f-stack/dpdk/drivers/net/avf/avf_ethdev.c

1429 lines
38 KiB
C

/* SPDX-License-Identifier: BSD-3-Clause
* Copyright(c) 2017 Intel Corporation
*/
#include <sys/queue.h>
#include <stdio.h>
#include <errno.h>
#include <stdint.h>
#include <string.h>
#include <unistd.h>
#include <stdarg.h>
#include <inttypes.h>
#include <rte_byteorder.h>
#include <rte_common.h>
#include <rte_interrupts.h>
#include <rte_debug.h>
#include <rte_pci.h>
#include <rte_atomic.h>
#include <rte_eal.h>
#include <rte_ether.h>
#include <rte_ethdev_driver.h>
#include <rte_ethdev_pci.h>
#include <rte_malloc.h>
#include <rte_memzone.h>
#include <rte_dev.h>
#include "avf_log.h"
#include "base/avf_prototype.h"
#include "base/avf_adminq_cmd.h"
#include "base/avf_type.h"
#include "avf.h"
#include "avf_rxtx.h"
static int avf_dev_configure(struct rte_eth_dev *dev);
static int avf_dev_start(struct rte_eth_dev *dev);
static void avf_dev_stop(struct rte_eth_dev *dev);
static void avf_dev_close(struct rte_eth_dev *dev);
static void avf_dev_info_get(struct rte_eth_dev *dev,
struct rte_eth_dev_info *dev_info);
static const uint32_t *avf_dev_supported_ptypes_get(struct rte_eth_dev *dev);
static int avf_dev_stats_get(struct rte_eth_dev *dev,
struct rte_eth_stats *stats);
static void avf_dev_promiscuous_enable(struct rte_eth_dev *dev);
static void avf_dev_promiscuous_disable(struct rte_eth_dev *dev);
static void avf_dev_allmulticast_enable(struct rte_eth_dev *dev);
static void avf_dev_allmulticast_disable(struct rte_eth_dev *dev);
static int avf_dev_add_mac_addr(struct rte_eth_dev *dev,
struct ether_addr *addr,
uint32_t index,
uint32_t pool);
static void avf_dev_del_mac_addr(struct rte_eth_dev *dev, uint32_t index);
static int avf_dev_vlan_filter_set(struct rte_eth_dev *dev,
uint16_t vlan_id, int on);
static int avf_dev_vlan_offload_set(struct rte_eth_dev *dev, int mask);
static int avf_dev_rss_reta_update(struct rte_eth_dev *dev,
struct rte_eth_rss_reta_entry64 *reta_conf,
uint16_t reta_size);
static int avf_dev_rss_reta_query(struct rte_eth_dev *dev,
struct rte_eth_rss_reta_entry64 *reta_conf,
uint16_t reta_size);
static int avf_dev_rss_hash_update(struct rte_eth_dev *dev,
struct rte_eth_rss_conf *rss_conf);
static int avf_dev_rss_hash_conf_get(struct rte_eth_dev *dev,
struct rte_eth_rss_conf *rss_conf);
static int avf_dev_mtu_set(struct rte_eth_dev *dev, uint16_t mtu);
static int avf_dev_set_default_mac_addr(struct rte_eth_dev *dev,
struct ether_addr *mac_addr);
static int avf_dev_rx_queue_intr_enable(struct rte_eth_dev *dev,
uint16_t queue_id);
static int avf_dev_rx_queue_intr_disable(struct rte_eth_dev *dev,
uint16_t queue_id);
int avf_logtype_init;
int avf_logtype_driver;
static const struct rte_pci_id pci_id_avf_map[] = {
{ RTE_PCI_DEVICE(AVF_INTEL_VENDOR_ID, AVF_DEV_ID_ADAPTIVE_VF) },
{ .vendor_id = 0, /* sentinel */ },
};
static const struct eth_dev_ops avf_eth_dev_ops = {
.dev_configure = avf_dev_configure,
.dev_start = avf_dev_start,
.dev_stop = avf_dev_stop,
.dev_close = avf_dev_close,
.dev_infos_get = avf_dev_info_get,
.dev_supported_ptypes_get = avf_dev_supported_ptypes_get,
.link_update = avf_dev_link_update,
.stats_get = avf_dev_stats_get,
.promiscuous_enable = avf_dev_promiscuous_enable,
.promiscuous_disable = avf_dev_promiscuous_disable,
.allmulticast_enable = avf_dev_allmulticast_enable,
.allmulticast_disable = avf_dev_allmulticast_disable,
.mac_addr_add = avf_dev_add_mac_addr,
.mac_addr_remove = avf_dev_del_mac_addr,
.vlan_filter_set = avf_dev_vlan_filter_set,
.vlan_offload_set = avf_dev_vlan_offload_set,
.rx_queue_start = avf_dev_rx_queue_start,
.rx_queue_stop = avf_dev_rx_queue_stop,
.tx_queue_start = avf_dev_tx_queue_start,
.tx_queue_stop = avf_dev_tx_queue_stop,
.rx_queue_setup = avf_dev_rx_queue_setup,
.rx_queue_release = avf_dev_rx_queue_release,
.tx_queue_setup = avf_dev_tx_queue_setup,
.tx_queue_release = avf_dev_tx_queue_release,
.mac_addr_set = avf_dev_set_default_mac_addr,
.reta_update = avf_dev_rss_reta_update,
.reta_query = avf_dev_rss_reta_query,
.rss_hash_update = avf_dev_rss_hash_update,
.rss_hash_conf_get = avf_dev_rss_hash_conf_get,
.rxq_info_get = avf_dev_rxq_info_get,
.txq_info_get = avf_dev_txq_info_get,
.rx_queue_count = avf_dev_rxq_count,
.rx_descriptor_status = avf_dev_rx_desc_status,
.tx_descriptor_status = avf_dev_tx_desc_status,
.mtu_set = avf_dev_mtu_set,
.rx_queue_intr_enable = avf_dev_rx_queue_intr_enable,
.rx_queue_intr_disable = avf_dev_rx_queue_intr_disable,
};
static int
avf_dev_configure(struct rte_eth_dev *dev)
{
struct avf_adapter *ad =
AVF_DEV_PRIVATE_TO_ADAPTER(dev->data->dev_private);
struct avf_info *vf = AVF_DEV_PRIVATE_TO_VF(ad);
struct rte_eth_conf *dev_conf = &dev->data->dev_conf;
ad->rx_bulk_alloc_allowed = true;
#ifdef RTE_LIBRTE_AVF_INC_VECTOR
/* Initialize to TRUE. If any of Rx queues doesn't meet the
* vector Rx/Tx preconditions, it will be reset.
