f-stack/dpdk/lib/acl/rte_acl.c

548 lines
12 KiB
C

/* SPDX-License-Identifier: BSD-3-Clause
* Copyright(c) 2010-2014 Intel Corporation
*/
#include <rte_eal_memconfig.h>
#include <rte_string_fns.h>
#include <rte_acl.h>
#include <rte_tailq.h>
#include <rte_vect.h>
#include "acl.h"
TAILQ_HEAD(rte_acl_list, rte_tailq_entry);
static struct rte_tailq_elem rte_acl_tailq = {
.name = "RTE_ACL",
};
EAL_REGISTER_TAILQ(rte_acl_tailq)
#ifndef CC_AVX512_SUPPORT
/*
* If the compiler doesn't support AVX512 instructions,
* then the dummy one would be used instead for AVX512 classify method.
*/
int
rte_acl_classify_avx512x16(__rte_unused const struct rte_acl_ctx *ctx,
__rte_unused const uint8_t **data,
__rte_unused uint32_t *results,
__rte_unused uint32_t num,
__rte_unused uint32_t categories)
{
return -ENOTSUP;
}
int
rte_acl_classify_avx512x32(__rte_unused const struct rte_acl_ctx *ctx,
__rte_unused const uint8_t **data,
__rte_unused uint32_t *results,
__rte_unused uint32_t num,
__rte_unused uint32_t categories)
{
return -ENOTSUP;
}
#endif
#ifndef CC_AVX2_SUPPORT
/*
* If the compiler doesn't support AVX2 instructions,
* then the dummy one would be used instead for AVX2 classify method.
*/
int
rte_acl_classify_avx2(__rte_unused const struct rte_acl_ctx *ctx,
__rte_unused const uint8_t **data,
__rte_unused uint32_t *results,
__rte_unused uint32_t num,
__rte_unused uint32_t categories)
{
return -ENOTSUP;
}
#endif
#ifndef RTE_ARCH_X86
int
rte_acl_classify_sse(__rte_unused const struct rte_acl_ctx *ctx,
__rte_unused const uint8_t **data,
__rte_unused uint32_t *results,
__rte_unused uint32_t num,
__rte_unused uint32_t categories)
{
return -ENOTSUP;
}
#endif
#ifndef RTE_ARCH_ARM
int
rte_acl_classify_neon(__rte_unused const struct rte_acl_ctx *ctx,
__rte_unused const uint8_t **data,
__rte_unused uint32_t *results,
__rte_unused uint32_t num,
__rte_unused uint32_t categories)
{
return -ENOTSUP;
}
#endif
#ifndef RTE_ARCH_PPC_64
int
rte_acl_classify_altivec(__rte_unused const struct rte_acl_ctx *ctx,
__rte_unused const uint8_t **data,
__rte_unused uint32_t *results,
__rte_unused uint32_t num,
__rte_unused uint32_t categories)
{
return -ENOTSUP;
}
#endif
static const rte_acl_classify_t classify_fns[] = {
[RTE_ACL_CLASSIFY_DEFAULT] = rte_acl_classify_scalar,
[RTE_ACL_CLASSIFY_SCALAR] = rte_acl_classify_scalar,
[RTE_ACL_CLASSIFY_SSE] = rte_acl_classify_sse,
[RTE_ACL_CLASSIFY_AVX2] = rte_acl_classify_avx2,
[RTE_ACL_CLASSIFY_NEON] = rte_acl_classify_neon,
[RTE_ACL_CLASSIFY_ALTIVEC] = rte_acl_classify_altivec,
[RTE_ACL_CLASSIFY_AVX512X16] = rte_acl_classify_avx512x16,
[RTE_ACL_CLASSIFY_AVX512X32] = rte_acl_classify_avx512x32,
};
/*
* Helper function for acl_check_alg.
* Check support for ARM specific classify methods.
*/
static int
acl_check_alg_arm(enum rte_acl_classify_alg alg)
{
if (alg == RTE_ACL_CLASSIFY_NEON) {
#if defined(RTE_ARCH_ARM64)
if (rte_vect_get_max_simd_bitwidth() >= RTE_VECT_SIMD_128)
return 0;
#elif defined(RTE_ARCH_ARM)
if (rte_cpu_get_flag_enabled(RTE_CPUFLAG_NEON) &&
rte_vect_get_max_simd_bitwidth() >= RTE_VECT_SIMD_128)
return 0;
#endif
return -ENOTSUP;
}
return -EINVAL;
}
/*
* Helper function for acl_check_alg.
