f-stack/dpdk/drivers/raw/ifpga/base/opae_intel_max10.c

737 lines
15 KiB
C

/* SPDX-License-Identifier: BSD-3-Clause
* Copyright(c) 2010-2019 Intel Corporation
*/
#include "opae_intel_max10.h"
#include <libfdt.h>
int max10_reg_read(struct intel_max10_device *dev,
unsigned int reg, unsigned int *val)
{
if (!dev)
return -ENODEV;
dev_debug(dev, "%s: bus:0x%x, reg:0x%x\n", __func__, dev->bus, reg);
return spi_transaction_read(dev->spi_tran_dev,
reg, 4, (unsigned char *)val);
}
int max10_reg_write(struct intel_max10_device *dev,
unsigned int reg, unsigned int val)
{
unsigned int tmp = val;
if (!dev)
return -ENODEV;
dev_debug(dev, "%s: bus:0x%x, reg:0x%x, val:0x%x\n", __func__,
dev->bus, reg, val);
return spi_transaction_write(dev->spi_tran_dev,
reg, 4, (unsigned char *)&tmp);
}
int max10_sys_read(struct intel_max10_device *dev,
unsigned int offset, unsigned int *val)
{
if (!dev)
return -ENODEV;
return max10_reg_read(dev, dev->base + offset, val);
}
int max10_sys_write(struct intel_max10_device *dev,
unsigned int offset, unsigned int val)
{
if (!dev)
return -ENODEV;
return max10_reg_write(dev, dev->base + offset, val);
}
int max10_sys_update_bits(struct intel_max10_device *dev, unsigned int offset,
unsigned int msk, unsigned int val)
{
int ret = 0;
unsigned int temp = 0;
ret = max10_sys_read(dev, offset, &temp);
if (ret < 0)
return ret;
temp &= ~msk;
temp |= val & msk;
return max10_sys_write(dev, offset, temp);
}
static struct max10_compatible_id max10_id_table[] = {
{.compatible = MAX10_PAC,},
{.compatible = MAX10_PAC_N3000,},
{.compatible = MAX10_PAC_END,}
};
static struct max10_compatible_id *max10_match_compatible(const char *fdt_root)
{
struct max10_compatible_id *id = max10_id_table;
for (; strcmp(id->compatible, MAX10_PAC_END); id++) {
if (fdt_node_check_compatible(fdt_root, 0, id->compatible))
continue;
return id;
}
return NULL;
}
static inline bool
is_max10_pac_n3000(struct intel_max10_device *max10)
{
return max10->id && !strcmp(max10->id->compatible,
MAX10_PAC_N3000);
}
static void max10_check_capability(struct intel_max10_device *max10)
{
if (!max10->fdt_root)
return;
if (is_max10_pac_n3000(max10)) {
max10->flags |= MAX10_FLAGS_NO_I2C2 |
MAX10_FLAGS_NO_BMCIMG_FLASH;
dev_info(max10, "found %s card\n", max10->id->compatible);
} else
max10->flags |= MAX10_FLAGS_MAC_CACHE;
}
static int altera_nor_flash_read(struct intel_max10_device *dev,
u32 offset, void *buffer, u32 len)
{
int word_len;
int i;
unsigned int *buf = (unsigned int *)buffer;
unsigned int value;
int ret;
if (!dev || !buffer || len <= 0)
return -ENODEV;
word_len = len/4;
for (i = 0; i < word_len; i++) {
ret = max10_reg_read(dev, offset + i*4,
&value);
if (ret)
return -EBUSY;
*buf++ = value;
}
return 0;
}
static int enable_nor_flash(struct intel_max10_device *dev, bool on)
{
unsigned int val = 0;
int ret;
ret = max10_sys_read(dev, RSU_REG, &val);
if (ret) {
dev_err(NULL "enabling flash error\n");