*/
ad->rx_vec_allowed = true;
ad->tx_vec_allowed = true;
#else
ad->rx_vec_allowed = false;
ad->tx_vec_allowed = false;
#endif
/* Vlan stripping setting */
if (vf->vf_res->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_VLAN) {
if (dev_conf->rxmode.offloads & DEV_RX_OFFLOAD_VLAN_STRIP)
avf_enable_vlan_strip(ad);
else
avf_disable_vlan_strip(ad);
}
return 0;
}
static int
avf_init_rss(struct avf_adapter *adapter)
{
struct avf_info *vf = AVF_DEV_PRIVATE_TO_VF(adapter);
struct rte_eth_rss_conf *rss_conf;
uint8_t i, j, nb_q;
int ret;
rss_conf = &adapter->eth_dev->data->dev_conf.rx_adv_conf.rss_conf;
nb_q = RTE_MIN(adapter->eth_dev->data->nb_rx_queues,
AVF_MAX_NUM_QUEUES);
if (!(vf->vf_res->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_RSS_PF)) {
PMD_DRV_LOG(DEBUG, "RSS is not supported");
return -ENOTSUP;
}
if (adapter->eth_dev->data->dev_conf.rxmode.mq_mode != ETH_MQ_RX_RSS) {
PMD_DRV_LOG(WARNING, "RSS is enabled by PF by default");
/* set all lut items to default queue */
for (i = 0; i < vf->vf_res->rss_lut_size; i++)
vf->rss_lut[i] = 0;
ret = avf_configure_rss_lut(adapter);
return ret;
}
/* In AVF, RSS enablement is set by PF driver. It is not supported
* to set based on rss_conf->rss_hf.
*/
/* configure RSS key */
if (!rss_conf->rss_key) {
/* Calculate the default hash key */
for (i = 0; i <= vf->vf_res->rss_key_size; i++)
vf->rss_key[i] = (uint8_t)rte_rand();
} else
rte_memcpy(vf->rss_key, rss_conf->rss_key,
RTE_MIN(rss_conf->rss_key_len,
vf->vf_res->rss_key_size));
/* init RSS LUT table */
for (i = 0, j = 0; i < vf->vf_res->rss_lut_size; i++, j++) {
if (j >= nb_q)
j = 0;
vf->rss_lut[i] = j;
}
/* send virtchnnl ops to configure rss*/
ret = avf_configure_rss_lut(adapter);
if (ret)
return ret;
ret = avf_configure_rss_key(adapter);
if (ret)
return ret;
return 0;
}
static int
avf_init_rxq(struct rte_eth_dev *dev, struct avf_rx_queue *rxq)
{
struct avf_hw *hw = AVF_DEV_PRIVATE_TO_HW(dev->data->dev_private);
struct rte_eth_dev_data *dev_data = dev->data;
uint16_t buf_size, max_pkt_len, len;
buf_size = rte_pktmbuf_data_room_size(rxq->mp) - RTE_PKTMBUF_HEADROOM;
/* Calculate the maximum packet length allowed */
len = rxq->rx_buf_len * AVF_MAX_CHAINED_RX_BUFFERS;
max_pkt_len = RTE_MIN(len, dev->data->dev_conf.rxmode.max_rx_pkt_len);
/* Check if the jumbo frame and maximum packet length are set
* correctly.
*/
if (dev->data->dev_conf.rxmode.offloads & DEV_RX_OFFLOAD_JUMBO_FRAME) {
if (max_pkt_len <= ETHER_MAX_LEN ||
max_pkt_len > AVF_FRAME_SIZE_MAX) {
PMD_DRV_LOG(ERR, "maximum packet length must be "
"larger than %u and smaller than %u, "
"as jumbo frame is enabled",
(uint32_t)ETHER_MAX_LEN,
(uint32_t)AVF_FRAME_SIZE_MAX);
return -EINVAL;
}
} else {
if (max_pkt_len < ETHER_MIN_LEN ||
max_pkt_len > ETHER_MAX_LEN) {
PMD_DRV_LOG(ERR, "maximum packet length must be "
"larger than %u and smaller than %u, "
"as jumbo frame is disabled",
(uint32_t)ETHER_MIN_LEN,
(uint32_t)ETHER_MAX_LEN);
return -EINVAL;
}
}
rxq->max_pkt_len = max_pkt_len;
if ((dev_data->dev_conf.rxmode.offloads & DEV_RX_OFFLOAD_SCATTER) ||
(rxq->max_pkt_len + 2 * AVF_VLAN_TAG_SIZE) > buf_size) {
dev_data->scattered_rx = 1;
}
AVF_PCI_REG_WRITE(rxq->qrx_tail, rxq->nb_rx_desc - 1);
AVF_WRITE_FLUSH(hw);
return 0;
}
static int
avf_init_queues(struct rte_eth_dev *dev)
{
struct avf_rx_queue **rxq =
(struct avf_rx_queue **)dev->data->rx_queues;
int i, ret = AVF_SUCCESS;
for (i = 0; i < dev->data->nb_rx_queues; i++) {
if (!rxq[i] || !rxq[i]->q_set)
continue;
ret = avf_init_rxq(dev, rxq[i]);
if (ret != AVF_SUCCESS)
break;
}
/* set rx/tx function to vector/scatter/single-segment
* according to parameters
*/
avf_set_rx_function(dev);
avf_set_tx_function(dev);
return ret;
}
static int avf_config_rx_queues_irqs(struct rte_eth_dev *dev,
struct rte_intr_handle *intr_handle)
{
struct avf_adapter *adapter =
AVF_DEV_PRIVATE_TO_ADAPTER(dev->data->dev_private);
struct avf_info *vf = AVF_DEV_PRIVATE_TO_VF(adapter);
struct avf_hw *hw = AVF_DEV_PRIVATE_TO_HW(adapter);
uint16_t interval, i;
int vec;
if (rte_intr_cap_multiple(intr_handle) &&
dev->data->dev_conf.intr_conf.rxq) {
if (rte_intr_efd_enable(intr_handle, dev->data->nb_rx_queues))
return -1;
}
if (rte_intr_dp_is_en(intr_handle) && !intr_handle->intr_vec) {
intr_handle->intr_vec =
rte_zmalloc("intr_vec",
dev->data->nb_rx_queues * sizeof(int), 0);
if (!intr_handle->intr_vec) {
PMD_DRV_LOG(ERR, "Failed to allocate %d rx intr_vec",
dev->data->nb_rx_queues);
return -1;
}
}
if (!dev->data->dev_conf.intr_conf.rxq ||
!rte_intr_dp_is_en(intr_handle)) {
/* Rx interrupt disabled, Map interrupt only for writeback */
vf->nb_msix = 1;
if (vf->vf_res->vf_cap_flags &
VIRTCHNL_VF_OFFLOAD_WB_ON_ITR) {
/* If WB_ON_ITR supports, enable it */
vf->msix_base = AVF_RX_VEC_START;
AVF_WRITE_REG(hw, AVFINT_DYN_CTLN1(vf->msix_base - 1),
AVFINT_DYN_CTLN1_ITR_INDX_MASK |
AVFINT_DYN_CTLN1_WB_ON_ITR_MASK);
} else {
/* If no WB_ON_ITR offload flags, need to set
* interrupt for descriptor write back.
