|
struct avf_asq_cmd_details *cmd_details)
|
|
{
|
|
struct avf_aq_desc desc;
|
|
enum avf_status_code status;
|
|
|
|
if (!proxy_config)
|
|
return AVF_ERR_PARAM;
|
|
|
|
avf_fill_default_direct_cmd_desc(&desc, avf_aqc_opc_set_proxy_config);
|
|
|
|
desc.flags |= CPU_TO_LE16((u16)AVF_AQ_FLAG_BUF);
|
|
desc.flags |= CPU_TO_LE16((u16)AVF_AQ_FLAG_RD);
|
|
desc.params.external.addr_high =
|
|
CPU_TO_LE32(AVF_HI_DWORD((u64)proxy_config));
|
|
desc.params.external.addr_low =
|
|
CPU_TO_LE32(AVF_LO_DWORD((u64)proxy_config));
|
|
desc.datalen = CPU_TO_LE16(sizeof(struct avf_aqc_arp_proxy_data));
|
|
|
|
status = avf_asq_send_command(hw, &desc, proxy_config,
|
|
sizeof(struct avf_aqc_arp_proxy_data),
|
|
cmd_details);
|
|
|
|
return status;
|
|
}
|
|
|
|
/**
|
|
* avf_aq_opc_set_ns_proxy_table_entry
|
|
* @hw: pointer to the HW structure
|
|
* @ns_proxy_table_entry: pointer to NS table entry command struct
|
|
* @cmd_details: pointer to command details
|
|
*
|
|
* Set IPv6 Neighbor Solicitation (NS) protocol offload parameters
|
|
* from pre-populated avf_aqc_ns_proxy_data struct
|
|
**/
|
|
enum avf_status_code avf_aq_set_ns_proxy_table_entry(struct avf_hw *hw,
|
|
struct avf_aqc_ns_proxy_data *ns_proxy_table_entry,
|
|
struct avf_asq_cmd_details *cmd_details)
|
|
{
|
|
struct avf_aq_desc desc;
|
|
enum avf_status_code status;
|
|
|
|
if (!ns_proxy_table_entry)
|
|
return AVF_ERR_PARAM;
|
|
|
|
avf_fill_default_direct_cmd_desc(&desc,
|
|
avf_aqc_opc_set_ns_proxy_table_entry);
|
|
|
|
desc.flags |= CPU_TO_LE16((u16)AVF_AQ_FLAG_BUF);
|
|
desc.flags |= CPU_TO_LE16((u16)AVF_AQ_FLAG_RD);
|
|
desc.params.external.addr_high =
|
|
CPU_TO_LE32(AVF_HI_DWORD((u64)ns_proxy_table_entry));
|
|
desc.params.external.addr_low =
|
|
CPU_TO_LE32(AVF_LO_DWORD((u64)ns_proxy_table_entry));
|
|
desc.datalen = CPU_TO_LE16(sizeof(struct avf_aqc_ns_proxy_data));
|
|
|
|
status = avf_asq_send_command(hw, &desc, ns_proxy_table_entry,
|
|
sizeof(struct avf_aqc_ns_proxy_data),
|
|
cmd_details);
|
|
|
|
return status;
|
|
}
|
|
|
|
/**
|
|
* avf_aq_set_clear_wol_filter
|
|
* @hw: pointer to the hw struct
|
|
* @filter_index: index of filter to modify (0-7)
|
|
* @filter: buffer containing filter to be set
|
|
* @set_filter: true to set filter, false to clear filter
|
|
* @no_wol_tco: if true, pass through packets cannot cause wake-up
|
|
* if false, pass through packets may cause wake-up
|
|
* @filter_valid: true if filter action is valid
|
|
* @no_wol_tco_valid: true if no WoL in TCO traffic action valid
|
|
