mirror of https://github.com/F-Stack/f-stack.git
386 lines
11 KiB
C
386 lines
11 KiB
C
/* SPDX-License-Identifier: BSD-3-Clause
|
|
*
|
|
* Copyright (c) 2017,2018 HXT-semitech Corporation.
|
|
* Copyright (c) 2007-2009 Kip Macy kmacy@freebsd.org
|
|
* All rights reserved.
|
|
* Derived from FreeBSD's bufring.h
|
|
* Used as BSD-3 Licensed with permission from Kip Macy.
|
|
*/
|
|
|
|
#ifndef _RTE_RING_ELEM_PVT_H_
|
|
#define _RTE_RING_ELEM_PVT_H_
|
|
|
|
static __rte_always_inline void
|
|
__rte_ring_enqueue_elems_32(struct rte_ring *r, const uint32_t size,
|
|
uint32_t idx, const void *obj_table, uint32_t n)
|
|
{
|
|
unsigned int i;
|
|
uint32_t *ring = (uint32_t *)&r[1];
|
|
const uint32_t *obj = (const uint32_t *)obj_table;
|
|
if (likely(idx + n < size)) {
|
|
for (i = 0; i < (n & ~0x7); i += 8, idx += 8) {
|
|
ring[idx] = obj[i];
|
|
ring[idx + 1] = obj[i + 1];
|
|
ring[idx + 2] = obj[i + 2];
|
|
ring[idx + 3] = obj[i + 3];
|
|
ring[idx + 4] = obj[i + 4];
|
|
ring[idx + 5] = obj[i + 5];
|
|
ring[idx + 6] = obj[i + 6];
|
|
ring[idx + 7] = obj[i + 7];
|
|
}
|
|
switch (n & 0x7) {
|
|
case 7:
|
|
ring[idx++] = obj[i++]; /* fallthrough */
|
|
case 6:
|
|
ring[idx++] = obj[i++]; /* fallthrough */
|
|
case 5:
|
|
ring[idx++] = obj[i++]; /* fallthrough */
|
|
case 4:
|
|
ring[idx++] = obj[i++]; /* fallthrough */
|
|
case 3:
|
|
ring[idx++] = obj[i++]; /* fallthrough */
|
|
case 2:
|
|
ring[idx++] = obj[i++]; /* fallthrough */
|
|
case 1:
|
|
ring[idx++] = obj[i++]; /* fallthrough */
|
|
}
|
|
} else {
|
|
for (i = 0; idx < size; i++, idx++)
|
|
ring[idx] = obj[i];
|
|
/* Start at the beginning */
|
|
for (idx = 0; i < n; i++, idx++)
|
|
ring[idx] = obj[i];
|
|
}
|
|
}
|
|
|
|
static __rte_always_inline void
|
|
__rte_ring_enqueue_elems_64(struct rte_ring *r, uint32_t prod_head,
|
|
const void *obj_table, uint32_t n)
|
|
{
|
|
unsigned int i;
|
|
const uint32_t size = r->size;
|
|
uint32_t idx = prod_head & r->mask;
|
|
uint64_t *ring = (uint64_t *)&r[1];
|
|
const unaligned_uint64_t *obj = (const unaligned_uint64_t *)obj_table;
|
|
if (likely(idx + n < size)) {
|
|
for (i = 0; i < (n & ~0x3); i += 4, idx += 4) {
|
|
ring[idx] = obj[i];
|
|
ring[idx + 1] = obj[i + 1];
|
|
ring[idx + 2] = obj[i + 2];
|
|
ring[idx + 3] = obj[i + 3];
|
|
}
|
|
switch (n & 0x3) {
|
|
case 3:
|
|
ring[idx++] = obj[i++]; /* fallthrough */
|
|
case 2:
|
|
ring[idx++] = obj[i++]; /* fallthrough */
|
|
case 1:
|
|
ring[idx++] = obj[i++];
|
|
}
|
|
} else {
|
|
for (i = 0; idx < size; i++, idx++)
|
|
ring[idx] = obj[i];
|
|
/* Start at the beginning */
|
|
for (idx = 0; i < n; i++, idx++)
|
|
ring[idx] = obj[i];
|
|
}
|
|
}
|
|
|
|
static __rte_always_inline void
|
|
__rte_ring_enqueue_elems_128(struct rte_ring *r, uint32_t prod_head,
|
|
const void *obj_table, uint32_t n)
|
|
{
|
|
unsigned int i;
|
|
const uint32_t size = r->size;
|
|
uint32_t idx = prod_head & r->mask;
|
|
rte_int128_t *ring = (rte_int128_t *)&r[1];
|
|
const rte_int128_t *obj = (const rte_int128_t *)obj_table;
|
|
if (likely(idx + n < size)) {
|
|
for (i = 0; i < (n & ~0x1); i += 2, idx += 2)
|
|
memcpy((void *)(ring + idx),
|
|
(const void *)(obj + i), 32);
|
|
switch (n & 0x1) {
|
|
case 1:
|
|
memcpy((void *)(ring + idx),
|
|
(const void *)(obj + i), 16);
|
|
}
|
|
} else {
|
|
for (i = 0; idx < size; i++, idx++)
|
|
memcpy((void *)(ring + idx),
|
|
(const void *)(obj + i), 16);
|
|
/* Start at the beginning */
|
|
for (idx = 0; i < n; i++, idx++)
|
|
memcpy((void *)(ring + idx),
|
|
(const void *)(obj + i), 16);
|
|
}
|
|
}
|
|
|
|
/* the actual enqueue of elements on the ring.