*/
vf->msix_base = AVF_MISC_VEC_ID;
/* set ITR to max */
interval = avf_calc_itr_interval(
AVF_QUEUE_ITR_INTERVAL_MAX);
AVF_WRITE_REG(hw, AVFINT_DYN_CTL01,
AVFINT_DYN_CTL01_INTENA_MASK |
(AVF_ITR_INDEX_DEFAULT <<
AVFINT_DYN_CTL01_ITR_INDX_SHIFT) |
(interval <<
AVFINT_DYN_CTL01_INTERVAL_SHIFT));
}
AVF_WRITE_FLUSH(hw);
/* map all queues to the same interrupt */
for (i = 0; i < dev->data->nb_rx_queues; i++)
vf->rxq_map[vf->msix_base] |= 1 << i;
} else {
if (!rte_intr_allow_others(intr_handle)) {
vf->nb_msix = 1;
vf->msix_base = AVF_MISC_VEC_ID;
for (i = 0; i < dev->data->nb_rx_queues; i++) {
vf->rxq_map[vf->msix_base] |= 1 << i;
intr_handle->intr_vec[i] = AVF_MISC_VEC_ID;
}
PMD_DRV_LOG(DEBUG,
"vector %u are mapping to all Rx queues",
vf->msix_base);
} else {
/* If Rx interrupt is reuquired, and we can use
* multi interrupts, then the vec is from 1
*/
vf->nb_msix = RTE_MIN(vf->vf_res->max_vectors,
intr_handle->nb_efd);
vf->msix_base = AVF_RX_VEC_START;
vec = AVF_RX_VEC_START;
for (i = 0; i < dev->data->nb_rx_queues; i++) {
vf->rxq_map[vec] |= 1 << i;
intr_handle->intr_vec[i] = vec++;
if (vec >= vf->nb_msix)
vec = AVF_RX_VEC_START;
}
PMD_DRV_LOG(DEBUG,
"%u vectors are mapping to %u Rx queues",
vf->nb_msix, dev->data->nb_rx_queues);
}
}
if (avf_config_irq_map(adapter)) {
PMD_DRV_LOG(ERR, "config interrupt mapping failed");
return -1;
}
return 0;
}
static int
avf_start_queues(struct rte_eth_dev *dev)
{
struct avf_rx_queue *rxq;
struct avf_tx_queue *txq;
int i;
for (i = 0; i < dev->data->nb_tx_queues; i++) {
txq = dev->data->tx_queues[i];
if (txq->tx_deferred_start)
continue;
if (avf_dev_tx_queue_start(dev, i) != 0) {
PMD_DRV_LOG(ERR, "Fail to start queue %u", i);
return -1;
}
}
for (i = 0; i < dev->data->nb_rx_queues; i++) {
rxq = dev->data->rx_queues[i];
if (rxq->rx_deferred_start)
continue;
if (avf_dev_rx_queue_start(dev, i) != 0) {
PMD_DRV_LOG(ERR, "Fail to start queue %u", i);
return -1;
}
}
return 0;
}
static int
avf_dev_start(struct rte_eth_dev *dev)
{
struct avf_adapter *adapter =
AVF_DEV_PRIVATE_TO_ADAPTER(dev->data->dev_private);
struct avf_info *vf = AVF_DEV_PRIVATE_TO_VF(dev->data->dev_private);
struct avf_hw *hw = AVF_DEV_PRIVATE_TO_HW(dev->data->dev_private);
struct rte_intr_handle *intr_handle = dev->intr_handle;
PMD_INIT_FUNC_TRACE();
hw->adapter_stopped = 0;
vf->max_pkt_len = dev->data->dev_conf.rxmode.max_rx_pkt_len;
vf->num_queue_pairs = RTE_MAX(dev->data->nb_rx_queues,
dev->data->nb_tx_queues);
if (avf_init_queues(dev) != 0) {
PMD_DRV_LOG(ERR, "failed to do Queue init");
return -1;
}
if (vf->vf_res->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_RSS_PF) {
if (avf_init_rss(adapter) != 0) {
PMD_DRV_LOG(ERR, "configure rss failed");
goto err_rss;
}
}
if (avf_configure_queues(adapter) != 0) {
PMD_DRV_LOG(ERR, "configure queues failed");
goto err_queue;
}
if (avf_config_rx_queues_irqs(dev, intr_handle) != 0) {
PMD_DRV_LOG(ERR, "configure irq failed");
goto err_queue;
}
/* re-enable intr again, because efd assign may change */
if (dev->data->dev_conf.intr_conf.rxq != 0) {
rte_intr_disable(intr_handle);
rte_intr_enable(intr_handle);
}
/* Set all mac addrs */
avf_add_del_all_mac_addr(adapter, TRUE);
if (avf_start_queues(dev) != 0) {
PMD_DRV_LOG(ERR, "enable queues failed");
goto err_mac;
}
return 0;
err_mac:
avf_add_del_all_mac_addr(adapter, FALSE);
err_queue:
err_rss:
return -1;
}
static void
avf_dev_stop(struct rte_eth_dev *dev)
{
struct avf_adapter *adapter =
AVF_DEV_PRIVATE_TO_ADAPTER(dev->data->dev_private);
struct avf_hw *hw = AVF_DEV_PRIVATE_TO_HW(dev->data->dev_private);
struct rte_intr_handle *intr_handle = dev->intr_handle;
PMD_INIT_FUNC_TRACE();
if (hw->adapter_stopped == 1)
return;
avf_stop_queues(dev);
/* Disable the interrupt for Rx */
rte_intr_efd_disable(intr_handle);
/* Rx interrupt vector mapping free */
if (intr_handle->intr_vec) {
rte_free(intr_handle->intr_vec);
intr_handle->intr_vec = NULL;
}
/* remove all mac addrs */
avf_add_del_all_mac_addr(adapter, FALSE);
hw->adapter_stopped = 1;
}
static void
avf_dev_info_get(struct rte_eth_dev *dev, struct rte_eth_dev_info *dev_info)
{
struct avf_info *vf = AVF_DEV_PRIVATE_TO_VF(dev->data->dev_private);
memset(dev_info, 0, sizeof(*dev_info));
dev_info->max_rx_queues = vf->vsi_res->num_queue_pairs;
dev_info->max_tx_queues = vf->vsi_res->num_queue_pairs;
dev_info->min_rx_bufsize = AVF_BUF_SIZE_MIN;
dev_info->max_rx_pktlen = AVF_FRAME_SIZE_MAX;
dev_info->hash_key_size = vf->vf_res->rss_key_size;
dev_info->reta_size = vf->vf_res->rss_lut_size;
dev_info->flow_type_rss_offloads = AVF_RSS_OFFLOAD_ALL;
dev_info->max_mac_addrs = AVF_NUM_MACADDR_MAX;