* @cmd_details: pointer to command details structure or NULL
|
|
*
|
|
* Set or clear WoL filter for port attached to the PF
|
|
**/
|
|
enum avf_status_code avf_aq_set_clear_wol_filter(struct avf_hw *hw,
|
|
u8 filter_index,
|
|
struct avf_aqc_set_wol_filter_data *filter,
|
|
bool set_filter, bool no_wol_tco,
|
|
bool filter_valid, bool no_wol_tco_valid,
|
|
struct avf_asq_cmd_details *cmd_details)
|
|
{
|
|
struct avf_aq_desc desc;
|
|
struct avf_aqc_set_wol_filter *cmd =
|
|
(struct avf_aqc_set_wol_filter *)&desc.params.raw;
|
|
enum avf_status_code status;
|
|
u16 cmd_flags = 0;
|
|
u16 valid_flags = 0;
|
|
u16 buff_len = 0;
|
|
|
|
avf_fill_default_direct_cmd_desc(&desc, avf_aqc_opc_set_wol_filter);
|
|
|
|
if (filter_index >= AVF_AQC_MAX_NUM_WOL_FILTERS)
|
|
return AVF_ERR_PARAM;
|
|
cmd->filter_index = CPU_TO_LE16(filter_index);
|
|
|
|
if (set_filter) {
|
|
if (!filter)
|
|
return AVF_ERR_PARAM;
|
|
|
|
cmd_flags |= AVF_AQC_SET_WOL_FILTER;
|
|
cmd_flags |= AVF_AQC_SET_WOL_FILTER_WOL_PRESERVE_ON_PFR;
|
|
}
|
|
|
|
if (no_wol_tco)
|
|
cmd_flags |= AVF_AQC_SET_WOL_FILTER_NO_TCO_WOL;
|
|
cmd->cmd_flags = CPU_TO_LE16(cmd_flags);
|
|
|
|
if (filter_valid)
|
|
valid_flags |= AVF_AQC_SET_WOL_FILTER_ACTION_VALID;
|
|
if (no_wol_tco_valid)
|
|
valid_flags |= AVF_AQC_SET_WOL_FILTER_NO_TCO_ACTION_VALID;
|
|
cmd->valid_flags = CPU_TO_LE16(valid_flags);
|
|
|
|
buff_len = sizeof(*filter);
|
|
desc.datalen = CPU_TO_LE16(buff_len);
|
|
|
|
desc.flags |= CPU_TO_LE16((u16)AVF_AQ_FLAG_BUF);
|
|
desc.flags |= CPU_TO_LE16((u16)AVF_AQ_FLAG_RD);
|
|
|
|
cmd->address_high = CPU_TO_LE32(AVF_HI_DWORD((u64)filter));
|
|
cmd->address_low = CPU_TO_LE32(AVF_LO_DWORD((u64)filter));
|
|
|
|
status = avf_asq_send_command(hw, &desc, filter,
|
|
buff_len, cmd_details);
|
|
|
|
return status;
|
|
}
|
|
|
|
/**
|
|
* avf_aq_get_wake_event_reason
|
|
* @hw: pointer to the hw struct
|
|
* @wake_reason: return value, index of matching filter
|
|
* @cmd_details: pointer to command details structure or NULL
|
|
*
|
|
* Get information for the reason of a Wake Up event
|
|
**/
|
|
enum avf_status_code avf_aq_get_wake_event_reason(struct avf_hw *hw,
|
|
u16 *wake_reason,
|
|
struct avf_asq_cmd_details *cmd_details)
|
|
{
|
|
struct avf_aq_desc desc;
|
|
struct avf_aqc_get_wake_reason_completion *resp =
|
|
(struct avf_aqc_get_wake_reason_completion *)&desc.params.raw;
|
|
enum avf_status_code status;
|
|
|
|
avf_fill_default_direct_cmd_desc(&desc, avf_aqc_opc_get_wake_reason);
|
|
|
|
status = avf_asq_send_command(hw, &desc, NULL, 0, cmd_details);
|