* Check support for PPC specific classify methods.
*/
static int
acl_check_alg_ppc(enum rte_acl_classify_alg alg)
{
if (alg == RTE_ACL_CLASSIFY_ALTIVEC) {
#if defined(RTE_ARCH_PPC_64)
if (rte_vect_get_max_simd_bitwidth() >= RTE_VECT_SIMD_128)
return 0;
#endif
return -ENOTSUP;
}
return -EINVAL;
}
#ifdef CC_AVX512_SUPPORT
static int
acl_check_avx512_cpu_flags(void)
{
return (rte_cpu_get_flag_enabled(RTE_CPUFLAG_AVX512F) &&
rte_cpu_get_flag_enabled(RTE_CPUFLAG_AVX512VL) &&
rte_cpu_get_flag_enabled(RTE_CPUFLAG_AVX512CD) &&
rte_cpu_get_flag_enabled(RTE_CPUFLAG_AVX512BW));
}
#endif
/*
* Helper function for acl_check_alg.
* Check support for x86 specific classify methods.
*/
static int
acl_check_alg_x86(enum rte_acl_classify_alg alg)
{
if (alg == RTE_ACL_CLASSIFY_AVX512X32) {
#ifdef CC_AVX512_SUPPORT
if (acl_check_avx512_cpu_flags() != 0 &&
rte_vect_get_max_simd_bitwidth() >= RTE_VECT_SIMD_512)
return 0;
#endif
return -ENOTSUP;
}
if (alg == RTE_ACL_CLASSIFY_AVX512X16) {
#ifdef CC_AVX512_SUPPORT
if (acl_check_avx512_cpu_flags() != 0 &&
rte_vect_get_max_simd_bitwidth() >= RTE_VECT_SIMD_256)
return 0;
#endif
return -ENOTSUP;
}
if (alg == RTE_ACL_CLASSIFY_AVX2) {
#ifdef CC_AVX2_SUPPORT
if (rte_cpu_get_flag_enabled(RTE_CPUFLAG_AVX2) &&
rte_vect_get_max_simd_bitwidth() >= RTE_VECT_SIMD_256)
return 0;
#endif
return -ENOTSUP;
}
if (alg == RTE_ACL_CLASSIFY_SSE) {
#ifdef RTE_ARCH_X86
if (rte_cpu_get_flag_enabled(RTE_CPUFLAG_SSE4_1) &&
rte_vect_get_max_simd_bitwidth() >= RTE_VECT_SIMD_128)
return 0;
#endif
return -ENOTSUP;
}
return -EINVAL;
}
/*
* Check if input alg is supported by given platform/binary.
* Note that both conditions should be met:
* - at build time compiler supports ISA used by given methods
* - at run time target cpu supports necessary ISA.
*/
static int
acl_check_alg(enum rte_acl_classify_alg alg)
{
switch (alg) {
case RTE_ACL_CLASSIFY_NEON:
return acl_check_alg_arm(alg);
case RTE_ACL_CLASSIFY_ALTIVEC:
return acl_check_alg_ppc(alg);
case RTE_ACL_CLASSIFY_AVX512X32:
case RTE_ACL_CLASSIFY_AVX512X16:
case RTE_ACL_CLASSIFY_AVX2:
case RTE_ACL_CLASSIFY_SSE:
return acl_check_alg_x86(alg);
/* scalar method is supported on all platforms */
case RTE_ACL_CLASSIFY_SCALAR:
return 0;
default:
return -EINVAL;
}
}
/*
* Get preferred alg for given platform.
*/
static enum rte_acl_classify_alg
acl_get_best_alg(void)
{
/*
* array of supported methods for each platform.
* Note that order is important - from most to less preferable.