|
|
* Placed here since identical code needed in both
|
|
* single and multi producer enqueue functions.
|
|
*/
|
|
static __rte_always_inline void
|
|
__rte_ring_enqueue_elems(struct rte_ring *r, uint32_t prod_head,
|
|
const void *obj_table, uint32_t esize, uint32_t num)
|
|
{
|
|
/* 8B and 16B copies implemented individually to retain
|
|
* the current performance.
|
|
*/
|
|
if (esize == 8)
|
|
__rte_ring_enqueue_elems_64(r, prod_head, obj_table, num);
|
|
else if (esize == 16)
|
|
__rte_ring_enqueue_elems_128(r, prod_head, obj_table, num);
|
|
else {
|
|
uint32_t idx, scale, nr_idx, nr_num, nr_size;
|
|
|
|
/* Normalize to uint32_t */
|
|
scale = esize / sizeof(uint32_t);
|
|
nr_num = num * scale;
|
|
idx = prod_head & r->mask;
|
|
nr_idx = idx * scale;
|
|
nr_size = r->size * scale;
|
|
__rte_ring_enqueue_elems_32(r, nr_size, nr_idx,
|
|
obj_table, nr_num);
|
|
}
|
|
}
|
|
|
|
static __rte_always_inline void
|
|
__rte_ring_dequeue_elems_32(struct rte_ring *r, const uint32_t size,
|
|
uint32_t idx, void *obj_table, uint32_t n)
|
|
{
|
|
unsigned int i;
|
|
uint32_t *ring = (uint32_t *)&r[1];
|
|
uint32_t *obj = (uint32_t *)obj_table;
|
|
if (likely(idx + n < size)) {
|
|
for (i = 0; i < (n & ~0x7); i += 8, idx += 8) {
|
|
obj[i] = ring[idx];
|
|
obj[i + 1] = ring[idx + 1];
|
|
obj[i + 2] = ring[idx + 2];
|
|
obj[i + 3] = ring[idx + 3];
|
|
obj[i + 4] = ring[idx + 4];
|
|
obj[i + 5] = ring[idx + 5];
|
|
obj[i + 6] = ring[idx + 6];
|
|
obj[i + 7] = ring[idx + 7];
|
|
}
|
|
switch (n & 0x7) {
|
|
case 7:
|
|
obj[i++] = ring[idx++]; /* fallthrough */
|
|
case 6:
|
|
obj[i++] = ring[idx++]; /* fallthrough */
|
|
case 5:
|
|
obj[i++] = ring[idx++]; /* fallthrough */
|
|
case 4:
|
|
obj[i++] = ring[idx++]; /* fallthrough */
|
|
case 3:
|
|
obj[i++] = ring[idx++]; /* fallthrough */
|
|
case 2:
|
|
obj[i++] = ring[idx++]; /* fallthrough */
|
|
case 1:
|
|
obj[i++] = ring[idx++]; /* fallthrough */
|
|
}
|
|
} else {
|
|
for (i = 0; idx < size; i++, idx++)
|
|
obj[i] = ring[idx];
|
|
/* Start at the beginning */
|
|
for (idx = 0; i < n; i++, idx++)
|
|
obj[i] = ring[idx];
|
|
}
|
|
}
|
|
|
|
static __rte_always_inline void
|
|
__rte_ring_dequeue_elems_64(struct rte_ring *r, uint32_t prod_head,
|
|
void *obj_table, uint32_t n)
|
|
{
|
|
unsigned int i;
|
|
const uint32_t size = r->size;
|
|
uint32_t idx = prod_head & r->mask;
|
|
uint64_t *ring = (uint64_t *)&r[1];
|
|
unaligned_uint64_t *obj = (unaligned_uint64_t *)obj_table;
|
|
if (likely(idx + n < size)) {
|
|
for (i = 0; i < (n & ~0x3); i += 4, idx += 4) {
|
|