|
|
|
if (status == AVF_SUCCESS)
|
|
*wake_reason = LE16_TO_CPU(resp->wake_reason);
|
|
|
|
return status;
|
|
}
|
|
|
|
/**
|
|
* avf_aq_clear_all_wol_filters
|
|
* @hw: pointer to the hw struct
|
|
* @cmd_details: pointer to command details structure or NULL
|
|
*
|
|
* Get information for the reason of a Wake Up event
|
|
**/
|
|
enum avf_status_code avf_aq_clear_all_wol_filters(struct avf_hw *hw,
|
|
struct avf_asq_cmd_details *cmd_details)
|
|
{
|
|
struct avf_aq_desc desc;
|
|
enum avf_status_code status;
|
|
|
|
avf_fill_default_direct_cmd_desc(&desc,
|
|
avf_aqc_opc_clear_all_wol_filters);
|
|
|
|
status = avf_asq_send_command(hw, &desc, NULL, 0, cmd_details);
|
|
|
|
return status;
|
|
}
|
|
|
|
/**
|
|
* avf_aq_write_ddp - Write dynamic device personalization (ddp)
|
|
* @hw: pointer to the hw struct
|
|
* @buff: command buffer (size in bytes = buff_size)
|
|
* @buff_size: buffer size in bytes
|
|
* @track_id: package tracking id
|
|
* @error_offset: returns error offset
|
|
* @error_info: returns error information
|
|
* @cmd_details: pointer to command details structure or NULL
|
|
**/
|
|
enum
|
|
avf_status_code avf_aq_write_ddp(struct avf_hw *hw, void *buff,
|
|
u16 buff_size, u32 track_id,
|
|
u32 *error_offset, u32 *error_info,
|
|
struct avf_asq_cmd_details *cmd_details)
|
|
{
|
|
struct avf_aq_desc desc;
|
|
struct avf_aqc_write_personalization_profile *cmd =
|
|
(struct avf_aqc_write_personalization_profile *)
|
|
&desc.params.raw;
|
|
struct avf_aqc_write_ddp_resp *resp;
|
|
enum avf_status_code status;
|
|
|
|
avf_fill_default_direct_cmd_desc(&desc,
|
|
avf_aqc_opc_write_personalization_profile);
|
|
|
|
desc.flags |= CPU_TO_LE16(AVF_AQ_FLAG_BUF | AVF_AQ_FLAG_RD);
|
|
if (buff_size > AVF_AQ_LARGE_BUF)
|
|
desc.flags |= CPU_TO_LE16((u16)AVF_AQ_FLAG_LB);
|
|
|
|
desc.datalen = CPU_TO_LE16(buff_size);
|
|
|
|
cmd->profile_track_id = CPU_TO_LE32(track_id);
|
|
|
|
status = avf_asq_send_command(hw, &desc, buff, buff_size, cmd_details);
|
|
if (!status) {
|
|
resp = (struct avf_aqc_write_ddp_resp *)&desc.params.raw;
|
|
if (error_offset)
|
|
*error_offset = LE32_TO_CPU(resp->error_offset);
|
|
if (error_info)
|
|
*error_info = LE32_TO_CPU(resp->error_info);
|
|
}
|
|
|
|
return status;
|
|
}
|
|
|
|
/**
|
|
* avf_aq_get_ddp_list - Read dynamic device personalization (ddp)
|
|
* @hw: pointer to the hw struct
|
|
* @buff: command buffer (size in bytes = buff_size)
|
|
* @buff_size: buffer size in bytes
|
|
* @flags: AdminQ command flags
|
|
* @cmd_details: pointer to command details structure or NULL
