f-stack/dpdk/examples/eventdev_pipeline/main.c

581 lines
14 KiB
C

/* SPDX-License-Identifier: BSD-3-Clause
* Copyright(c) 2016-2017 Intel Corporation
*/
#include <getopt.h>
#include <stdint.h>
#include <stdio.h>
#include <signal.h>
#include <sched.h>
#include "pipeline_common.h"
struct config_data cdata = {
.num_packets = (1L << 25), /* do ~32M packets */
.num_fids = 512,
.queue_type = RTE_SCHED_TYPE_ATOMIC,
.next_qid = {-1},
.qid = {-1},
.num_stages = 1,
.worker_cq_depth = 16
};
static bool
core_in_use(unsigned int lcore_id) {
return (fdata->rx_core[lcore_id] || fdata->sched_core[lcore_id] ||
fdata->tx_core[lcore_id] || fdata->worker_core[lcore_id]);
}
/*
* Parse the coremask given as argument (hexadecimal string) and fill
* the global configuration (core role and core count) with the parsed
* value.
*/
static int xdigit2val(unsigned char c)
{
int val;
if (isdigit(c))
val = c - '0';
else if (isupper(c))
val = c - 'A' + 10;
else
val = c - 'a' + 10;
return val;
}
static uint64_t
parse_coremask(const char *coremask)
{
int i, j, idx = 0;
unsigned int count = 0;
char c;
int val;
uint64_t mask = 0;
const int32_t BITS_HEX = 4;
if (coremask == NULL)
return -1;
/* Remove all blank characters ahead and after .
* Remove 0x/0X if exists.
*/
while (isblank(*coremask))
coremask++;
if (coremask[0] == '0' && ((coremask[1] == 'x')
|| (coremask[1] == 'X')))
coremask += 2;
i = strlen(coremask);
while ((i > 0) && isblank(coremask[i - 1]))
i--;
if (i == 0)
return -1;
for (i = i - 1; i >= 0 && idx < MAX_NUM_CORE; i--) {
c = coremask[i];
if (isxdigit(c) == 0) {
/* invalid characters */
return -1;
}
val = xdigit2val(c);
for (j = 0; j < BITS_HEX && idx < MAX_NUM_CORE; j++, idx++) {
if ((1 << j) & val) {
mask |= (1UL << idx);
count++;
}
}
}
for (; i >= 0; i--)
if (coremask[i] != '0')
return -1;
if (count == 0)
return -1;
return mask;
}
static struct option long_options[] = {
{"workers", required_argument, 0, 'w'},
{"packets", required_argument, 0, 'n'},
{"atomic-flows", required_argument, 0, 'f'},
{"num_stages", required_argument, 0, 's'},
{"rx-mask", required_argument, 0, 'r'},
{"tx-mask", required_argument, 0, 't'},
{"sched-mask", required_argument, 0, 'e'},
{"cq-depth", required_argument, 0, 'c'},
{"work-cycles", required_argument, 0, 'W'},
{"mempool-size", required_argument, 0, 'm'},
{"queue-priority", no_argument, 0, 'P'},
{"parallel", no_argument, 0, 'p'},
{"ordered", no_argument, 0, 'o'},
{"quiet", no_argument, 0, 'q'},
{"use-atq", no_argument, 0, 'a'},
{"dump", no_argument, 0, 'D'},
{0, 0, 0, 0}
};
static void
usage(void)
{
const char *usage_str =
" Usage: eventdev_demo [options]\n"
" Options:\n"
" -n, --packets=N Send N packets (default ~32M), 0 implies no limit\n"
" -f, --atomic-flows=N Use N random flows from 1 to N (default 16)\n"
" -s, --num_stages=N Use N atomic stages (default 1)\n"
" -r, --rx-mask=core mask Run NIC rx on CPUs in core mask\n"
" -w, --worker-mask=core mask Run worker on CPUs in core mask\n"
" -t, --tx-mask=core mask Run NIC tx on CPUs in core mask\n"
" -e --sched-mask=core mask Run scheduler on CPUs in core mask\n"
" -c --cq-depth=N Worker CQ depth (default 16)\n"
" -W --work-cycles=N Worker cycles (default 0)\n"
" -P --queue-priority Enable scheduler queue prioritization\n"
" -o, --ordered Use ordered scheduling\n"
" -p, --parallel Use parallel scheduling\n"
" -q, --quiet Minimize printed output\n"
" -a, --use-atq Use all type queues\n"
" -m, --mempool-size=N Dictate the mempool size\n"
