f-stack/dpdk/drivers/compress/isal/isal_compress_pmd.c

696 lines
19 KiB
C

/* SPDX-License-Identifier: BSD-3-Clause
* Copyright(c) 2018 Intel Corporation
*/
#include <isa-l.h>
#include <rte_bus_vdev.h>
#include <rte_common.h>
#include <rte_malloc.h>
#include <rte_mbuf.h>
#include <rte_compressdev_pmd.h>
#include "isal_compress_pmd_private.h"
#define RTE_COMP_ISAL_WINDOW_SIZE 15
#define RTE_COMP_ISAL_LEVEL_ZERO 0 /* ISA-L Level 0 used for fixed Huffman */
#define RTE_COMP_ISAL_LEVEL_ONE 1
#define RTE_COMP_ISAL_LEVEL_TWO 2
#define RTE_COMP_ISAL_LEVEL_THREE 3 /* Optimised for AVX512 & AVX2 only */
int isal_logtype_driver;
/* Verify and set private xform parameters */
int
isal_comp_set_priv_xform_parameters(struct isal_priv_xform *priv_xform,
const struct rte_comp_xform *xform)
{
if (xform == NULL)
return -EINVAL;
/* Set compression private xform variables */
if (xform->type == RTE_COMP_COMPRESS) {
/* Set private xform type - COMPRESS/DECOMPRESS */
priv_xform->type = RTE_COMP_COMPRESS;
/* Set private xform algorithm */
if (xform->compress.algo != RTE_COMP_ALGO_DEFLATE) {
if (xform->compress.algo == RTE_COMP_ALGO_NULL) {
ISAL_PMD_LOG(ERR, "By-pass not supported\n");
return -ENOTSUP;
}
ISAL_PMD_LOG(ERR, "Algorithm not supported\n");
return -ENOTSUP;
}
priv_xform->compress.algo = RTE_COMP_ALGO_DEFLATE;
/* Set private xform checksum - raw deflate by default */
if (xform->compress.chksum != RTE_COMP_CHECKSUM_NONE) {
ISAL_PMD_LOG(ERR, "Checksum not supported\n");
return -ENOTSUP;
}
/* Set private xform window size, 32K supported */
if (xform->compress.window_size == RTE_COMP_ISAL_WINDOW_SIZE)
priv_xform->compress.window_size =
RTE_COMP_ISAL_WINDOW_SIZE;
else {
ISAL_PMD_LOG(ERR, "Window size not supported\n");
return -ENOTSUP;
}
/* Set private xform huffman type */
switch (xform->compress.deflate.huffman) {
case(RTE_COMP_HUFFMAN_DEFAULT):
priv_xform->compress.deflate.huffman =
RTE_COMP_HUFFMAN_DEFAULT;
break;
case(RTE_COMP_HUFFMAN_FIXED):
priv_xform->compress.deflate.huffman =
RTE_COMP_HUFFMAN_FIXED;
break;
case(RTE_COMP_HUFFMAN_DYNAMIC):
priv_xform->compress.deflate.huffman =
RTE_COMP_HUFFMAN_DYNAMIC;
break;
default:
ISAL_PMD_LOG(ERR, "Huffman code not supported\n");
return -ENOTSUP;
}
/* Set private xform level.