|
|
**/
|
|
enum
|
|
avf_status_code avf_aq_get_ddp_list(struct avf_hw *hw, void *buff,
|
|
u16 buff_size, u8 flags,
|
|
struct avf_asq_cmd_details *cmd_details)
|
|
{
|
|
struct avf_aq_desc desc;
|
|
struct avf_aqc_get_applied_profiles *cmd =
|
|
(struct avf_aqc_get_applied_profiles *)&desc.params.raw;
|
|
enum avf_status_code status;
|
|
|
|
avf_fill_default_direct_cmd_desc(&desc,
|
|
avf_aqc_opc_get_personalization_profile_list);
|
|
|
|
desc.flags |= CPU_TO_LE16((u16)AVF_AQ_FLAG_BUF);
|
|
if (buff_size > AVF_AQ_LARGE_BUF)
|
|
desc.flags |= CPU_TO_LE16((u16)AVF_AQ_FLAG_LB);
|
|
desc.datalen = CPU_TO_LE16(buff_size);
|
|
|
|
cmd->flags = flags;
|
|
|
|
status = avf_asq_send_command(hw, &desc, buff, buff_size, cmd_details);
|
|
|
|
return status;
|
|
}
|
|
|
|
/**
|
|
* avf_find_segment_in_package
|
|
* @segment_type: the segment type to search for (i.e., SEGMENT_TYPE_AVF)
|
|
* @pkg_hdr: pointer to the package header to be searched
|
|
*
|
|
* This function searches a package file for a particular segment type. On
|
|
* success it returns a pointer to the segment header, otherwise it will
|
|
* return NULL.
|
|
**/
|
|
struct avf_generic_seg_header *
|
|
avf_find_segment_in_package(u32 segment_type,
|
|
struct avf_package_header *pkg_hdr)
|
|
{
|
|
struct avf_generic_seg_header *segment;
|
|
u32 i;
|
|
|
|
/* Search all package segments for the requested segment type */
|
|
for (i = 0; i < pkg_hdr->segment_count; i++) {
|
|
segment =
|
|
(struct avf_generic_seg_header *)((u8 *)pkg_hdr +
|
|
pkg_hdr->segment_offset[i]);
|
|
|
|
if (segment->type == segment_type)
|
|
return segment;
|
|
}
|
|
|
|
return NULL;
|
|
}
|
|
|
|
/* Get section table in profile */
|
|
#define AVF_SECTION_TABLE(profile, sec_tbl) \
|
|
do { \
|
|
struct avf_profile_segment *p = (profile); \
|
|
u32 count; \
|
|
u32 *nvm; \
|
|
count = p->device_table_count; \
|
|
nvm = (u32 *)&p->device_table[count]; \
|
|
sec_tbl = (struct avf_section_table *)&nvm[nvm[0] + 1]; \
|
|
} while (0)
|
|
|
|
/* Get section header in profile */
|
|
#define AVF_SECTION_HEADER(profile, offset) \
|
|
(struct avf_profile_section_header *)((u8 *)(profile) + (offset))
|
|
|
|
/**
|
|
* avf_find_section_in_profile
|
|
* @section_type: the section type to search for (i.e., SECTION_TYPE_NOTE)
|
|
* @profile: pointer to the avf segment header to be searched
|
|
*
|
|
* This function searches avf segment for a particular section type. On
|
|
* success it returns a pointer to the section header, otherwise it will
|
|
* return NULL.
