f-stack/dpdk/drivers/net/virtio/virtio_pci_ethdev.c

240 lines
5.4 KiB
C

/* SPDX-License-Identifier: BSD-3-Clause
* Copyright(c) 2010-2016 Intel Corporation
*/
#include <stdint.h>
#include <string.h>
#include <stdio.h>
#include <errno.h>
#include <unistd.h>
#include <ethdev_driver.h>
#include <ethdev_pci.h>
#include <rte_pci.h>
#include <rte_bus_pci.h>
#include <rte_errno.h>
#include <rte_memory.h>
#include <rte_eal.h>
#include <rte_dev.h>
#include <rte_kvargs.h>
#include "virtio.h"
#include "virtio_ethdev.h"
#include "virtio_pci.h"
#include "virtio_logs.h"
/*
* The set of PCI devices this driver supports
*/
static const struct rte_pci_id pci_id_virtio_map[] = {
{ RTE_PCI_DEVICE(VIRTIO_PCI_VENDORID, VIRTIO_PCI_LEGACY_DEVICEID_NET) },
{ RTE_PCI_DEVICE(VIRTIO_PCI_VENDORID, VIRTIO_PCI_MODERN_DEVICEID_NET) },
{ .vendor_id = 0, /* sentinel */ },
};
/*
* Remap the PCI device again (IO port map for legacy device and
* memory map for modern device), so that the secondary process
* could have the PCI initiated correctly.
*/
static int
virtio_remap_pci(struct rte_pci_device *pci_dev, struct virtio_pci_dev *dev)
{
struct virtio_hw *hw = &dev->hw;
if (dev->modern) {
/*
* We don't have to re-parse the PCI config space, since
* rte_pci_map_device() makes sure the mapped address
* in secondary process would equal to the one mapped in
* the primary process: error will be returned if that
* requirement is not met.
*
* That said, we could simply reuse all cap pointers
* (such as dev_cfg, common_cfg, etc.) parsed from the
* primary process, which is stored in shared memory.
*/
if (rte_pci_map_device(pci_dev)) {
PMD_INIT_LOG(DEBUG, "failed to map pci device!");
return -1;
}
} else {
if (vtpci_legacy_ioport_map(hw) < 0)
return -1;
}
return 0;
}
static int
eth_virtio_pci_init(struct rte_eth_dev *eth_dev)
{
struct virtio_pci_dev *dev = eth_dev->data->dev_private;
struct virtio_hw *hw = &dev->hw;
struct rte_pci_device *pci_dev = RTE_ETH_DEV_TO_PCI(eth_dev);
int ret;
if (rte_eal_process_type() == RTE_PROC_PRIMARY) {
hw->port_id = eth_dev->data->port_id;
VTPCI_DEV(hw) = pci_dev;
ret = vtpci_init(RTE_ETH_DEV_TO_PCI(eth_dev), dev);
if (ret) {
PMD_INIT_LOG(ERR, "Failed to init PCI device");
return -1;
}
} else {
VTPCI_DEV(hw) = pci_dev;
if (dev->modern)
VIRTIO_OPS(hw) = &modern_ops;
else
VIRTIO_OPS(hw) = &legacy_ops;
ret = virtio_remap_pci(RTE_ETH_DEV_TO_PCI(eth_dev), dev);
if (ret < 0) {
PMD_INIT_LOG(ERR, "Failed to remap PCI device");
return -1;
}
}
ret = eth_virtio_dev_init(eth_dev);
if (ret < 0) {
PMD_INIT_LOG(ERR, "Failed to init virtio device");
goto err_unmap;
}
PMD_INIT_LOG(DEBUG, "port %d vendorID=0x%x deviceID=0x%x",
eth_dev->data->port_id, pci_dev->id.vendor_id,
pci_dev->id.device_id);
return 0;
err_unmap:
rte_pci_unmap_device(RTE_ETH_DEV_TO_PCI(eth_dev));
if (!dev->modern)
vtpci_legacy_ioport_unmap(hw);
return ret;
}
static int
eth_virtio_pci_uninit(struct rte_eth_dev *eth_dev)
{
int ret;
struct virtio_pci_dev *dev;
struct virtio_hw *hw;
PMD_INIT_FUNC_TRACE();
if (rte_eal_process_type() == RTE_PROC_SECONDARY) {
dev = eth_dev->data->dev_private;
hw = &dev->hw;
if (dev->modern)
rte_pci_unmap_device(RTE_ETH_DEV_TO_PCI(eth_dev));
else
vtpci_legacy_ioport_unmap(hw);
return 0;
}
ret = virtio_dev_stop(eth_dev);
virtio_dev_close(eth_dev);
PMD_INIT_LOG(DEBUG, "dev_uninit completed");
return ret;
}
static int vdpa_check_handler(__rte_unused const char *key,
const char *value, void *ret_val)
{
if (strcmp(value, "1") == 0)
*(int *)ret_val = 1;
else
*(int *)ret_val = 0;
return 0;
}
#define VIRTIO_ARG_VDPA "vdpa"
static int
virtio_pci_devargs_parse(struct rte_devargs *devargs, int *vdpa)
{
struct rte_kvargs *kvlist;
int ret = 0;
if (devargs == NULL)
return 0;
kvlist = rte_kvargs_parse(devargs->args, NULL);
if (kvlist == NULL) {
PMD_INIT_LOG(ERR, "error when parsing param");
return 0;
}
if (rte_kvargs_count(kvlist, VIRTIO_ARG_VDPA) == 1) {
/* vdpa mode selected when there's a key-value pair:
* vdpa=1
*/
ret = rte_kvargs_process(kvlist, VIRTIO_ARG_VDPA,
vdpa_check_handler, vdpa);
if (ret < 0)
PMD_INIT_LOG(ERR, "Failed to parse %s", VIRTIO_ARG_VDPA);
}
rte_kvargs_free(kvlist);
return ret;
}
static int eth_virtio_pci_probe(struct rte_pci_driver *pci_drv __rte_unused,
struct rte_pci_device *pci_dev)
{
int vdpa = 0;
int ret = 0;
ret = virtio_pci_devargs_parse(pci_dev->device.devargs, &vdpa);
if (ret < 0) {
PMD_INIT_LOG(ERR, "devargs parsing is failed");
return ret;
}
/* virtio pmd skips probe if device needs to work in vdpa mode */
if (vdpa == 1)
return 1;
return rte_eth_dev_pci_generic_probe(pci_dev, sizeof(struct virtio_pci_dev),
eth_virtio_pci_init);
}
static int eth_virtio_pci_remove(struct rte_pci_device *pci_dev)
{
int ret;
ret = rte_eth_dev_pci_generic_remove(pci_dev, eth_virtio_pci_uninit);
/* Port has already been released by close. */
if (ret == -ENODEV)
ret = 0;
return ret;
}
static struct rte_pci_driver rte_virtio_net_pci_pmd = {
.driver = {
.name = "net_virtio",
},
.id_table = pci_id_virtio_map,
.drv_flags = 0,
.probe = eth_virtio_pci_probe,
.remove = eth_virtio_pci_remove,
};
RTE_INIT(rte_virtio_net_pci_pmd_init)
{
rte_eal_iopl_init();
rte_pci_register(&rte_virtio_net_pci_pmd);
}
RTE_PMD_REGISTER_PCI_TABLE(net_virtio, pci_id_virtio_map);
RTE_PMD_REGISTER_KMOD_DEP(net_virtio, "* igb_uio | uio_pci_generic | vfio-pci");
RTE_PMD_EXPORT_NAME(net_virtio, __COUNTER__);