" -D, --dump Print detailed statistics before exit"
"\n";
fprintf(stderr, "%s", usage_str);
exit(1);
}
static void
parse_app_args(int argc, char **argv)
{
/* Parse cli options*/
int option_index;
int c;
opterr = 0;
uint64_t rx_lcore_mask = 0;
uint64_t tx_lcore_mask = 0;
uint64_t sched_lcore_mask = 0;
uint64_t worker_lcore_mask = 0;
int i;
for (;;) {
c = getopt_long(argc, argv, "r:t:e:c:w:n:f:s:m:paoPqDW:",
long_options, &option_index);
if (c == -1)
break;
int popcnt = 0;
switch (c) {
case 'n':
cdata.num_packets = (int64_t)atol(optarg);
if (cdata.num_packets == 0)
cdata.num_packets = INT64_MAX;
break;
case 'f':
cdata.num_fids = (unsigned int)atoi(optarg);
break;
case 's':
cdata.num_stages = (unsigned int)atoi(optarg);
break;
case 'c':
cdata.worker_cq_depth = (unsigned int)atoi(optarg);
break;
case 'W':
cdata.worker_cycles = (unsigned int)atoi(optarg);
break;
case 'P':
cdata.enable_queue_priorities = 1;
break;
case 'o':
cdata.queue_type = RTE_SCHED_TYPE_ORDERED;
break;
case 'p':
cdata.queue_type = RTE_SCHED_TYPE_PARALLEL;
break;
case 'a':
cdata.all_type_queues = 1;
break;
case 'q':
cdata.quiet = 1;
break;
case 'D':
cdata.dump_dev = 1;
break;
case 'w':
worker_lcore_mask = parse_coremask(optarg);
break;
case 'r':
rx_lcore_mask = parse_coremask(optarg);
popcnt = __builtin_popcountll(rx_lcore_mask);
fdata->rx_single = (popcnt == 1);
break;
case 't':
tx_lcore_mask = parse_coremask(optarg);
popcnt = __builtin_popcountll(tx_lcore_mask);
fdata->tx_single = (popcnt == 1);
break;
case 'e':
sched_lcore_mask = parse_coremask(optarg);
popcnt = __builtin_popcountll(sched_lcore_mask);
fdata->sched_single = (popcnt == 1);
break;
case 'm':
cdata.num_mbuf = (uint64_t)atol(optarg);
break;
default:
usage();
}
}
cdata.worker_lcore_mask = worker_lcore_mask;
cdata.sched_lcore_mask = sched_lcore_mask;
cdata.rx_lcore_mask = rx_lcore_mask;
cdata.tx_lcore_mask = tx_lcore_mask;
if (cdata.num_stages == 0 || cdata.num_stages > MAX_NUM_STAGES)
usage();
for (i = 0; i < MAX_NUM_CORE; i++) {
fdata->rx_core[i] = !!(rx_lcore_mask & (1UL << i));
fdata->tx_core[i] = !!(tx_lcore_mask & (1UL << i));
fdata->sched_core[i] = !!(sched_lcore_mask & (1UL << i));
fdata->worker_core[i] = !!(worker_lcore_mask & (1UL << i));
if (fdata->worker_core[i])
cdata.num_workers++;
if (core_in_use(i))
cdata.active_cores++;
}
}
/*
* Initializes a given port using global settings and with the RX buffers
* coming from the mbuf_pool passed as a parameter.
*/
static inline int
port_init(uint8_t port, struct rte_mempool *mbuf_pool)
{
struct rte_eth_rxconf rx_conf;
static const struct rte_eth_conf port_conf_default = {
.rxmode = {
.mq_mode = ETH_MQ_RX_RSS,
.max_rx_pkt_len = ETHER_MAX_LEN,
},
.rx_adv_conf = {
.rss_conf = {
.rss_hf = ETH_RSS_IP |
ETH_RSS_TCP |
ETH_RSS_UDP,
}
}
};
const uint16_t rx_rings = 1, tx_rings = 1;
const uint16_t rx_ring_size = 512, tx_ring_size = 512;
struct rte_eth_conf port_conf = port_conf_default;
int retval;
uint16_t q;
struct rte_eth_dev_info dev_info;
struct rte_eth_txconf txconf;
if (!rte_eth_dev_is_valid_port(port))
return -1;
rte_eth_dev_info_get(port, &dev_info);
if (dev_info.tx_offload_capa & DEV_TX_OFFLOAD_MBUF_FAST_FREE)
port_conf.txmode.offloads |=
DEV_TX_OFFLOAD_MBUF_FAST_FREE;
rx_conf = dev_info.default_rxconf;
rx_conf.offloads = port_conf.rxmode.offloads;
port_conf.rx_adv_conf.rss_conf.rss_hf &=
dev_info.flow_type_rss_offloads;
if (port_conf.rx_adv_conf.rss_conf.rss_hf !=