|
|
**/
|
|
struct avf_profile_section_header *
|
|
avf_find_section_in_profile(u32 section_type,
|
|
struct avf_profile_segment *profile)
|
|
{
|
|
struct avf_profile_section_header *sec;
|
|
struct avf_section_table *sec_tbl;
|
|
u32 sec_off;
|
|
u32 i;
|
|
|
|
if (profile->header.type != SEGMENT_TYPE_AVF)
|
|
return NULL;
|
|
|
|
AVF_SECTION_TABLE(profile, sec_tbl);
|
|
|
|
for (i = 0; i < sec_tbl->section_count; i++) {
|
|
sec_off = sec_tbl->section_offset[i];
|
|
sec = AVF_SECTION_HEADER(profile, sec_off);
|
|
if (sec->section.type == section_type)
|
|
return sec;
|
|
}
|
|
|
|
return NULL;
|
|
}
|
|
|
|
/**
|
|
* avf_ddp_exec_aq_section - Execute generic AQ for DDP
|
|
* @hw: pointer to the hw struct
|
|
* @aq: command buffer containing all data to execute AQ
|
|
**/
|
|
STATIC enum
|
|
avf_status_code avf_ddp_exec_aq_section(struct avf_hw *hw,
|
|
struct avf_profile_aq_section *aq)
|
|
{
|
|
enum avf_status_code status;
|
|
struct avf_aq_desc desc;
|
|
u8 *msg = NULL;
|
|
u16 msglen;
|
|
|
|
avf_fill_default_direct_cmd_desc(&desc, aq->opcode);
|
|
desc.flags |= CPU_TO_LE16(aq->flags);
|
|
avf_memcpy(desc.params.raw, aq->param, sizeof(desc.params.raw),
|
|
AVF_NONDMA_TO_NONDMA);
|
|
|
|
msglen = aq->datalen;
|
|
if (msglen) {
|
|
desc.flags |= CPU_TO_LE16((u16)(AVF_AQ_FLAG_BUF |
|
|
AVF_AQ_FLAG_RD));
|
|
if (msglen > AVF_AQ_LARGE_BUF)
|
|
desc.flags |= CPU_TO_LE16((u16)AVF_AQ_FLAG_LB);
|
|
desc.datalen = CPU_TO_LE16(msglen);
|
|
msg = &aq->data[0];
|
|
}
|
|
|
|
status = avf_asq_send_command(hw, &desc, msg, msglen, NULL);
|
|
|
|
if (status != AVF_SUCCESS) {
|
|
avf_debug(hw, AVF_DEBUG_PACKAGE,
|
|
"unable to exec DDP AQ opcode %u, error %d\n",
|
|
aq->opcode, status);
|
|
return status;
|
|
}
|
|
|
|
/* copy returned desc to aq_buf */
|
|
avf_memcpy(aq->param, desc.params.raw, sizeof(desc.params.raw),
|
|
AVF_NONDMA_TO_NONDMA);
|
|
|
|
return AVF_SUCCESS;
|
|
}
|
|
|
|
/**
|
|
* avf_validate_profile
|
|
* @hw: pointer to the hardware structure
|
|
* @profile: pointer to the profile segment of the package to be validated
|
|
* @track_id: package tracking id
|
|
* @rollback: flag if the profile is for rollback.
|
|
*
|
|
* Validates supported devices and profile's sections.
|
|
*/
|
|
STATIC enum avf_status_code
|
|
avf_validate_profile(struct avf_hw *hw, struct avf_profile_segment *profile,
|
|
u32 track_id, bool rollback)
|
|
{
|
|
struct avf_profile_section_header *sec = NULL;
|
|
enum avf_status_code status = AVF_SUCCESS;
|
|
struct avf_section_table *sec_tbl;
|
|
u32 vendor_dev_id;
|
|
u32 dev_cnt;
|
|
u32 sec_off;
|
|
u32 i;
|
|
|
|
if (track_id == AVF_DDP_TRACKID_INVALID) {
|
|
avf_debug(hw, AVF_DEBUG_PACKAGE, "Invalid track_id\n");
|
|
return AVF_NOT_SUPPORTED;
|
|
}
|
|
|
|
dev_cnt = profile->device_table_count;
|
|
for (i = 0; i < dev_cnt; i++) {
|
|
vendor_dev_id = profile->device_table[i].vendor_dev_id;
|
|
if ((vendor_dev_id >> 16) == AVF_INTEL_VENDOR_ID &&
|
|
hw->device_id == (vendor_dev_id & 0xFFFF))
|
|
break;
|
|
}
|
|