dev_info->rx_offload_capa =
DEV_RX_OFFLOAD_VLAN_STRIP |
DEV_RX_OFFLOAD_QINQ_STRIP |
DEV_RX_OFFLOAD_IPV4_CKSUM |
DEV_RX_OFFLOAD_UDP_CKSUM |
DEV_RX_OFFLOAD_TCP_CKSUM |
DEV_RX_OFFLOAD_OUTER_IPV4_CKSUM |
DEV_RX_OFFLOAD_SCATTER |
DEV_RX_OFFLOAD_JUMBO_FRAME |
DEV_RX_OFFLOAD_VLAN_FILTER;
dev_info->tx_offload_capa =
DEV_TX_OFFLOAD_VLAN_INSERT |
DEV_TX_OFFLOAD_QINQ_INSERT |
DEV_TX_OFFLOAD_IPV4_CKSUM |
DEV_TX_OFFLOAD_UDP_CKSUM |
DEV_TX_OFFLOAD_TCP_CKSUM |
DEV_TX_OFFLOAD_SCTP_CKSUM |
DEV_TX_OFFLOAD_OUTER_IPV4_CKSUM |
DEV_TX_OFFLOAD_TCP_TSO |
DEV_TX_OFFLOAD_VXLAN_TNL_TSO |
DEV_TX_OFFLOAD_GRE_TNL_TSO |
DEV_TX_OFFLOAD_IPIP_TNL_TSO |
DEV_TX_OFFLOAD_GENEVE_TNL_TSO |
DEV_TX_OFFLOAD_MULTI_SEGS;
dev_info->default_rxconf = (struct rte_eth_rxconf) {
.rx_free_thresh = AVF_DEFAULT_RX_FREE_THRESH,
.rx_drop_en = 0,
.offloads = 0,
};
dev_info->default_txconf = (struct rte_eth_txconf) {
.tx_free_thresh = AVF_DEFAULT_TX_FREE_THRESH,
.tx_rs_thresh = AVF_DEFAULT_TX_RS_THRESH,
.offloads = 0,
};
dev_info->rx_desc_lim = (struct rte_eth_desc_lim) {
.nb_max = AVF_MAX_RING_DESC,
.nb_min = AVF_MIN_RING_DESC,
.nb_align = AVF_ALIGN_RING_DESC,
};
dev_info->tx_desc_lim = (struct rte_eth_desc_lim) {
.nb_max = AVF_MAX_RING_DESC,
.nb_min = AVF_MIN_RING_DESC,
.nb_align = AVF_ALIGN_RING_DESC,
};
}
static const uint32_t *
avf_dev_supported_ptypes_get(struct rte_eth_dev *dev __rte_unused)
{
static const uint32_t ptypes[] = {
RTE_PTYPE_L2_ETHER,
RTE_PTYPE_L3_IPV4_EXT_UNKNOWN,
RTE_PTYPE_L4_FRAG,
RTE_PTYPE_L4_ICMP,
RTE_PTYPE_L4_NONFRAG,
RTE_PTYPE_L4_SCTP,
RTE_PTYPE_L4_TCP,
RTE_PTYPE_L4_UDP,
RTE_PTYPE_UNKNOWN
};
return ptypes;
}
int
avf_dev_link_update(struct rte_eth_dev *dev,
__rte_unused int wait_to_complete)
{
struct rte_eth_link new_link;
struct avf_info *vf = AVF_DEV_PRIVATE_TO_VF(dev->data->dev_private);
/* Only read status info stored in VF, and the info is updated
* when receive LINK_CHANGE evnet from PF by Virtchnnl.
*/
switch (vf->link_speed) {
case VIRTCHNL_LINK_SPEED_100MB:
new_link.link_speed = ETH_SPEED_NUM_100M;
break;
case VIRTCHNL_LINK_SPEED_1GB:
new_link.link_speed = ETH_SPEED_NUM_1G;
break;
case VIRTCHNL_LINK_SPEED_10GB:
new_link.link_speed = ETH_SPEED_NUM_10G;
break;
case VIRTCHNL_LINK_SPEED_20GB:
new_link.link_speed = ETH_SPEED_NUM_20G;
break;
case VIRTCHNL_LINK_SPEED_25GB:
new_link.link_speed = ETH_SPEED_NUM_25G;
break;
case VIRTCHNL_LINK_SPEED_40GB:
new_link.link_speed = ETH_SPEED_NUM_40G;
break;
default:
new_link.link_speed = ETH_SPEED_NUM_NONE;
break;
}
new_link.link_duplex = ETH_LINK_FULL_DUPLEX;
new_link.link_status = vf->link_up ? ETH_LINK_UP :
ETH_LINK_DOWN;
new_link.link_autoneg = !(dev->data->dev_conf.link_speeds &
ETH_LINK_SPEED_FIXED);
if (rte_atomic64_cmpset((uint64_t *)&dev->data->dev_link,
*(uint64_t *)&dev->data->dev_link,
*(uint64_t *)&new_link) == 0)
return -1;
return 0;
}
static void
avf_dev_promiscuous_enable(struct rte_eth_dev *dev)
{
struct avf_adapter *adapter =
AVF_DEV_PRIVATE_TO_ADAPTER(dev->data->dev_private);
struct avf_info *vf = AVF_DEV_PRIVATE_TO_VF(adapter);
int ret;
if (vf->promisc_unicast_enabled)
return;
ret = avf_config_promisc(adapter, TRUE, vf->promisc_multicast_enabled);
if (!ret)
vf->promisc_unicast_enabled = TRUE;
}
static void
avf_dev_promiscuous_disable(struct rte_eth_dev *dev)
{
struct avf_adapter *adapter =
AVF_DEV_PRIVATE_TO_ADAPTER(dev->data->dev_private);
struct avf_info *vf = AVF_DEV_PRIVATE_TO_VF(adapter);
int ret;
if (!vf->promisc_unicast_enabled)
return;
ret = avf_config_promisc(adapter, FALSE, vf->promisc_multicast_enabled);
if (!ret)
vf->promisc_unicast_enabled = FALSE;
}
static void
avf_dev_allmulticast_enable(struct rte_eth_dev *dev)
{
struct avf_adapter *adapter =
AVF_DEV_PRIVATE_TO_ADAPTER(dev->data->dev_private);
struct avf_info *vf = AVF_DEV_PRIVATE_TO_VF(adapter);
int ret;
if (vf->promisc_multicast_enabled)
return;
ret = avf_config_promisc(adapter, vf->promisc_unicast_enabled, TRUE);
if (!ret)
vf->promisc_multicast_enabled = TRUE;
}
static void
avf_dev_allmulticast_disable(struct rte_eth_dev *dev)
{
struct avf_adapter *adapter =
AVF_DEV_PRIVATE_TO_ADAPTER(dev->data->dev_private);
struct avf_info *vf = AVF_DEV_PRIVATE_TO_VF(adapter);
int ret;
if (!vf->promisc_multicast_enabled)
return;
ret = avf_config_promisc(adapter, vf->promisc_unicast_enabled, FALSE);
if (!ret)
vf->promisc_multicast_enabled = FALSE;
}
static int
avf_dev_add_mac_addr(struct rte_eth_dev *dev, struct ether_addr *addr,
__rte_unused uint32_t index,
__rte_unused uint32_t pool)
{
struct avf_adapter *adapter =
AVF_DEV_PRIVATE_TO_ADAPTER(dev->data->dev_private);