obj[i] = ring[idx];
|
|
obj[i + 1] = ring[idx + 1];
|
|
obj[i + 2] = ring[idx + 2];
|
|
obj[i + 3] = ring[idx + 3];
|
|
}
|
|
switch (n & 0x3) {
|
|
case 3:
|
|
obj[i++] = ring[idx++]; /* fallthrough */
|
|
case 2:
|
|
obj[i++] = ring[idx++]; /* fallthrough */
|
|
case 1:
|
|
obj[i++] = ring[idx++]; /* fallthrough */
|
|
}
|
|
} else {
|
|
for (i = 0; idx < size; i++, idx++)
|
|
obj[i] = ring[idx];
|
|
/* Start at the beginning */
|
|
for (idx = 0; i < n; i++, idx++)
|
|
obj[i] = ring[idx];
|
|
}
|
|
}
|
|
|
|
static __rte_always_inline void
|
|
__rte_ring_dequeue_elems_128(struct rte_ring *r, uint32_t prod_head,
|
|
void *obj_table, uint32_t n)
|
|
{
|
|
unsigned int i;
|
|
const uint32_t size = r->size;
|
|
uint32_t idx = prod_head & r->mask;
|
|
rte_int128_t *ring = (rte_int128_t *)&r[1];
|
|
rte_int128_t *obj = (rte_int128_t *)obj_table;
|
|
if (likely(idx + n < size)) {
|
|
for (i = 0; i < (n & ~0x1); i += 2, idx += 2)
|
|
memcpy((void *)(obj + i), (void *)(ring + idx), 32);
|
|
switch (n & 0x1) {
|
|
case 1:
|
|
memcpy((void *)(obj + i), (void *)(ring + idx), 16);
|
|
}
|
|
} else {
|
|
for (i = 0; idx < size; i++, idx++)
|
|
memcpy((void *)(obj + i), (void *)(ring + idx), 16);
|
|
/* Start at the beginning */
|
|
for (idx = 0; i < n; i++, idx++)
|
|
memcpy((void *)(obj + i), (void *)(ring + idx), 16);
|
|
}
|
|
}
|
|
|
|
/* the actual dequeue of elements from the ring.
|
|
* Placed here since identical code needed in both
|
|
* single and multi producer enqueue functions.
|
|
*/
|
|
static __rte_always_inline void
|
|
__rte_ring_dequeue_elems(struct rte_ring *r, uint32_t cons_head,
|
|
void *obj_table, uint32_t esize, uint32_t num)
|
|
{
|
|
/* 8B and 16B copies implemented individually to retain
|
|
* the current performance.
|
|
*/
|
|
if (esize == 8)
|
|
__rte_ring_dequeue_elems_64(r, cons_head, obj_table, num);
|
|
else if (esize == 16)
|
|
__rte_ring_dequeue_elems_128(r, cons_head, obj_table, num);
|
|
else {
|
|
uint32_t idx, scale, nr_idx, nr_num, nr_size;
|
|
|
|
/* Normalize to uint32_t */
|
|
scale = esize / sizeof(uint32_t);
|
|
nr_num = num * scale;
|
|
idx = cons_head & r->mask;
|
|
nr_idx = idx * scale;
|
|
nr_size = r->size * scale;
|
|
__rte_ring_dequeue_elems_32(r, nr_size, nr_idx,
|
|
obj_table, nr_num);
|
|
}
|
|
}
|
|
|
|
/* Between load and load. there might be cpu reorder in weak model
|
|
* (powerpc/arm).
|
|
* There are 2 choices for the users
|
|
* 1.use rmb() memory barrier
|
|
* 2.use one-direction load_acquire/store_release barrier
|
|
* It depends on performance test results.
