f-stack/dpdk/examples/performance-thread/common/lthread_timer.h

69 lines
1.3 KiB
C

/* SPDX-License-Identifier: BSD-3-Clause
* Copyright(c) 2015 Intel Corporation
*/
#ifndef LTHREAD_TIMER_H_
#define LTHREAD_TIMER_H_
#ifdef __cplusplus
extern "C" {
#endif
#include "lthread_int.h"
#include "lthread_sched.h"
static inline uint64_t
_ns_to_clks(uint64_t ns)
{
/*
* clkns needs to be divided by 1E9 to get ns clocks. However,
* dividing by this first would lose a lot of accuracy.
* Dividing after a multiply by ns, could cause overflow of
* uint64_t if ns is about 5 seconds [if we assume a max tsc
* rate of 4GHz]. Therefore we first divide by 1E4, then
* multiply and finally divide by 1E5. This allows ns to be
* values many hours long, without overflow, while still keeping
* reasonable accuracy.
*/
uint64_t clkns = rte_get_tsc_hz() / 1e4;
clkns *= ns;
clkns /= 1e5;
return clkns;
}
static inline void
_timer_start(struct lthread *lt, uint64_t clks)
{
if (clks > 0) {
DIAG_EVENT(lt, LT_DIAG_LTHREAD_TMR_START, &lt->tim, clks);
rte_timer_init(&lt->tim);
rte_timer_reset(&lt->tim,
clks,
SINGLE,
rte_lcore_id(),
_sched_timer_cb,
(void *)lt);
}
}
static inline void
_timer_stop(struct lthread *lt)
{
if (lt != NULL) {
DIAG_EVENT(lt, LT_DIAG_LTHREAD_TMR_DELETE, &lt->tim, 0);
rte_timer_stop(&lt->tim);
}
}
#ifdef __cplusplus
}
#endif
#endif /* LTHREAD_TIMER_H_ */