return ret;
}
if (on)
val |= RSU_ENABLE;
else
val &= ~RSU_ENABLE;
return max10_sys_write(dev, RSU_REG, val);
}
static int init_max10_device_table(struct intel_max10_device *max10)
{
struct altera_spi_device *spi = NULL;
struct max10_compatible_id *id;
struct fdt_header hdr;
char *fdt_root = NULL;
u32 dtb_magic = 0;
u32 dt_size, dt_addr, val;
int ret = 0;
spi = (struct altera_spi_device *)max10->spi_master;
if (!spi) {
dev_err(max10, "spi master is not set\n");
return -EINVAL;
}
if (spi->dtb)
dtb_magic = *(u32 *)spi->dtb;
if (dtb_magic != 0xEDFE0DD0) {
dev_info(max10, "read DTB from NOR flash\n");
ret = max10_sys_read(max10, DT_AVAIL_REG, &val);
if (ret) {
dev_err(max10 "cannot read DT_AVAIL_REG\n");
return ret;
}
if (!(val & DT_AVAIL)) {
dev_err(max10 "DT not available\n");
return -EINVAL;
}
ret = max10_sys_read(max10, DT_BASE_ADDR_REG, &dt_addr);
if (ret) {
dev_info(max10 "cannot get base addr of device table\n");
return ret;
}
ret = enable_nor_flash(max10, true);
if (ret) {
dev_err(max10 "fail to enable flash\n");
return ret;
}
ret = altera_nor_flash_read(max10, dt_addr, &hdr, sizeof(hdr));
if (ret) {
dev_err(max10 "read fdt header fail\n");
goto disable_nor_flash;
}
ret = fdt_check_header(&hdr);
if (ret) {
dev_err(max10 "check fdt header fail\n");
goto disable_nor_flash;
}
dt_size = fdt_totalsize(&hdr);
if (dt_size > DFT_MAX_SIZE) {
dev_err(max10 "invalid device table size\n");
ret = -EINVAL;
goto disable_nor_flash;
}
fdt_root = opae_malloc(dt_size);
if (!fdt_root) {
ret = -ENOMEM;
goto disable_nor_flash;
}
ret = altera_nor_flash_read(max10, dt_addr, fdt_root, dt_size);
if (ret) {
opae_free(fdt_root);
fdt_root = NULL;
dev_err(max10 "cannot read device table\n");
goto disable_nor_flash;
}
if (spi->dtb) {
if (*spi->dtb_sz_ptr < dt_size) {
dev_warn(max10,
"share memory for dtb is smaller than required %u\n",
dt_size);
} else {
*spi->dtb_sz_ptr = dt_size;
}
/* store dtb data into share memory */
memcpy(spi->dtb, fdt_root, *spi->dtb_sz_ptr);
}
disable_nor_flash:
enable_nor_flash(max10, false);
} else {
if (*spi->dtb_sz_ptr > 0) {
dev_info(max10, "read DTB from shared memory\n");
fdt_root = opae_malloc(*spi->dtb_sz_ptr);
if (fdt_root)
memcpy(fdt_root, spi->dtb, *spi->dtb_sz_ptr);
else
ret = -ENOMEM;
}
}
if (fdt_root) {
id = max10_match_compatible(fdt_root);
if (!id) {
dev_err(max10 "max10 compatible not found\n");
ret = -ENODEV;
} else {
max10->flags |= MAX10_FLAGS_DEVICE_TABLE;
max10->id = id;
max10->fdt_root = fdt_root;
}
}
return ret;
}
static u64 fdt_get_number(const fdt32_t *cell, int size)
{
u64 r = 0;
while (size--)
r = (r << 32) | fdt32_to_cpu(*cell++);
return r;
}
static int fdt_get_reg(const void *fdt, int node, unsigned int idx,
u64 *start, u64 *size)
{
const fdt32_t *prop, *end;
int na = 0, ns = 0, len = 0, parent;
parent = fdt_parent_offset(fdt, node);
if (parent < 0)
return parent;
prop = fdt_getprop(fdt, parent, "#address-cells", NULL);