* Checking compliance with compressdev API, -1 <= level => 9
*/
if (xform->compress.level < RTE_COMP_LEVEL_PMD_DEFAULT ||
xform->compress.level > RTE_COMP_LEVEL_MAX) {
ISAL_PMD_LOG(ERR, "Compression level out of range\n");
return -EINVAL;
}
/* Check for Compressdev API level 0, No compression
* not supported in ISA-L
*/
else if (xform->compress.level == RTE_COMP_LEVEL_NONE) {
ISAL_PMD_LOG(ERR, "No Compression not supported\n");
return -ENOTSUP;
}
/* If using fixed huffman code, level must be 0 */
else if (priv_xform->compress.deflate.huffman ==
RTE_COMP_HUFFMAN_FIXED) {
ISAL_PMD_LOG(DEBUG, "ISA-L level 0 used due to a"
" fixed huffman code\n");
priv_xform->compress.level = RTE_COMP_ISAL_LEVEL_ZERO;
priv_xform->level_buffer_size =
ISAL_DEF_LVL0_DEFAULT;
} else {
/* Mapping API levels to ISA-L levels 1,2 & 3 */
switch (xform->compress.level) {
case RTE_COMP_LEVEL_PMD_DEFAULT:
/* Default is 1 if not using fixed huffman */
priv_xform->compress.level =
RTE_COMP_ISAL_LEVEL_ONE;
priv_xform->level_buffer_size =
ISAL_DEF_LVL1_DEFAULT;
break;
case RTE_COMP_LEVEL_MIN:
priv_xform->compress.level =
RTE_COMP_ISAL_LEVEL_ONE;
priv_xform->level_buffer_size =
ISAL_DEF_LVL1_DEFAULT;
break;
case RTE_COMP_ISAL_LEVEL_TWO:
priv_xform->compress.level =
RTE_COMP_ISAL_LEVEL_TWO;
priv_xform->level_buffer_size =
ISAL_DEF_LVL2_DEFAULT;
break;
/* Level 3 or higher requested */
default:
/* Check for AVX512, to use ISA-L level 3 */
if (rte_cpu_get_flag_enabled(
RTE_CPUFLAG_AVX512F)) {
priv_xform->compress.level =
RTE_COMP_ISAL_LEVEL_THREE;
priv_xform->level_buffer_size =
ISAL_DEF_LVL3_DEFAULT;
}
/* Check for AVX2, to use ISA-L level 3 */
else if (rte_cpu_get_flag_enabled(
RTE_CPUFLAG_AVX2)) {
priv_xform->compress.level =
RTE_COMP_ISAL_LEVEL_THREE;
priv_xform->level_buffer_size =
ISAL_DEF_LVL3_DEFAULT;
} else {
ISAL_PMD_LOG(DEBUG, "Requested ISA-L level"
" 3 or above; Level 3 optimized"
" for AVX512 & AVX2 only."
" level changed to 2.\n");
priv_xform->compress.level =
RTE_COMP_ISAL_LEVEL_TWO;
priv_xform->level_buffer_size =
ISAL_DEF_LVL2_DEFAULT;
}
}
}
}
/* Set decompression private xform variables */
else if (xform->type == RTE_COMP_DECOMPRESS) {
/* Set private xform type - COMPRESS/DECOMPRESS */
priv_xform->type = RTE_COMP_DECOMPRESS;
/* Set private xform algorithm */
if (xform->decompress.algo != RTE_COMP_ALGO_DEFLATE) {
if (xform->decompress.algo == RTE_COMP_ALGO_NULL) {
ISAL_PMD_LOG(ERR, "By pass not supported\n");
return -ENOTSUP;
}
ISAL_PMD_LOG(ERR, "Algorithm not supported\n");
return -ENOTSUP;
}
priv_xform->decompress.algo = RTE_COMP_ALGO_DEFLATE;
/* Set private xform checksum - raw deflate by default */
if (xform->compress.chksum != RTE_COMP_CHECKSUM_NONE) {
ISAL_PMD_LOG(ERR, "Checksum not supported\n");
return -ENOTSUP;
}
/* Set private xform window size, 32K supported */
if (xform->decompress.window_size == RTE_COMP_ISAL_WINDOW_SIZE)
priv_xform->decompress.window_size =
RTE_COMP_ISAL_WINDOW_SIZE;
else {
ISAL_PMD_LOG(ERR, "Window size not supported\n");
return -ENOTSUP;
}
}
return 0;
}
/* Compression using chained mbufs for input/output data */
static int
chained_mbuf_compression(struct rte_comp_op *op, struct isal_comp_qp *qp)
{
int ret;
uint32_t remaining_offset;
uint32_t remaining_data = op->src.length;
struct rte_mbuf *src = op->m_src;
struct rte_mbuf *dst = op->m_dst;
/* check for source/destination offset passing multiple segments
* and point compression stream to input/output buffer.