struct avf_info *vf = AVF_DEV_PRIVATE_TO_VF(adapter);
int err;
if (is_zero_ether_addr(addr)) {
PMD_DRV_LOG(ERR, "Invalid Ethernet Address");
return -EINVAL;
}
err = avf_add_del_eth_addr(adapter, addr, TRUE);
if (err) {
PMD_DRV_LOG(ERR, "fail to add MAC address");
return -EIO;
}
vf->mac_num++;
return 0;
}
static void
avf_dev_del_mac_addr(struct rte_eth_dev *dev, uint32_t index)
{
struct avf_adapter *adapter =
AVF_DEV_PRIVATE_TO_ADAPTER(dev->data->dev_private);
struct avf_info *vf = AVF_DEV_PRIVATE_TO_VF(adapter);
struct ether_addr *addr;
int err;
addr = &dev->data->mac_addrs[index];
err = avf_add_del_eth_addr(adapter, addr, FALSE);
if (err)
PMD_DRV_LOG(ERR, "fail to delete MAC address");
vf->mac_num--;
}
static int
avf_dev_vlan_filter_set(struct rte_eth_dev *dev, uint16_t vlan_id, int on)
{
struct avf_adapter *adapter =
AVF_DEV_PRIVATE_TO_ADAPTER(dev->data->dev_private);
struct avf_info *vf = AVF_DEV_PRIVATE_TO_VF(adapter);
int err;
if (!(vf->vf_res->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_VLAN))
return -ENOTSUP;
err = avf_add_del_vlan(adapter, vlan_id, on);
if (err)
return -EIO;
return 0;
}
static int
avf_dev_vlan_offload_set(struct rte_eth_dev *dev, int mask)
{
struct avf_adapter *adapter =
AVF_DEV_PRIVATE_TO_ADAPTER(dev->data->dev_private);
struct avf_info *vf = AVF_DEV_PRIVATE_TO_VF(adapter);
struct rte_eth_conf *dev_conf = &dev->data->dev_conf;
int err;
if (!(vf->vf_res->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_VLAN))
return -ENOTSUP;
/* Vlan stripping setting */
if (mask & ETH_VLAN_STRIP_MASK) {
/* Enable or disable VLAN stripping */
if (dev_conf->rxmode.offloads & DEV_RX_OFFLOAD_VLAN_STRIP)
err = avf_enable_vlan_strip(adapter);
else
err = avf_disable_vlan_strip(adapter);
if (err)
return -EIO;
}
return 0;
}
static int
avf_dev_rss_reta_update(struct rte_eth_dev *dev,
struct rte_eth_rss_reta_entry64 *reta_conf,
uint16_t reta_size)
{
struct avf_adapter *adapter =
AVF_DEV_PRIVATE_TO_ADAPTER(dev->data->dev_private);
struct avf_info *vf = AVF_DEV_PRIVATE_TO_VF(adapter);
uint8_t *lut;
uint16_t i, idx, shift;
int ret;
if (!(vf->vf_res->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_RSS_PF))
return -ENOTSUP;
if (reta_size != vf->vf_res->rss_lut_size) {
PMD_DRV_LOG(ERR, "The size of hash lookup table configured "
"(%d) doesn't match the number of hardware can "
"support (%d)", reta_size, vf->vf_res->rss_lut_size);
return -EINVAL;
}
lut = rte_zmalloc("rss_lut", reta_size, 0);
if (!lut) {
PMD_DRV_LOG(ERR, "No memory can be allocated");
return -ENOMEM;
}
/* store the old lut table temporarily */
rte_memcpy(lut, vf->rss_lut, reta_size);
for (i = 0; i < reta_size; i++) {
idx = i / RTE_RETA_GROUP_SIZE;
shift = i % RTE_RETA_GROUP_SIZE;
if (reta_conf[idx].mask & (1ULL << shift))
lut[i] = reta_conf[idx].reta[shift];
}
rte_memcpy(vf->rss_lut, lut, reta_size);
/* send virtchnnl ops to configure rss*/
ret = avf_configure_rss_lut(adapter);
if (ret) /* revert back */
rte_memcpy(vf->rss_lut, lut, reta_size);
rte_free(lut);
return ret;
}
static int
avf_dev_rss_reta_query(struct rte_eth_dev *dev,
struct rte_eth_rss_reta_entry64 *reta_conf,
uint16_t reta_size)
{
struct avf_adapter *adapter =
AVF_DEV_PRIVATE_TO_ADAPTER(dev->data->dev_private);
struct avf_info *vf = AVF_DEV_PRIVATE_TO_VF(adapter);
uint16_t i, idx, shift;
if (!(vf->vf_res->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_RSS_PF))
return -ENOTSUP;
if (reta_size != vf->vf_res->rss_lut_size) {
PMD_DRV_LOG(ERR, "The size of hash lookup table configured "
"(%d) doesn't match the number of hardware can "
"support (%d)", reta_size, vf->vf_res->rss_lut_size);
return -EINVAL;
}
for (i = 0; i < reta_size; i++) {
idx = i / RTE_RETA_GROUP_SIZE;
shift = i % RTE_RETA_GROUP_SIZE;
if (reta_conf[idx].mask & (1ULL << shift))
reta_conf[idx].reta[shift] = vf->rss_lut[i];
}
return 0;
}
static int
avf_dev_rss_hash_update(struct rte_eth_dev *dev,
struct rte_eth_rss_conf *rss_conf)
{
struct avf_adapter *adapter =
AVF_DEV_PRIVATE_TO_ADAPTER(dev->data->dev_private);
struct avf_info *vf = AVF_DEV_PRIVATE_TO_VF(adapter);
if (!(vf->vf_res->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_RSS_PF))
return -ENOTSUP;
/* HENA setting, it is enabled by default, no change */
if (!rss_conf->rss_key || rss_conf->rss_key_len == 0) {
PMD_DRV_LOG(DEBUG, "No key to be configured");
return 0;
} else if (rss_conf->rss_key_len != vf->vf_res->rss_key_size) {
PMD_DRV_LOG(ERR, "The size of hash key configured "
"(%d) doesn't match the size of hardware can "
"support (%d)", rss_conf->rss_key_len,
vf->vf_res->rss_key_size);
return -EINVAL;
}
rte_memcpy(vf->rss_key, rss_conf->rss_key, rss_conf->rss_key_len);