na = prop ? fdt32_to_cpu(*prop) : 2;
prop = fdt_getprop(fdt, parent, "#size-cells", NULL);
ns = prop ? fdt32_to_cpu(*prop) : 2;
prop = fdt_getprop(fdt, node, "reg", &len);
if (!prop)
return -FDT_ERR_NOTFOUND;
end = prop + len/sizeof(*prop);
prop = prop + (na + ns) * idx;
if (prop + na + ns > end)
return -FDT_ERR_NOTFOUND;
*start = fdt_get_number(prop, na);
*size = fdt_get_number(prop + na, ns);
return 0;
}
static int __fdt_stringlist_search(const void *fdt, int offset,
const char *prop, const char *string)
{
int length, len, index = 0;
const char *list, *end;
list = fdt_getprop(fdt, offset, prop, &length);
if (!list)
return length;
len = strlen(string) + 1;
end = list + length;
while (list < end) {
length = strnlen(list, end - list) + 1;
if (list + length > end)
return -FDT_ERR_BADVALUE;
if (length == len && memcmp(list, string, length) == 0)
return index;
list += length;
index++;
}
return -FDT_ERR_NOTFOUND;
}
static int fdt_get_named_reg(const void *fdt, int node, const char *name,
u64 *start, u64 *size)
{
int idx;
idx = __fdt_stringlist_search(fdt, node, "reg-names", name);
if (idx < 0)
return idx;
return fdt_get_reg(fdt, node, idx, start, size);
}
static void max10_sensor_uinit(struct intel_max10_device *dev)
{
struct opae_sensor_info *info;
TAILQ_FOREACH(info, &dev->opae_sensor_list, node) {
TAILQ_REMOVE(&dev->opae_sensor_list, info, node);
opae_free(info);
}
}
static bool sensor_reg_valid(struct sensor_reg *reg)
{
return !!reg->size;
}
static int max10_add_sensor(struct intel_max10_device *dev,
struct raw_sensor_info *info, struct opae_sensor_info *sensor)
{
int i;
int ret = 0;
unsigned int val;
if (!info || !sensor)
return -ENODEV;
sensor->id = info->id;
sensor->name = info->name;
sensor->type = info->type;
sensor->multiplier = info->multiplier;
for (i = SENSOR_REG_VALUE; i < SENSOR_REG_MAX; i++) {
if (!sensor_reg_valid(&info->regs[i]))
continue;
ret = max10_sys_read(dev, info->regs[i].regoff, &val);
if (ret)
break;
if (val == 0xdeadbeef) {
dev_debug(dev, "%s: sensor:%s invalid 0x%x at:%d\n",
__func__, sensor->name, val, i);
continue;
}
val *= info->multiplier;
switch (i) {
case SENSOR_REG_VALUE:
sensor->value_reg = info->regs[i].regoff;
sensor->flags |= OPAE_SENSOR_VALID;
break;
case SENSOR_REG_HIGH_WARN:
sensor->high_warn = val;
sensor->flags |= OPAE_SENSOR_HIGH_WARN_VALID;
break;
case SENSOR_REG_HIGH_FATAL:
sensor->high_fatal = val;
sensor->flags |= OPAE_SENSOR_HIGH_FATAL_VALID;
break;
case SENSOR_REG_LOW_WARN:
sensor->low_warn = val;
sensor->flags |= OPAE_SENSOR_LOW_WARN_VALID;
break;
case SENSOR_REG_LOW_FATAL:
sensor->low_fatal = val;
sensor->flags |= OPAE_SENSOR_LOW_FATAL_VALID;
break;
case SENSOR_REG_HYSTERESIS:
sensor->hysteresis = val;
sensor->flags |= OPAE_SENSOR_HYSTERESIS_VALID;
break;
}
}
return ret;
}
static int
max10_sensor_init(struct intel_max10_device *dev, int parent)
{
int i, ret = 0, offset = 0;