|
|
*/
|
|
#ifdef RTE_USE_C11_MEM_MODEL
|
|
#include "rte_ring_c11_pvt.h"
|
|
#else
|
|
#include "rte_ring_generic_pvt.h"
|
|
#endif
|
|
|
|
/**
|
|
* @internal Enqueue several objects on the ring
|
|
*
|
|
* @param r
|
|
* A pointer to the ring structure.
|
|
* @param obj_table
|
|
* A pointer to a table of objects.
|
|
* @param esize
|
|
* The size of ring element, in bytes. It must be a multiple of 4.
|
|
* This must be the same value used while creating the ring. Otherwise
|
|
* the results are undefined.
|
|
* @param n
|
|
* The number of objects to add in the ring from the obj_table.
|
|
* @param behavior
|
|
* RTE_RING_QUEUE_FIXED: Enqueue a fixed number of items from a ring
|
|
* RTE_RING_QUEUE_VARIABLE: Enqueue as many items as possible from ring
|
|
* @param is_sp
|
|
* Indicates whether to use single producer or multi-producer head update
|
|
* @param free_space
|
|
* returns the amount of space after the enqueue operation has finished
|
|
* @return
|
|
* Actual number of objects enqueued.
|
|
* If behavior == RTE_RING_QUEUE_FIXED, this will be 0 or n only.
|
|
*/
|
|
static __rte_always_inline unsigned int
|
|
__rte_ring_do_enqueue_elem(struct rte_ring *r, const void *obj_table,
|
|
unsigned int esize, unsigned int n,
|
|
enum rte_ring_queue_behavior behavior, unsigned int is_sp,
|
|
unsigned int *free_space)
|
|
{
|
|
uint32_t prod_head, prod_next;
|
|
uint32_t free_entries;
|
|
|
|
n = __rte_ring_move_prod_head(r, is_sp, n, behavior,
|
|
&prod_head, &prod_next, &free_entries);
|
|
if (n == 0)
|
|
goto end;
|
|
|
|
__rte_ring_enqueue_elems(r, prod_head, obj_table, esize, n);
|
|
|
|
__rte_ring_update_tail(&r->prod, prod_head, prod_next, is_sp, 1);
|
|
end:
|
|
if (free_space != NULL)
|
|
*free_space = free_entries - n;
|
|
return n;
|
|
}
|
|
|
|
/**
|
|
* @internal Dequeue several objects from the ring
|
|
*
|
|
* @param r
|
|
* A pointer to the ring structure.
|
|
* @param obj_table
|
|
* A pointer to a table of objects.
|
|
* @param esize
|
|
* The size of ring element, in bytes. It must be a multiple of 4.
|
|
* This must be the same value used while creating the ring. Otherwise
|
|
* the results are undefined.
|
|
* @param n
|
|
* The number of objects to pull from the ring.
|
|
* @param behavior
|
|
* RTE_RING_QUEUE_FIXED: Dequeue a fixed number of items from a ring
|
|
* RTE_RING_QUEUE_VARIABLE: Dequeue as many items as possible from ring
|
|
* @param is_sc
|
|
* Indicates whether to use single consumer or multi-consumer head update
|
|
* @param available
|
|
* returns the number of remaining ring entries after the dequeue has finished
|
|
* @return
|
|
* - Actual number of objects dequeued.
|
|
* If behavior == RTE_RING_QUEUE_FIXED, this will be 0 or n only.
|
|
*/
|
|
static __rte_always_inline unsigned int
|
|
__rte_ring_do_dequeue_elem(struct rte_ring *r, void *obj_table,
|
|
unsigned int esize, unsigned int n,
|
|
enum rte_ring_queue_behavior behavior, unsigned int is_sc,
|
|
unsigned int *available)
|
|
{
|
|
uint32_t cons_head, cons_next;
|
|
uint32_t entries;
|
|
|
|
n = __rte_ring_move_cons_head(r, (int)is_sc, n, behavior,
|
|
&cons_head, &cons_next, &entries);
|
|
if (n == 0)
|
|
goto end;
|
|
|
|
__rte_ring_dequeue_elems(r, cons_head, obj_table, esize, n);
|
|
|
|
__rte_ring_update_tail(&r->cons, cons_head, cons_next, is_sc, 0);
|
|
|
|
end:
|
|
if (available != NULL)
|
|
*available = entries - n;
|
|
return n;
|
|
}
|
|
|
|
#endif /* _RTE_RING_ELEM_PVT_H_ */
|