port_conf_default.rx_adv_conf.rss_conf.rss_hf) {
printf("Port %u modified RSS hash function based on hardware support,"
"requested:%#"PRIx64" configured:%#"PRIx64"\n",
port,
port_conf_default.rx_adv_conf.rss_conf.rss_hf,
port_conf.rx_adv_conf.rss_conf.rss_hf);
}
/* Configure the Ethernet device. */
retval = rte_eth_dev_configure(port, rx_rings, tx_rings, &port_conf);
if (retval != 0)
return retval;
/* Allocate and set up 1 RX queue per Ethernet port. */
for (q = 0; q < rx_rings; q++) {
retval = rte_eth_rx_queue_setup(port, q, rx_ring_size,
rte_eth_dev_socket_id(port), &rx_conf,
mbuf_pool);
if (retval < 0)
return retval;
}
txconf = dev_info.default_txconf;
txconf.offloads = port_conf_default.txmode.offloads;
/* Allocate and set up 1 TX queue per Ethernet port. */
for (q = 0; q < tx_rings; q++) {
retval = rte_eth_tx_queue_setup(port, q, tx_ring_size,
rte_eth_dev_socket_id(port), &txconf);
if (retval < 0)
return retval;
}
/* Start the Ethernet port. */
retval = rte_eth_dev_start(port);
if (retval < 0)
return retval;
/* Display the port MAC address. */
struct ether_addr addr;
rte_eth_macaddr_get(port, &addr);
printf("Port %u MAC: %02" PRIx8 " %02" PRIx8 " %02" PRIx8
" %02" PRIx8 " %02" PRIx8 " %02" PRIx8 "\n",
(unsigned int)port,
addr.addr_bytes[0], addr.addr_bytes[1],
addr.addr_bytes[2], addr.addr_bytes[3],
addr.addr_bytes[4], addr.addr_bytes[5]);
/* Enable RX in promiscuous mode for the Ethernet device. */
rte_eth_promiscuous_enable(port);
return 0;
}
static int
init_ports(uint16_t num_ports)
{
uint16_t portid;
if (!cdata.num_mbuf)
cdata.num_mbuf = 16384 * num_ports;
struct rte_mempool *mp = rte_pktmbuf_pool_create("packet_pool",
/* mbufs */ cdata.num_mbuf,
/* cache_size */ 512,
/* priv_size*/ 0,
/* data_room_size */ RTE_MBUF_DEFAULT_BUF_SIZE,
rte_socket_id());
RTE_ETH_FOREACH_DEV(portid)
if (port_init(portid, mp) != 0)
rte_exit(EXIT_FAILURE, "Cannot init port %"PRIu16 "\n",
portid);
return 0;
}
static void
do_capability_setup(uint8_t eventdev_id)
{
int ret;
uint16_t i;
uint8_t generic_pipeline = 0;
uint8_t burst = 0;
RTE_ETH_FOREACH_DEV(i) {
uint32_t caps = 0;
ret = rte_event_eth_tx_adapter_caps_get(eventdev_id, i, &caps);
if (ret)
rte_exit(EXIT_FAILURE,
"Invalid capability for Tx adptr port %d\n", i);
generic_pipeline |= !(caps &
RTE_EVENT_ETH_TX_ADAPTER_CAP_INTERNAL_PORT);
}
struct rte_event_dev_info eventdev_info;
memset(&eventdev_info, 0, sizeof(struct rte_event_dev_info));
rte_event_dev_info_get(eventdev_id, &eventdev_info);
burst = eventdev_info.event_dev_cap & RTE_EVENT_DEV_CAP_BURST_MODE ? 1 :
0;
if (generic_pipeline)
set_worker_generic_setup_data(&fdata->cap, burst);
else
set_worker_tx_enq_setup_data(&fdata->cap, burst);
}
static void
signal_handler(int signum)
{
static uint8_t once;
uint16_t portid;
if (fdata->done)
rte_exit(1, "Exiting on signal %d\n", signum);
if ((signum == SIGINT || signum == SIGTERM) && !once) {
printf("\n\nSignal %d received, preparing to exit...\n",
signum);
if (cdata.dump_dev)
rte_event_dev_dump(0, stdout);
once = 1;
fdata->done = 1;
rte_smp_wmb();
RTE_ETH_FOREACH_DEV(portid) {
rte_event_eth_rx_adapter_stop(portid);
rte_event_eth_tx_adapter_stop(portid);
rte_eth_dev_stop(portid);
}
rte_eal_mp_wait_lcore();
RTE_ETH_FOREACH_DEV(portid) {
rte_eth_dev_close(portid);
}
rte_event_dev_close(0);
}
if (signum == SIGTSTP)
rte_event_dev_dump(0, stdout);
}
static inline uint64_t
port_stat(int dev_id, int32_t p)
{
char statname[64];
snprintf(statname, sizeof(statname), "port_%u_rx", p);