return avf_configure_rss_key(adapter);
}
static int
avf_dev_rss_hash_conf_get(struct rte_eth_dev *dev,
struct rte_eth_rss_conf *rss_conf)
{
struct avf_adapter *adapter =
AVF_DEV_PRIVATE_TO_ADAPTER(dev->data->dev_private);
struct avf_info *vf = AVF_DEV_PRIVATE_TO_VF(adapter);
if (!(vf->vf_res->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_RSS_PF))
return -ENOTSUP;
/* Just set it to default value now. */
rss_conf->rss_hf = AVF_RSS_OFFLOAD_ALL;
if (!rss_conf->rss_key)
return 0;
rss_conf->rss_key_len = vf->vf_res->rss_key_size;
rte_memcpy(rss_conf->rss_key, vf->rss_key, rss_conf->rss_key_len);
return 0;
}
static int
avf_dev_mtu_set(struct rte_eth_dev *dev, uint16_t mtu)
{
uint32_t frame_size = mtu + AVF_ETH_OVERHEAD;
int ret = 0;
if (mtu < ETHER_MIN_MTU || frame_size > AVF_FRAME_SIZE_MAX)
return -EINVAL;
/* mtu setting is forbidden if port is start */
if (dev->data->dev_started) {
PMD_DRV_LOG(ERR, "port must be stopped before configuration");
return -EBUSY;
}
if (frame_size > ETHER_MAX_LEN)
dev->data->dev_conf.rxmode.offloads |=
DEV_RX_OFFLOAD_JUMBO_FRAME;
else
dev->data->dev_conf.rxmode.offloads &=
~DEV_RX_OFFLOAD_JUMBO_FRAME;
dev->data->dev_conf.rxmode.max_rx_pkt_len = frame_size;
return ret;
}
static int
avf_dev_set_default_mac_addr(struct rte_eth_dev *dev,
struct ether_addr *mac_addr)
{
struct avf_adapter *adapter =
AVF_DEV_PRIVATE_TO_ADAPTER(dev->data->dev_private);
struct avf_hw *hw = AVF_DEV_PRIVATE_TO_HW(adapter);
struct ether_addr *perm_addr, *old_addr;
int ret;
old_addr = (struct ether_addr *)hw->mac.addr;
perm_addr = (struct ether_addr *)hw->mac.perm_addr;
if (is_same_ether_addr(mac_addr, old_addr))
return 0;
/* If the MAC address is configured by host, skip the setting */
if (is_valid_assigned_ether_addr(perm_addr))
return -EPERM;
ret = avf_add_del_eth_addr(adapter, old_addr, FALSE);
if (ret)
PMD_DRV_LOG(ERR, "Fail to delete old MAC:"
" %02X:%02X:%02X:%02X:%02X:%02X",
old_addr->addr_bytes[0],
old_addr->addr_bytes[1],
old_addr->addr_bytes[2],
old_addr->addr_bytes[3],
old_addr->addr_bytes[4],
old_addr->addr_bytes[5]);
ret = avf_add_del_eth_addr(adapter, mac_addr, TRUE);
if (ret)
PMD_DRV_LOG(ERR, "Fail to add new MAC:"
" %02X:%02X:%02X:%02X:%02X:%02X",
mac_addr->addr_bytes[0],
mac_addr->addr_bytes[1],
mac_addr->addr_bytes[2],
mac_addr->addr_bytes[3],
mac_addr->addr_bytes[4],
mac_addr->addr_bytes[5]);
if (ret)
return -EIO;
ether_addr_copy(mac_addr, (struct ether_addr *)hw->mac.addr);
return 0;
}
static int
avf_dev_stats_get(struct rte_eth_dev *dev, struct rte_eth_stats *stats)
{
struct avf_adapter *adapter =
AVF_DEV_PRIVATE_TO_ADAPTER(dev->data->dev_private);
struct virtchnl_eth_stats *pstats = NULL;
int ret;
ret = avf_query_stats(adapter, &pstats);
if (ret == 0) {
stats->ipackets = pstats->rx_unicast + pstats->rx_multicast +
pstats->rx_broadcast;
stats->opackets = pstats->tx_broadcast + pstats->tx_multicast +
pstats->tx_unicast;
stats->imissed = pstats->rx_discards;
stats->oerrors = pstats->tx_errors + pstats->tx_discards;
stats->ibytes = pstats->rx_bytes;
stats->obytes = pstats->tx_bytes;
} else {
PMD_DRV_LOG(ERR, "Get statistics failed");
}
return -EIO;
}
static int
avf_dev_rx_queue_intr_enable(struct rte_eth_dev *dev, uint16_t queue_id)
{
struct avf_adapter *adapter =
AVF_DEV_PRIVATE_TO_ADAPTER(dev->data->dev_private);
struct rte_pci_device *pci_dev = RTE_ETH_DEV_TO_PCI(dev);
struct avf_hw *hw = AVF_DEV_PRIVATE_TO_HW(adapter);
uint16_t msix_intr;
msix_intr = pci_dev->intr_handle.intr_vec[queue_id];
if (msix_intr == AVF_MISC_VEC_ID) {
PMD_DRV_LOG(INFO, "MISC is also enabled for control");
AVF_WRITE_REG(hw, AVFINT_DYN_CTL01,
AVFINT_DYN_CTL01_INTENA_MASK |
AVFINT_DYN_CTL01_ITR_INDX_MASK);
} else {
AVF_WRITE_REG(hw,
AVFINT_DYN_CTLN1(msix_intr - AVF_RX_VEC_START),
AVFINT_DYN_CTLN1_INTENA_MASK |
AVFINT_DYN_CTLN1_ITR_INDX_MASK);
}
AVF_WRITE_FLUSH(hw);
rte_intr_enable(&pci_dev->intr_handle);
return 0;
}
static int
avf_dev_rx_queue_intr_disable(struct rte_eth_dev *dev, uint16_t queue_id)
{
struct rte_pci_device *pci_dev = RTE_ETH_DEV_TO_PCI(dev);
struct avf_hw *hw = AVF_DEV_PRIVATE_TO_HW(dev->data->dev_private);
uint16_t msix_intr;
msix_intr = pci_dev->intr_handle.intr_vec[queue_id];
if (msix_intr == AVF_MISC_VEC_ID) {
PMD_DRV_LOG(ERR, "MISC is used for control, cannot disable it");
return -EIO;
}
AVF_WRITE_REG(hw,
AVFINT_DYN_CTLN1(msix_intr - AVF_RX_VEC_START),
0);
AVF_WRITE_FLUSH(hw);
return 0;
}
static int
avf_check_vf_reset_done(struct avf_hw *hw)
{
int i, reset;
for (i = 0; i < AVF_RESET_WAIT_CNT; i++) {
reset = AVF_READ_REG(hw, AVFGEN_RSTAT) &