*/
static const enum rte_acl_classify_alg alg[] = {
#if defined(RTE_ARCH_ARM)
RTE_ACL_CLASSIFY_NEON,
#elif defined(RTE_ARCH_PPC_64)
RTE_ACL_CLASSIFY_ALTIVEC,
#elif defined(RTE_ARCH_X86)
RTE_ACL_CLASSIFY_AVX512X32,
RTE_ACL_CLASSIFY_AVX512X16,
RTE_ACL_CLASSIFY_AVX2,
RTE_ACL_CLASSIFY_SSE,
#endif
RTE_ACL_CLASSIFY_SCALAR,
};
uint32_t i;
/* find best possible alg */
for (i = 0; i != RTE_DIM(alg) && acl_check_alg(alg[i]) != 0; i++)
;
/* we always have to find something suitable */
RTE_VERIFY(i != RTE_DIM(alg));
return alg[i];
}
extern int
rte_acl_set_ctx_classify(struct rte_acl_ctx *ctx, enum rte_acl_classify_alg alg)
{
int32_t rc;
/* formal parameters check */
if (ctx == NULL || (uint32_t)alg >= RTE_DIM(classify_fns))
return -EINVAL;
/* user asked us to select the *best* one */
if (alg == RTE_ACL_CLASSIFY_DEFAULT)
alg = acl_get_best_alg();
/* check that given alg is supported */
rc = acl_check_alg(alg);
if (rc != 0)
return rc;
ctx->alg = alg;
return 0;
}
int
rte_acl_classify_alg(const struct rte_acl_ctx *ctx, const uint8_t **data,
uint32_t *results, uint32_t num, uint32_t categories,
enum rte_acl_classify_alg alg)
{
if (categories != 1 &&
((RTE_ACL_RESULTS_MULTIPLIER - 1) & categories) != 0)
return -EINVAL;
return classify_fns[alg](ctx, data, results, num, categories);
}
int
rte_acl_classify(const struct rte_acl_ctx *ctx, const uint8_t **data,
uint32_t *results, uint32_t num, uint32_t categories)
{
return rte_acl_classify_alg(ctx, data, results, num, categories,
ctx->alg);
}
struct rte_acl_ctx *
rte_acl_find_existing(const char *name)
{
struct rte_acl_ctx *ctx = NULL;
struct rte_acl_list *acl_list;
struct rte_tailq_entry *te;
acl_list = RTE_TAILQ_CAST(rte_acl_tailq.head, rte_acl_list);
rte_mcfg_tailq_read_lock();
TAILQ_FOREACH(te, acl_list, next) {
ctx = (struct rte_acl_ctx *) te->data;
if (strncmp(name, ctx->name, sizeof(ctx->name)) == 0)
break;
}
rte_mcfg_tailq_read_unlock();
if (te == NULL) {
rte_errno = ENOENT;
return NULL;
}
return ctx;
}
void
rte_acl_free(struct rte_acl_ctx *ctx)
{
struct rte_acl_list *acl_list;
struct rte_tailq_entry *te;
if (ctx == NULL)
return;
acl_list = RTE_TAILQ_CAST(rte_acl_tailq.head, rte_acl_list);
rte_mcfg_tailq_write_lock();
/* find our tailq entry */
TAILQ_FOREACH(te, acl_list, next) {
if (te->data == (void *) ctx)
break;
}
if (te == NULL) {
rte_mcfg_tailq_write_unlock();
return;
}
TAILQ_REMOVE(acl_list, te, next);
rte_mcfg_tailq_write_unlock();
rte_free(ctx->mem);
rte_free(ctx);
rte_free(te);
}
struct rte_acl_ctx *
rte_acl_create(const struct rte_acl_param *param)
{
size_t sz;
struct rte_acl_ctx *ctx;
struct rte_acl_list *acl_list;
struct rte_tailq_entry *te;
char name[sizeof(ctx->name)];
acl_list = RTE_TAILQ_CAST(rte_acl_tailq.head, rte_acl_list);
/* check that input parameters are valid. */
if (param == NULL || param->name == NULL) {
rte_errno = EINVAL;
return NULL;
}
snprintf(name, sizeof(name), "ACL_%s", param->name);
/* calculate amount of memory required for pattern set. */
sz = sizeof(*ctx) + param->max_rule_num * param->rule_size;
/* get EAL TAILQ lock. */
rte_mcfg_tailq_write_lock();
/* if we already have one with that name */
TAILQ_FOREACH(te, acl_list, next) {
ctx = (struct rte_acl_ctx *) te->data;