*/
remaining_offset = op->src.offset;
while (remaining_offset >= src->data_len) {
remaining_offset -= src->data_len;
src = src->next;
}
qp->stream->avail_in = RTE_MIN(src->data_len - remaining_offset,
op->src.length);
qp->stream->next_in = rte_pktmbuf_mtod_offset(src, uint8_t *,
remaining_offset);
remaining_offset = op->dst.offset;
while (remaining_offset >= dst->data_len) {
remaining_offset -= dst->data_len;
dst = dst->next;
}
qp->stream->avail_out = dst->data_len - remaining_offset;
qp->stream->next_out = rte_pktmbuf_mtod_offset(dst, uint8_t *,
remaining_offset);
if (unlikely(!qp->stream->next_in || !qp->stream->next_out)) {
ISAL_PMD_LOG(ERR, "Invalid source or destination buffer\n");
op->status = RTE_COMP_OP_STATUS_INVALID_ARGS;
return -1;
}
while (qp->stream->internal_state.state != ZSTATE_END) {
/* Last segment of data */
if (remaining_data <= src->data_len)
qp->stream->end_of_stream = 1;
/* Execute compression operation */
ret = isal_deflate(qp->stream);
remaining_data = op->src.length - qp->stream->total_in;
if (ret != COMP_OK) {
ISAL_PMD_LOG(ERR, "Compression operation failed\n");
op->status = RTE_COMP_OP_STATUS_ERROR;
return ret;
}
if (qp->stream->avail_in == 0 &&
qp->stream->total_in != op->src.length) {
if (src->next != NULL) {
src = src->next;
qp->stream->next_in =
rte_pktmbuf_mtod(src, uint8_t *);
qp->stream->avail_in =
RTE_MIN(remaining_data, src->data_len);
} else {
ISAL_PMD_LOG(ERR,
"Not enough input buffer segments\n");
op->status = RTE_COMP_OP_STATUS_INVALID_ARGS;
return -1;
}
}
if (qp->stream->avail_out == 0 &&
qp->stream->internal_state.state != ZSTATE_END) {
if (dst->next != NULL) {
dst = dst->next;
qp->stream->next_out =
rte_pktmbuf_mtod(dst, uint8_t *);
qp->stream->avail_out = dst->data_len;
} else {
ISAL_PMD_LOG(ERR,
"Not enough output buffer segments\n");
op->status =
RTE_COMP_OP_STATUS_OUT_OF_SPACE_TERMINATED;
return -1;
}
}
}
return 0;
}
/* Decompression using chained mbufs for input/output data */
static int
chained_mbuf_decompression(struct rte_comp_op *op, struct isal_comp_qp *qp)
{
int ret;
uint32_t consumed_data, src_remaining_offset, dst_remaining_offset;
uint32_t remaining_data = op->src.length;
struct rte_mbuf *src = op->m_src;
struct rte_mbuf *dst = op->m_dst;
/* check for offset passing multiple segments
* and point decompression state to input/output buffer
*/
src_remaining_offset = op->src.offset;
while (src_remaining_offset >= src->data_len) {
src_remaining_offset -= src->data_len;
src = src->next;
}
qp->state->avail_in = RTE_MIN(src->data_len - src_remaining_offset,
op->src.length);
qp->state->next_in = rte_pktmbuf_mtod_offset(src, uint8_t *,
src_remaining_offset);
dst_remaining_offset = op->dst.offset;
while (dst_remaining_offset >= dst->data_len) {
dst_remaining_offset -= dst->data_len;
dst = dst->next;
}
qp->state->avail_out = dst->data_len - dst_remaining_offset;
qp->state->next_out = rte_pktmbuf_mtod_offset(dst, uint8_t *,
dst_remaining_offset);
while (qp->state->block_state != ISAL_BLOCK_FINISH) {
ret = isal_inflate(qp->state);
if (ret != ISAL_DECOMP_OK) {
ISAL_PMD_LOG(ERR, "Decompression operation failed\n");
op->status = RTE_COMP_OP_STATUS_ERROR;
return ret;
}