AVFGEN_RSTAT_VFR_STATE_MASK;
reset = reset >> AVFGEN_RSTAT_VFR_STATE_SHIFT;
if (reset == VIRTCHNL_VFR_VFACTIVE ||
reset == VIRTCHNL_VFR_COMPLETED)
break;
rte_delay_ms(20);
}
if (i >= AVF_RESET_WAIT_CNT)
return -1;
return 0;
}
static int
avf_init_vf(struct rte_eth_dev *dev)
{
int err, bufsz;
struct avf_adapter *adapter =
AVF_DEV_PRIVATE_TO_ADAPTER(dev->data->dev_private);
struct avf_hw *hw = AVF_DEV_PRIVATE_TO_HW(dev->data->dev_private);
struct avf_info *vf = AVF_DEV_PRIVATE_TO_VF(dev->data->dev_private);
err = avf_set_mac_type(hw);
if (err) {
PMD_INIT_LOG(ERR, "set_mac_type failed: %d", err);
goto err;
}
err = avf_check_vf_reset_done(hw);
if (err) {
PMD_INIT_LOG(ERR, "VF is still resetting");
goto err;
}
avf_init_adminq_parameter(hw);
err = avf_init_adminq(hw);
if (err) {
PMD_INIT_LOG(ERR, "init_adminq failed: %d", err);
goto err;
}
vf->aq_resp = rte_zmalloc("vf_aq_resp", AVF_AQ_BUF_SZ, 0);
if (!vf->aq_resp) {
PMD_INIT_LOG(ERR, "unable to allocate vf_aq_resp memory");
goto err_aq;
}
if (avf_check_api_version(adapter) != 0) {
PMD_INIT_LOG(ERR, "check_api version failed");
goto err_api;
}
bufsz = sizeof(struct virtchnl_vf_resource) +
(AVF_MAX_VF_VSI * sizeof(struct virtchnl_vsi_resource));
vf->vf_res = rte_zmalloc("vf_res", bufsz, 0);
if (!vf->vf_res) {
PMD_INIT_LOG(ERR, "unable to allocate vf_res memory");
goto err_api;
}
if (avf_get_vf_resource(adapter) != 0) {
PMD_INIT_LOG(ERR, "avf_get_vf_config failed");
goto err_alloc;
}
/* Allocate memort for RSS info */
if (vf->vf_res->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_RSS_PF) {
vf->rss_key = rte_zmalloc("rss_key",
vf->vf_res->rss_key_size, 0);
if (!vf->rss_key) {
PMD_INIT_LOG(ERR, "unable to allocate rss_key memory");
goto err_rss;
}
vf->rss_lut = rte_zmalloc("rss_lut",
vf->vf_res->rss_lut_size, 0);
if (!vf->rss_lut) {
PMD_INIT_LOG(ERR, "unable to allocate rss_lut memory");
goto err_rss;
}
}
return 0;
err_rss:
rte_free(vf->rss_key);
rte_free(vf->rss_lut);
err_alloc:
rte_free(vf->vf_res);
vf->vsi_res = NULL;
err_api:
rte_free(vf->aq_resp);
err_aq:
avf_shutdown_adminq(hw);
err:
return -1;
}
/* Enable default admin queue interrupt setting */
static inline void
avf_enable_irq0(struct avf_hw *hw)
{
/* Enable admin queue interrupt trigger */
AVF_WRITE_REG(hw, AVFINT_ICR0_ENA1, AVFINT_ICR0_ENA1_ADMINQ_MASK);
AVF_WRITE_REG(hw, AVFINT_DYN_CTL01, AVFINT_DYN_CTL01_INTENA_MASK |
AVFINT_DYN_CTL01_ITR_INDX_MASK);
AVF_WRITE_FLUSH(hw);
}
static inline void
avf_disable_irq0(struct avf_hw *hw)
{
/* Disable all interrupt types */
AVF_WRITE_REG(hw, AVFINT_ICR0_ENA1, 0);
AVF_WRITE_REG(hw, AVFINT_DYN_CTL01,
AVFINT_DYN_CTL01_ITR_INDX_MASK);
AVF_WRITE_FLUSH(hw);
}
static void
avf_dev_interrupt_handler(void *param)
{
struct rte_eth_dev *dev = (struct rte_eth_dev *)param;
struct avf_hw *hw = AVF_DEV_PRIVATE_TO_HW(dev->data->dev_private);
avf_disable_irq0(hw);
avf_handle_virtchnl_msg(dev);
avf_enable_irq0(hw);
}
static int
avf_dev_init(struct rte_eth_dev *eth_dev)
{
struct avf_adapter *adapter =
AVF_DEV_PRIVATE_TO_ADAPTER(eth_dev->data->dev_private);
struct avf_hw *hw = AVF_DEV_PRIVATE_TO_HW(adapter);
struct rte_pci_device *pci_dev = RTE_ETH_DEV_TO_PCI(eth_dev);
PMD_INIT_FUNC_TRACE();
/* assign ops func pointer */
eth_dev->dev_ops = &avf_eth_dev_ops;
eth_dev->rx_pkt_burst = &avf_recv_pkts;
eth_dev->tx_pkt_burst = &avf_xmit_pkts;
eth_dev->tx_pkt_prepare = &avf_prep_pkts;
/* For secondary processes, we don't initialise any further as primary
* has already done this work. Only check if we need a different RX
* and TX function.
*/
if (rte_eal_process_type() != RTE_PROC_PRIMARY) {
avf_set_rx_function(eth_dev);
avf_set_tx_function(eth_dev);
return 0;
}
rte_eth_copy_pci_info(eth_dev, pci_dev);
hw->vendor_id = pci_dev->id.vendor_id;
hw->device_id = pci_dev->id.device_id;
hw->subsystem_vendor_id = pci_dev->id.subsystem_vendor_id;
hw->subsystem_device_id = pci_dev->id.subsystem_device_id;
hw->bus.bus_id = pci_dev->addr.bus;
hw->bus.device = pci_dev->addr.devid;
hw->bus.func = pci_dev->addr.function;
hw->hw_addr = (void *)pci_dev->mem_resource[0].addr;
hw->back = AVF_DEV_PRIVATE_TO_ADAPTER(eth_dev->data->dev_private);
adapter->eth_dev = eth_dev;
if (avf_init_vf(eth_dev) != 0) {
PMD_INIT_LOG(ERR, "Init vf failed");
return -1;
}
/* copy mac addr */
eth_dev->data->mac_addrs = rte_zmalloc(
"avf_mac",
ETHER_ADDR_LEN * AVF_NUM_MACADDR_MAX,
0);
if (!eth_dev->data->mac_addrs) {
PMD_INIT_LOG(ERR, "Failed to allocate %d bytes needed to"
" store MAC addresses",
ETHER_ADDR_LEN * AVF_NUM_MACADDR_MAX);
return -ENOMEM;
}
/* If the MAC address is not configured by host,
* generate a random one.