const fdt32_t *num;
const char *ptr;
u64 start, size;
struct raw_sensor_info *raw;
struct opae_sensor_info *sensor;
char *fdt_root = dev->fdt_root;
if (!fdt_root) {
dev_debug(dev, "skip sensor init as not find Device Tree\n");
return 0;
}
fdt_for_each_subnode(offset, fdt_root, parent) {
ptr = fdt_get_name(fdt_root, offset, NULL);
if (!ptr) {
dev_err(dev, "failed to fdt get name\n");
continue;
}
if (!strstr(ptr, "sensor")) {
dev_debug(dev, "%s is not a sensor node\n", ptr);
continue;
}
dev_debug(dev, "found sensor node %s\n", ptr);
raw = (struct raw_sensor_info *)opae_zmalloc(sizeof(*raw));
if (!raw) {
ret = -ENOMEM;
goto free_sensor;
}
raw->name = fdt_getprop(fdt_root, offset, "sensor_name", NULL);
if (!raw->name) {
ret = -EINVAL;
goto free_sensor;
}
raw->type = fdt_getprop(fdt_root, offset, "type", NULL);
if (!raw->type) {
ret = -EINVAL;
goto free_sensor;
}
for (i = SENSOR_REG_VALUE; i < SENSOR_REG_MAX; i++) {
ret = fdt_get_named_reg(fdt_root, offset,
sensor_reg_name[i], &start,
&size);
if (ret) {
dev_debug(dev, "no found %d: sensor node %s, %s\n",
ret, ptr, sensor_reg_name[i]);
if (i == SENSOR_REG_VALUE) {
ret = -EINVAL;
goto free_sensor;
}
continue;
}
/* This is a hack to compatible with non-secure
* solution. If sensors are included in root node,
* then it's non-secure dtb, which use absolute addr
* of non-secure solution.
*/
if (parent)
raw->regs[i].regoff = start;
else
raw->regs[i].regoff = start -
MAX10_BASE_ADDR;
raw->regs[i].size = size;
}
num = fdt_getprop(fdt_root, offset, "id", NULL);
if (!num) {
ret = -EINVAL;
goto free_sensor;
}
raw->id = fdt32_to_cpu(*num);
num = fdt_getprop(fdt_root, offset, "multiplier", NULL);
raw->multiplier = num ? fdt32_to_cpu(*num) : 1;
dev_debug(dev, "found sensor from DTB: %s: %s: %u: %u\n",
raw->name, raw->type,
raw->id, raw->multiplier);
for (i = SENSOR_REG_VALUE; i < SENSOR_REG_MAX; i++)
dev_debug(dev, "sensor reg[%d]: %x: %zu\n",
i, raw->regs[i].regoff,
raw->regs[i].size);
sensor = opae_zmalloc(sizeof(*sensor));
if (!sensor) {
ret = -EINVAL;
goto free_sensor;
}
if (max10_add_sensor(dev, raw, sensor)) {
ret = -EINVAL;
opae_free(sensor);
goto free_sensor;
}
if (sensor->flags & OPAE_SENSOR_VALID) {
TAILQ_INSERT_TAIL(&dev->opae_sensor_list, sensor, node);
dev_info(dev, "found valid sensor: %s\n", sensor->name);
} else
opae_free(sensor);
opae_free(raw);
}
return 0;
free_sensor:
if (raw)
opae_free(raw);
max10_sensor_uinit(dev);
return ret;
}
static int check_max10_version(struct intel_max10_device *dev)
{
unsigned int v;
if (!max10_reg_read(dev, MAX10_SEC_BASE_ADDR + MAX10_BUILD_VER,
&v)) {
if (v != 0xffffffff) {
dev_info(dev, "secure MAX10 detected\n");
dev->base = MAX10_SEC_BASE_ADDR;
dev->flags |= MAX10_FLAGS_SECURE;
} else {
dev_info(dev, "non-secure MAX10 detected\n");
dev->base = MAX10_BASE_ADDR;
}
return 0;
}
return -ENODEV;
}
static int max10_staging_area_init(struct intel_max10_device *dev)