/* Check for first segment, offset needs to be accounted for */
if (remaining_data == op->src.length) {
consumed_data = src->data_len - src_remaining_offset;
} else
consumed_data = src->data_len;
if (qp->state->avail_in == 0
&& op->consumed != op->src.length) {
op->consumed += consumed_data;
remaining_data -= consumed_data;
if (src->next != NULL) {
src = src->next;
qp->state->next_in =
rte_pktmbuf_mtod(src, uint8_t *);
qp->state->avail_in =
RTE_MIN(remaining_data, src->data_len);
}
}
if (qp->state->avail_out == 0 &&
qp->state->block_state != ISAL_BLOCK_FINISH) {
if (dst->next != NULL) {
dst = dst->next;
qp->state->next_out =
rte_pktmbuf_mtod(dst, uint8_t *);
qp->state->avail_out = dst->data_len;
} else {
ISAL_PMD_LOG(ERR,
"Not enough output buffer segments\n");
op->status =
RTE_COMP_OP_STATUS_OUT_OF_SPACE_TERMINATED;
return -1;
}
}
}
return 0;
}
/* Stateless Compression Function */
static int
process_isal_deflate(struct rte_comp_op *op, struct isal_comp_qp *qp,
struct isal_priv_xform *priv_xform)
{
int ret = 0;
op->status = RTE_COMP_OP_STATUS_SUCCESS;
/* Required due to init clearing level_buf */
uint8_t *temp_level_buf = qp->stream->level_buf;
/* Initialize compression stream */
isal_deflate_stateless_init(qp->stream);
qp->stream->level_buf = temp_level_buf;
/* Stateless operation, input will be consumed in one go */
qp->stream->flush = NO_FLUSH;
/* set compression level & intermediate level buffer size */
qp->stream->level = priv_xform->compress.level;
qp->stream->level_buf_size = priv_xform->level_buffer_size;
/* Set op huffman code */
if (priv_xform->compress.deflate.huffman == RTE_COMP_HUFFMAN_FIXED)
isal_deflate_set_hufftables(qp->stream, NULL,
IGZIP_HUFFTABLE_STATIC);
else if (priv_xform->compress.deflate.huffman ==
RTE_COMP_HUFFMAN_DEFAULT)
isal_deflate_set_hufftables(qp->stream, NULL,
IGZIP_HUFFTABLE_DEFAULT);
/* Dynamically change the huffman code to suit the input data */
else if (priv_xform->compress.deflate.huffman ==
RTE_COMP_HUFFMAN_DYNAMIC)
isal_deflate_set_hufftables(qp->stream, NULL,
IGZIP_HUFFTABLE_DEFAULT);
if (op->m_src->pkt_len < (op->src.length + op->src.offset)) {
ISAL_PMD_LOG(ERR, "Input mbuf(s) not big enough.\n");
op->status = RTE_COMP_OP_STATUS_INVALID_ARGS;
return -1;
}
if (op->dst.offset >= op->m_dst->pkt_len) {
ISAL_PMD_LOG(ERR, "Output mbuf(s) not big enough"
" for offset provided.\n");
op->status = RTE_COMP_OP_STATUS_INVALID_ARGS;
return -1;
}
/* Chained mbufs */
if (op->m_src->nb_segs > 1 || op->m_dst->nb_segs > 1) {
ret = chained_mbuf_compression(op, qp);
if (ret < 0)
return ret;
} else {
/* Linear buffer */
qp->stream->end_of_stream = 1; /* All input consumed in one */
/* Point compression stream to input buffer */
qp->stream->avail_in = op->src.length;
qp->stream->next_in = rte_pktmbuf_mtod_offset(op->m_src,
uint8_t *, op->src.offset);
/* Point compression stream to output buffer */
qp->stream->avail_out = op->m_dst->data_len - op->dst.offset;
qp->stream->next_out = rte_pktmbuf_mtod_offset(op->m_dst,
uint8_t *, op->dst.offset);
if (unlikely(!qp->stream->next_in || !qp->stream->next_out)) {
ISAL_PMD_LOG(ERR, "Invalid source or destination"
" buffers\n");
op->status = RTE_COMP_OP_STATUS_INVALID_ARGS;