if (dev_cnt && (i == dev_cnt)) {
|
|
avf_debug(hw, AVF_DEBUG_PACKAGE,
|
|
"Device doesn't support DDP\n");
|
|
return AVF_ERR_DEVICE_NOT_SUPPORTED;
|
|
}
|
|
|
|
AVF_SECTION_TABLE(profile, sec_tbl);
|
|
|
|
/* Validate sections types */
|
|
for (i = 0; i < sec_tbl->section_count; i++) {
|
|
sec_off = sec_tbl->section_offset[i];
|
|
sec = AVF_SECTION_HEADER(profile, sec_off);
|
|
if (rollback) {
|
|
if (sec->section.type == SECTION_TYPE_MMIO ||
|
|
sec->section.type == SECTION_TYPE_AQ ||
|
|
sec->section.type == SECTION_TYPE_RB_AQ) {
|
|
avf_debug(hw, AVF_DEBUG_PACKAGE,
|
|
"Not a roll-back package\n");
|
|
return AVF_NOT_SUPPORTED;
|
|
}
|
|
} else {
|
|
if (sec->section.type == SECTION_TYPE_RB_AQ ||
|
|
sec->section.type == SECTION_TYPE_RB_MMIO) {
|
|
avf_debug(hw, AVF_DEBUG_PACKAGE,
|
|
"Not an original package\n");
|
|
return AVF_NOT_SUPPORTED;
|
|
}
|
|
}
|
|
}
|
|
|
|
return status;
|
|
}
|
|
|
|
/**
|
|
* avf_write_profile
|
|
* @hw: pointer to the hardware structure
|
|
* @profile: pointer to the profile segment of the package to be downloaded
|
|
* @track_id: package tracking id
|
|
*
|
|
* Handles the download of a complete package.
|
|
*/
|
|
enum avf_status_code
|
|
avf_write_profile(struct avf_hw *hw, struct avf_profile_segment *profile,
|
|
u32 track_id)
|
|
{
|
|
enum avf_status_code status = AVF_SUCCESS;
|
|
struct avf_section_table *sec_tbl;
|
|
struct avf_profile_section_header *sec = NULL;
|
|
struct avf_profile_aq_section *ddp_aq;
|
|
u32 section_size = 0;
|
|
u32 offset = 0, info = 0;
|
|
u32 sec_off;
|
|
u32 i;
|
|
|
|
status = avf_validate_profile(hw, profile, track_id, false);
|
|
if (status)
|
|
return status;
|
|
|
|
AVF_SECTION_TABLE(profile, sec_tbl);
|
|
|
|
for (i = 0; i < sec_tbl->section_count; i++) {
|
|
sec_off = sec_tbl->section_offset[i];
|
|
sec = AVF_SECTION_HEADER(profile, sec_off);
|
|
/* Process generic admin command */
|
|
if (sec->section.type == SECTION_TYPE_AQ) {
|
|
ddp_aq = (struct avf_profile_aq_section *)&sec[1];
|
|
status = avf_ddp_exec_aq_section(hw, ddp_aq);
|
|
if (status) {
|
|
avf_debug(hw, AVF_DEBUG_PACKAGE,
|
|
"Failed to execute aq: section %d, opcode %u\n",
|
|
i, ddp_aq->opcode);
|
|
break;
|
|
}
|
|
sec->section.type = SECTION_TYPE_RB_AQ;
|
|
}
|
|
|
|
/* Skip any non-mmio sections */
|
|
if (sec->section.type != SECTION_TYPE_MMIO)
|
|
continue;
|
|
|
|
section_size = sec->section.size +
|
|
sizeof(struct avf_profile_section_header);
|
|
|
|
/* Write MMIO section */
|
|
status = avf_aq_write_ddp(hw, (void *)sec, (u16)section_size,
|
|
track_id, &offset, &info, NULL);
|
|
if (status) {
|
|
avf_debug(hw, AVF_DEBUG_PACKAGE,
|
|
"Failed to write profile: section %d, offset %d, info %d\n",
|
|
i, offset, info);
|
|
break;
|
|
}
|
|
}
|
|
return status;
|
|
}
|
|
|
|
/**
|
|
* avf_rollback_profile
|
|
* @hw: pointer to the hardware structure
|
|
* @profile: pointer to the profile segment of the package to be removed
|
|
* @track_id: package tracking id
|
|
*
|
|
* Rolls back previously loaded package.