*/
if (!is_valid_assigned_ether_addr((struct ether_addr *)hw->mac.addr))
eth_random_addr(hw->mac.addr);
ether_addr_copy((struct ether_addr *)hw->mac.addr,
&eth_dev->data->mac_addrs[0]);
/* register callback func to eal lib */
rte_intr_callback_register(&pci_dev->intr_handle,
avf_dev_interrupt_handler,
(void *)eth_dev);
/* enable uio intr after callback register */
rte_intr_enable(&pci_dev->intr_handle);
/* configure and enable device interrupt */
avf_enable_irq0(hw);
return 0;
}
static void
avf_dev_close(struct rte_eth_dev *dev)
{
struct avf_hw *hw = AVF_DEV_PRIVATE_TO_HW(dev->data->dev_private);
struct rte_pci_device *pci_dev = RTE_ETH_DEV_TO_PCI(dev);
struct rte_intr_handle *intr_handle = &pci_dev->intr_handle;
avf_dev_stop(dev);
avf_shutdown_adminq(hw);
/* disable uio intr before callback unregister */
rte_intr_disable(intr_handle);
/* unregister callback func from eal lib */
rte_intr_callback_unregister(intr_handle,
avf_dev_interrupt_handler, dev);
avf_disable_irq0(hw);
}
static int
avf_dev_uninit(struct rte_eth_dev *dev)
{
struct avf_info *vf = AVF_DEV_PRIVATE_TO_VF(dev->data->dev_private);
struct avf_hw *hw = AVF_DEV_PRIVATE_TO_HW(dev->data->dev_private);
if (rte_eal_process_type() != RTE_PROC_PRIMARY)
return -EPERM;
dev->dev_ops = NULL;
dev->rx_pkt_burst = NULL;
dev->tx_pkt_burst = NULL;
if (hw->adapter_stopped == 0)
avf_dev_close(dev);
rte_free(vf->vf_res);
vf->vsi_res = NULL;
vf->vf_res = NULL;
rte_free(vf->aq_resp);
vf->aq_resp = NULL;
if (vf->rss_lut) {
rte_free(vf->rss_lut);
vf->rss_lut = NULL;
}
if (vf->rss_key) {
rte_free(vf->rss_key);
vf->rss_key = NULL;
}
return 0;
}
static int eth_avf_pci_probe(struct rte_pci_driver *pci_drv __rte_unused,
struct rte_pci_device *pci_dev)
{
return rte_eth_dev_pci_generic_probe(pci_dev,
sizeof(struct avf_adapter), avf_dev_init);
}
static int eth_avf_pci_remove(struct rte_pci_device *pci_dev)
{
return rte_eth_dev_pci_generic_remove(pci_dev, avf_dev_uninit);
}
/* Adaptive virtual function driver struct */
static struct rte_pci_driver rte_avf_pmd = {
.id_table = pci_id_avf_map,
.drv_flags = RTE_PCI_DRV_NEED_MAPPING | RTE_PCI_DRV_INTR_LSC |
RTE_PCI_DRV_IOVA_AS_VA,
.probe = eth_avf_pci_probe,
.remove = eth_avf_pci_remove,
};
RTE_PMD_REGISTER_PCI(net_avf, rte_avf_pmd);
RTE_PMD_REGISTER_PCI_TABLE(net_avf, pci_id_avf_map);
RTE_PMD_REGISTER_KMOD_DEP(net_avf, "* igb_uio | vfio-pci");
RTE_INIT(avf_init_log)
{
avf_logtype_init = rte_log_register("pmd.net.avf.init");
if (avf_logtype_init >= 0)
rte_log_set_level(avf_logtype_init, RTE_LOG_NOTICE);
avf_logtype_driver = rte_log_register("pmd.net.avf.driver");
if (avf_logtype_driver >= 0)
rte_log_set_level(avf_logtype_driver, RTE_LOG_NOTICE);
}
/* memory func for base code */
enum avf_status_code
avf_allocate_dma_mem_d(__rte_unused struct avf_hw *hw,
struct avf_dma_mem *mem,
u64 size,
u32 alignment)
{
const struct rte_memzone *mz = NULL;
char z_name[RTE_MEMZONE_NAMESIZE];
if (!mem)
return AVF_ERR_PARAM;
snprintf(z_name, sizeof(z_name), "avf_dma_%"PRIu64, rte_rand());
mz = rte_memzone_reserve_bounded(z_name, size, SOCKET_ID_ANY,
RTE_MEMZONE_IOVA_CONTIG, alignment, RTE_PGSIZE_2M);
if (!mz)
return AVF_ERR_NO_MEMORY;
mem->size = size;
mem->va = mz->addr;
mem->pa = mz->phys_addr;
mem->zone = (const void *)mz;
PMD_DRV_LOG(DEBUG,
"memzone %s allocated with physical address: %"PRIu64,
mz->name, mem->pa);
return AVF_SUCCESS;
}
enum avf_status_code
avf_free_dma_mem_d(__rte_unused struct avf_hw *hw,
struct avf_dma_mem *mem)
{
if (!mem)
return AVF_ERR_PARAM;
PMD_DRV_LOG(DEBUG,
"memzone %s to be freed with physical address: %"PRIu64,
((const struct rte_memzone *)mem->zone)->name, mem->pa);
rte_memzone_free((const struct rte_memzone *)mem->zone);
mem->zone = NULL;
mem->va = NULL;
mem->pa = (u64)0;
return AVF_SUCCESS;
}
enum avf_status_code
avf_allocate_virt_mem_d(__rte_unused struct avf_hw *hw,
struct avf_virt_mem *mem,
u32 size)
{
if (!mem)
return AVF_ERR_PARAM;
mem->size = size;
mem->va = rte_zmalloc("avf", size, 0);
if (mem->va)
return AVF_SUCCESS;
else
return AVF_ERR_NO_MEMORY;
}
enum avf_status_code
avf_free_virt_mem_d(__rte_unused struct avf_hw *hw,
struct avf_virt_mem *mem)
{
if (!mem)
return AVF_ERR_PARAM;
rte_free(mem->va);
mem->va = NULL;
return AVF_SUCCESS;
}