return -1;
}
/* Execute compression operation */
ret = isal_deflate_stateless(qp->stream);
/* Check that output buffer did not run out of space */
if (ret == STATELESS_OVERFLOW) {
ISAL_PMD_LOG(ERR, "Output buffer not big enough\n");
op->status = RTE_COMP_OP_STATUS_OUT_OF_SPACE_TERMINATED;
return ret;
}
/* Check that input buffer has been fully consumed */
if (qp->stream->avail_in != (uint32_t)0) {
ISAL_PMD_LOG(ERR, "Input buffer could not be read"
" entirely\n");
op->status = RTE_COMP_OP_STATUS_ERROR;
return -1;
}
if (ret != COMP_OK) {
ISAL_PMD_LOG(ERR, "Compression operation failed\n");
op->status = RTE_COMP_OP_STATUS_ERROR;
return ret;
}
}
op->consumed = qp->stream->total_in;
op->produced = qp->stream->total_out;
isal_deflate_reset(qp->stream);
return ret;
}
/* Stateless Decompression Function */
static int
process_isal_inflate(struct rte_comp_op *op, struct isal_comp_qp *qp)
{
int ret = 0;
op->status = RTE_COMP_OP_STATUS_SUCCESS;
/* Initialize decompression state */
isal_inflate_init(qp->state);
if (op->m_src->pkt_len < (op->src.length + op->src.offset)) {
ISAL_PMD_LOG(ERR, "Input mbuf(s) not big enough.\n");
op->status = RTE_COMP_OP_STATUS_INVALID_ARGS;
return -1;
}
if (op->dst.offset >= op->m_dst->pkt_len) {
ISAL_PMD_LOG(ERR, "Output mbuf not big enough for "
"offset provided.\n");
op->status = RTE_COMP_OP_STATUS_INVALID_ARGS;
return -1;
}
/* Chained mbufs */
if (op->m_src->nb_segs > 1 || op->m_dst->nb_segs > 1) {
ret = chained_mbuf_decompression(op, qp);
if (ret != 0)
return ret;
} else {
/* Linear buffer */
/* Point decompression state to input buffer */
qp->state->avail_in = op->src.length;
qp->state->next_in = rte_pktmbuf_mtod_offset(op->m_src,
uint8_t *, op->src.offset);
/* Point decompression state to output buffer */
qp->state->avail_out = op->m_dst->data_len - op->dst.offset;
qp->state->next_out = rte_pktmbuf_mtod_offset(op->m_dst,
uint8_t *, op->dst.offset);
if (unlikely(!qp->state->next_in || !qp->state->next_out)) {
ISAL_PMD_LOG(ERR, "Invalid source or destination"
" buffers\n");
op->status = RTE_COMP_OP_STATUS_INVALID_ARGS;
return -1;
}
/* Execute decompression operation */
ret = isal_inflate_stateless(qp->state);
if (ret == ISAL_OUT_OVERFLOW) {
ISAL_PMD_LOG(ERR, "Output buffer not big enough\n");
op->status = RTE_COMP_OP_STATUS_OUT_OF_SPACE_TERMINATED;
return ret;
}
/* Check that input buffer has been fully consumed */
if (qp->state->avail_in != (uint32_t)0) {
ISAL_PMD_LOG(ERR, "Input buffer could not be read"
" entirely\n");
op->status = RTE_COMP_OP_STATUS_ERROR;
return -1;
}
if (ret != ISAL_DECOMP_OK) {
op->status = RTE_COMP_OP_STATUS_ERROR;
return ret;
}
op->consumed = op->src.length - qp->state->avail_in;
}
op->produced = qp->state->total_out;
isal_inflate_reset(qp->state);
return ret;
}
/* Process compression/decompression operation */
static int
process_op(struct isal_comp_qp *qp, struct rte_comp_op *op,
struct isal_priv_xform *priv_xform)
{
switch (priv_xform->type) {
case RTE_COMP_COMPRESS:
process_isal_deflate(op, qp, priv_xform);
break;
case RTE_COMP_DECOMPRESS:
process_isal_inflate(op, qp);
break;
default:
ISAL_PMD_LOG(ERR, "Operation Not Supported\n");