{
char *fdt_root = dev->fdt_root;
int ret, offset = 0;
u64 start, size;
if (!fdt_root) {
dev_debug(dev,
"skip staging area init as not find Device Tree\n");
return -ENODEV;
}
dev->staging_area_size = 0;
fdt_for_each_subnode(offset, fdt_root, 0) {
if (fdt_node_check_compatible(fdt_root, offset,
"ifpga-sec-mgr,staging-area"))
continue;
ret = fdt_get_reg(fdt_root, offset, 0, &start, &size);
if (ret)
return ret;
if ((start & 0x3) || (start > MAX_STAGING_AREA_BASE) ||
(size > MAX_STAGING_AREA_SIZE))
return -EINVAL;
dev->staging_area_base = start;
dev->staging_area_size = size;
return ret;
}
return -ENODEV;
}
static int
max10_secure_hw_init(struct intel_max10_device *dev)
{
int offset, sysmgr_offset = 0;
char *fdt_root;
fdt_root = dev->fdt_root;
if (!fdt_root) {
dev_debug(dev, "skip init as not find Device Tree\n");
return 0;
}
fdt_for_each_subnode(offset, fdt_root, 0) {
if (!fdt_node_check_compatible(fdt_root, offset,
"intel-max10,system-manager")) {
sysmgr_offset = offset;
break;
}
}
max10_check_capability(dev);
max10_sensor_init(dev, sysmgr_offset);
max10_staging_area_init(dev);
return 0;
}
static int
max10_non_secure_hw_init(struct intel_max10_device *dev)
{
max10_check_capability(dev);
max10_sensor_init(dev, 0);
return 0;
}
struct intel_max10_device *
intel_max10_device_probe(struct altera_spi_device *spi,
int chipselect)
{
struct intel_max10_device *dev;
int ret;
unsigned int val;
dev = opae_malloc(sizeof(*dev));
if (!dev)
return NULL;
TAILQ_INIT(&dev->opae_sensor_list);
dev->spi_master = spi;
dev->spi_tran_dev = spi_transaction_init(spi, chipselect);
if (!dev->spi_tran_dev) {
dev_err(dev, "%s spi tran init fail\n", __func__);
goto free_dev;
}
/* check the max10 version */
ret = check_max10_version(dev);
if (ret) {
dev_err(dev, "Failed to find max10 hardware!\n");
goto free_dev;
}
/* load the MAX10 device table */
ret = init_max10_device_table(dev);
if (ret) {
dev_err(dev, "Init max10 device table fail\n");
goto free_dev;
}
/* init max10 devices, like sensor*/
if (dev->flags & MAX10_FLAGS_SECURE)
ret = max10_secure_hw_init(dev);
else
ret = max10_non_secure_hw_init(dev);
if (ret) {
dev_err(dev, "Failed to init max10 hardware!\n");
goto free_dtb;
}
/* read FPGA loading information */
ret = max10_sys_read(dev, FPGA_PAGE_INFO, &val);
if (ret) {
dev_err(dev, "fail to get FPGA loading info\n");
goto release_max10_hw;
}
dev_info(dev, "FPGA loaded from %s Image\n", val ? "User" : "Factory");
return dev;
release_max10_hw:
max10_sensor_uinit(dev);
free_dtb:
if (dev->fdt_root)
opae_free(dev->fdt_root);
if (dev->spi_tran_dev)
spi_transaction_remove(dev->spi_tran_dev);
free_dev:
opae_free(dev);
return NULL;
}
int intel_max10_device_remove(struct intel_max10_device *dev)
{
if (!dev)
return 0;
max10_sensor_uinit(dev);
if (dev->spi_tran_dev)
spi_transaction_remove(dev->spi_tran_dev);
if (dev->fdt_root)
opae_free(dev->fdt_root);
opae_free(dev);
return 0;
}