return rte_event_dev_xstats_by_name_get(dev_id, statname, NULL);
}
int
main(int argc, char **argv)
{
struct worker_data *worker_data;
uint16_t num_ports;
int lcore_id;
int err;
signal(SIGINT, signal_handler);
signal(SIGTERM, signal_handler);
signal(SIGTSTP, signal_handler);
err = rte_eal_init(argc, argv);
if (err < 0)
rte_panic("Invalid EAL arguments\n");
argc -= err;
argv += err;
fdata = rte_malloc(NULL, sizeof(struct fastpath_data), 0);
if (fdata == NULL)
rte_panic("Out of memory\n");
/* Parse cli options*/
parse_app_args(argc, argv);
num_ports = rte_eth_dev_count_avail();
if (num_ports == 0)
rte_panic("No ethernet ports found\n");
const unsigned int cores_needed = cdata.active_cores;
if (!cdata.quiet) {
printf(" Config:\n");
printf("\tports: %u\n", num_ports);
printf("\tworkers: %u\n", cdata.num_workers);
printf("\tpackets: %"PRIi64"\n", cdata.num_packets);
printf("\tQueue-prio: %u\n", cdata.enable_queue_priorities);
if (cdata.queue_type == RTE_SCHED_TYPE_ORDERED)
printf("\tqid0 type: ordered\n");
if (cdata.queue_type == RTE_SCHED_TYPE_ATOMIC)
printf("\tqid0 type: atomic\n");
printf("\tCores available: %u\n", rte_lcore_count());
printf("\tCores used: %u\n", cores_needed);
}
if (rte_lcore_count() < cores_needed)
rte_panic("Too few cores (%d < %d)\n", rte_lcore_count(),
cores_needed);
const unsigned int ndevs = rte_event_dev_count();
if (ndevs == 0)
rte_panic("No dev_id devs found. Pasl in a --vdev eventdev.\n");
if (ndevs > 1)
fprintf(stderr, "Warning: More than one eventdev, using idx 0");
do_capability_setup(0);
fdata->cap.check_opt();
worker_data = rte_calloc(0, cdata.num_workers,
sizeof(worker_data[0]), 0);
if (worker_data == NULL)
rte_panic("rte_calloc failed\n");
int dev_id = fdata->cap.evdev_setup(worker_data);
if (dev_id < 0)
rte_exit(EXIT_FAILURE, "Error setting up eventdev\n");
init_ports(num_ports);
fdata->cap.adptr_setup(num_ports);
int worker_idx = 0;
RTE_LCORE_FOREACH_SLAVE(lcore_id) {
if (lcore_id >= MAX_NUM_CORE)
break;
if (!fdata->rx_core[lcore_id] &&
!fdata->worker_core[lcore_id] &&
!fdata->tx_core[lcore_id] &&
!fdata->sched_core[lcore_id])
continue;
if (fdata->rx_core[lcore_id])
printf(
"[%s()] lcore %d executing NIC Rx\n",
__func__, lcore_id);
if (fdata->tx_core[lcore_id])
printf(
"[%s()] lcore %d executing NIC Tx\n",
__func__, lcore_id);
if (fdata->sched_core[lcore_id])
printf("[%s()] lcore %d executing scheduler\n",
__func__, lcore_id);
if (fdata->worker_core[lcore_id])
printf(
"[%s()] lcore %d executing worker, using eventdev port %u\n",
__func__, lcore_id,
worker_data[worker_idx].port_id);
err = rte_eal_remote_launch(fdata->cap.worker,
&worker_data[worker_idx], lcore_id);
if (err) {
rte_panic("Failed to launch worker on core %d\n",
lcore_id);
continue;
}
if (fdata->worker_core[lcore_id])
worker_idx++;
}
lcore_id = rte_lcore_id();
if (core_in_use(lcore_id))
fdata->cap.worker(&worker_data[worker_idx++]);
rte_eal_mp_wait_lcore();
if (!cdata.quiet && (port_stat(dev_id, worker_data[0].port_id) !=
(uint64_t)-ENOTSUP)) {
printf("\nPort Workload distribution:\n");
uint32_t i;
uint64_t tot_pkts = 0;
uint64_t pkts_per_wkr[RTE_MAX_LCORE] = {0};
for (i = 0; i < cdata.num_workers; i++) {
pkts_per_wkr[i] =
port_stat(dev_id, worker_data[i].port_id);
tot_pkts += pkts_per_wkr[i];
}
for (i = 0; i < cdata.num_workers; i++) {
float pc = pkts_per_wkr[i] * 100 /
((float)tot_pkts);
printf("worker %i :\t%.1f %% (%"PRIu64" pkts)\n",
i, pc, pkts_per_wkr[i]);
}
}
return 0;
}