return -ENOTSUP;
}
return 0;
}
/* Enqueue burst */
static uint16_t
isal_comp_pmd_enqueue_burst(void *queue_pair, struct rte_comp_op **ops,
uint16_t nb_ops)
{
struct isal_comp_qp *qp = queue_pair;
uint16_t i;
int retval;
int16_t num_enq = RTE_MIN(qp->num_free_elements, nb_ops);
for (i = 0; i < num_enq; i++) {
if (unlikely(ops[i]->op_type != RTE_COMP_OP_STATELESS)) {
ops[i]->status = RTE_COMP_OP_STATUS_INVALID_ARGS;
ISAL_PMD_LOG(ERR, "Stateful operation not Supported\n");
qp->qp_stats.enqueue_err_count++;
continue;
}
retval = process_op(qp, ops[i], ops[i]->private_xform);
if (unlikely(retval < 0) ||
ops[i]->status != RTE_COMP_OP_STATUS_SUCCESS) {
qp->qp_stats.enqueue_err_count++;
}
}
retval = rte_ring_enqueue_burst(qp->processed_pkts, (void *)ops,
num_enq, NULL);
qp->num_free_elements -= retval;
qp->qp_stats.enqueued_count += retval;
return retval;
}
/* Dequeue burst */
static uint16_t
isal_comp_pmd_dequeue_burst(void *queue_pair, struct rte_comp_op **ops,
uint16_t nb_ops)
{
struct isal_comp_qp *qp = queue_pair;
uint16_t nb_dequeued;
nb_dequeued = rte_ring_dequeue_burst(qp->processed_pkts, (void **)ops,
nb_ops, NULL);
qp->num_free_elements += nb_dequeued;
qp->qp_stats.dequeued_count += nb_dequeued;
return nb_dequeued;
}
/* Create ISA-L compression device */
static int
compdev_isal_create(const char *name, struct rte_vdev_device *vdev,
struct rte_compressdev_pmd_init_params *init_params)
{
struct rte_compressdev *dev;
dev = rte_compressdev_pmd_create(name, &vdev->device,
sizeof(struct isal_comp_private), init_params);
if (dev == NULL) {
ISAL_PMD_LOG(ERR, "failed to create compressdev vdev");
return -EFAULT;
}
dev->dev_ops = isal_compress_pmd_ops;
/* register rx/tx burst functions for data path */
dev->dequeue_burst = isal_comp_pmd_dequeue_burst;
dev->enqueue_burst = isal_comp_pmd_enqueue_burst;
return 0;
}
/** Remove compression device */
static int
compdev_isal_remove_dev(struct rte_vdev_device *vdev)
{
struct rte_compressdev *compdev;
const char *name;
name = rte_vdev_device_name(vdev);
if (name == NULL)
return -EINVAL;
compdev = rte_compressdev_pmd_get_named_dev(name);
if (compdev == NULL)
return -ENODEV;
return rte_compressdev_pmd_destroy(compdev);
}
/** Initialise ISA-L compression device */
static int
compdev_isal_probe(struct rte_vdev_device *dev)
{
struct rte_compressdev_pmd_init_params init_params = {
"",
rte_socket_id(),
};
const char *name, *args;
int retval;
name = rte_vdev_device_name(dev);
if (name == NULL)
return -EINVAL;
args = rte_vdev_device_args(dev);
retval = rte_compressdev_pmd_parse_input_args(&init_params, args);
if (retval) {
ISAL_PMD_LOG(ERR,
"Failed to parse initialisation arguments[%s]\n", args);
return -EINVAL;
}
return compdev_isal_create(name, dev, &init_params);
}
static struct rte_vdev_driver compdev_isal_pmd_drv = {
.probe = compdev_isal_probe,
.remove = compdev_isal_remove_dev,
};
RTE_PMD_REGISTER_VDEV(COMPDEV_NAME_ISAL_PMD, compdev_isal_pmd_drv);
RTE_PMD_REGISTER_PARAM_STRING(COMPDEV_NAME_ISAL_PMD,
"socket_id=<int>");
RTE_INIT(isal_init_log)
{
isal_logtype_driver = rte_log_register("pmd.compress.isal");
if (isal_logtype_driver >= 0)
rte_log_set_level(isal_logtype_driver, RTE_LOG_INFO);
}