if (strncmp(param->name, ctx->name, sizeof(ctx->name)) == 0)
break;
}
/* if ACL with such name doesn't exist, then create a new one. */
if (te == NULL) {
ctx = NULL;
te = rte_zmalloc("ACL_TAILQ_ENTRY", sizeof(*te), 0);
if (te == NULL) {
RTE_LOG(ERR, ACL, "Cannot allocate tailq entry!\n");
goto exit;
}
ctx = rte_zmalloc_socket(name, sz, RTE_CACHE_LINE_SIZE, param->socket_id);
if (ctx == NULL) {
RTE_LOG(ERR, ACL,
"allocation of %zu bytes on socket %d for %s failed\n",
sz, param->socket_id, name);
rte_free(te);
goto exit;
}
/* init new allocated context. */
ctx->rules = ctx + 1;
ctx->max_rules = param->max_rule_num;
ctx->rule_sz = param->rule_size;
ctx->socket_id = param->socket_id;
ctx->alg = acl_get_best_alg();
strlcpy(ctx->name, param->name, sizeof(ctx->name));
te->data = (void *) ctx;
TAILQ_INSERT_TAIL(acl_list, te, next);
}
exit:
rte_mcfg_tailq_write_unlock();
return ctx;
}
static int
acl_add_rules(struct rte_acl_ctx *ctx, const void *rules, uint32_t num)
{
uint8_t *pos;
if (num + ctx->num_rules > ctx->max_rules)
return -ENOMEM;
pos = ctx->rules;
pos += ctx->rule_sz * ctx->num_rules;
memcpy(pos, rules, num * ctx->rule_sz);
ctx->num_rules += num;
return 0;
}
static int
acl_check_rule(const struct rte_acl_rule_data *rd)
{
if ((RTE_LEN2MASK(RTE_ACL_MAX_CATEGORIES, typeof(rd->category_mask)) &
rd->category_mask) == 0 ||
rd->priority > RTE_ACL_MAX_PRIORITY ||
rd->priority < RTE_ACL_MIN_PRIORITY)
return -EINVAL;
return 0;
}
int
rte_acl_add_rules(struct rte_acl_ctx *ctx, const struct rte_acl_rule *rules,
uint32_t num)
{
const struct rte_acl_rule *rv;
uint32_t i;
int32_t rc;
if (ctx == NULL || rules == NULL || 0 == ctx->rule_sz)
return -EINVAL;
for (i = 0; i != num; i++) {
rv = (const struct rte_acl_rule *)
((uintptr_t)rules + i * ctx->rule_sz);
rc = acl_check_rule(&rv->data);
if (rc != 0) {
RTE_LOG(ERR, ACL, "%s(%s): rule #%u is invalid\n",
__func__, ctx->name, i + 1);
return rc;
}
}
return acl_add_rules(ctx, rules, num);
}
/*
* Reset all rules.
* Note that RT structures are not affected.
*/
void
rte_acl_reset_rules(struct rte_acl_ctx *ctx)
{
if (ctx != NULL)
ctx->num_rules = 0;
}
/*
* Reset all rules and destroys RT structures.
*/
void
rte_acl_reset(struct rte_acl_ctx *ctx)
{
if (ctx != NULL) {
rte_acl_reset_rules(ctx);
rte_acl_build(ctx, &ctx->config);
}
}
/*
* Dump ACL context to the stdout.
*/
void
rte_acl_dump(const struct rte_acl_ctx *ctx)
{
if (!ctx)
return;
printf("acl context <%s>@%p\n", ctx->name, ctx);
printf(" socket_id=%"PRId32"\n", ctx->socket_id);
printf(" alg=%"PRId32"\n", ctx->alg);
printf(" first_load_sz=%"PRIu32"\n", ctx->first_load_sz);
printf(" max_rules=%"PRIu32"\n", ctx->max_rules);
printf(" rule_size=%"PRIu32"\n", ctx->rule_sz);
printf(" num_rules=%"PRIu32"\n", ctx->num_rules);
printf(" num_categories=%"PRIu32"\n", ctx->num_categories);
printf(" num_tries=%"PRIu32"\n", ctx->num_tries);
}
/*
* Dump all ACL contexts to the stdout.
*/
void
rte_acl_list_dump(void)
{
struct rte_acl_ctx *ctx;
struct rte_acl_list *acl_list;
struct rte_tailq_entry *te;
acl_list = RTE_TAILQ_CAST(rte_acl_tailq.head, rte_acl_list);
rte_mcfg_tailq_read_lock();
TAILQ_FOREACH(te, acl_list, next) {
ctx = (struct rte_acl_ctx *) te->data;
rte_acl_dump(ctx);
}
rte_mcfg_tailq_read_unlock();
}