|
|
*/
|
|
enum avf_status_code
|
|
avf_rollback_profile(struct avf_hw *hw, struct avf_profile_segment *profile,
|
|
u32 track_id)
|
|
{
|
|
struct avf_profile_section_header *sec = NULL;
|
|
enum avf_status_code status = AVF_SUCCESS;
|
|
struct avf_section_table *sec_tbl;
|
|
u32 offset = 0, info = 0;
|
|
u32 section_size = 0;
|
|
u32 sec_off;
|
|
int i;
|
|
|
|
status = avf_validate_profile(hw, profile, track_id, true);
|
|
if (status)
|
|
return status;
|
|
|
|
AVF_SECTION_TABLE(profile, sec_tbl);
|
|
|
|
/* For rollback write sections in reverse */
|
|
for (i = sec_tbl->section_count - 1; i >= 0; i--) {
|
|
sec_off = sec_tbl->section_offset[i];
|
|
sec = AVF_SECTION_HEADER(profile, sec_off);
|
|
|
|
/* Skip any non-rollback sections */
|
|
if (sec->section.type != SECTION_TYPE_RB_MMIO)
|
|
continue;
|
|
|
|
section_size = sec->section.size +
|
|
sizeof(struct avf_profile_section_header);
|
|
|
|
/* Write roll-back MMIO section */
|
|
status = avf_aq_write_ddp(hw, (void *)sec, (u16)section_size,
|
|
track_id, &offset, &info, NULL);
|
|
if (status) {
|
|
avf_debug(hw, AVF_DEBUG_PACKAGE,
|
|
"Failed to write profile: section %d, offset %d, info %d\n",
|
|
i, offset, info);
|
|
break;
|
|
}
|
|
}
|
|
return status;
|
|
}
|
|
|
|
/**
|
|
* avf_add_pinfo_to_list
|
|
* @hw: pointer to the hardware structure
|
|
* @profile: pointer to the profile segment of the package
|
|
* @profile_info_sec: buffer for information section
|
|
* @track_id: package tracking id
|
|
*
|
|
* Register a profile to the list of loaded profiles.
|
|
*/
|
|
enum avf_status_code
|
|
avf_add_pinfo_to_list(struct avf_hw *hw,
|
|
struct avf_profile_segment *profile,
|
|
u8 *profile_info_sec, u32 track_id)
|
|
{
|
|
enum avf_status_code status = AVF_SUCCESS;
|
|
struct avf_profile_section_header *sec = NULL;
|
|
struct avf_profile_info *pinfo;
|
|
u32 offset = 0, info = 0;
|
|
|
|
sec = (struct avf_profile_section_header *)profile_info_sec;
|
|
sec->tbl_size = 1;
|
|
sec->data_end = sizeof(struct avf_profile_section_header) +
|
|
sizeof(struct avf_profile_info);
|
|
sec->section.type = SECTION_TYPE_INFO;
|
|
sec->section.offset = sizeof(struct avf_profile_section_header);
|
|
sec->section.size = sizeof(struct avf_profile_info);
|
|
pinfo = (struct avf_profile_info *)(profile_info_sec +
|
|
sec->section.offset);
|
|
pinfo->track_id = track_id;
|
|
pinfo->version = profile->version;
|
|
pinfo->op = AVF_DDP_ADD_TRACKID;
|
|
avf_memcpy(pinfo->name, profile->name, AVF_DDP_NAME_SIZE,
|
|
AVF_NONDMA_TO_NONDMA);
|
|
|
|
status = avf_aq_write_ddp(hw, (void *)sec, sec->data_end,
|
|
track_id, &offset, &info, NULL);
|
|
return status;
|
|
}
|