f-stack/dpdk/drivers/net/i40e/i40e_rxtx_vec_altivec.c

642 lines
19 KiB
C

/* SPDX-License-Identifier: BSD-3-Clause
* Copyright(c) 2010 - 2015 Intel Corporation
* Copyright(c) 2017 IBM Corporation.
*/
#include <stdint.h>
#include <ethdev_driver.h>
#include <rte_malloc.h>
#include "base/i40e_prototype.h"
#include "base/i40e_type.h"
#include "i40e_ethdev.h"
#include "i40e_rxtx.h"
#include "i40e_rxtx_vec_common.h"
#include <rte_altivec.h>
#pragma GCC diagnostic ignored "-Wcast-qual"
static inline void
i40e_rxq_rearm(struct i40e_rx_queue *rxq)
{
int i;
uint16_t rx_id;
volatile union i40e_rx_desc *rxdp;
struct i40e_rx_entry *rxep = &rxq->sw_ring[rxq->rxrearm_start];
struct rte_mbuf *mb0, *mb1;
__vector unsigned long hdr_room = (__vector unsigned long){
RTE_PKTMBUF_HEADROOM,
RTE_PKTMBUF_HEADROOM};
__vector unsigned long dma_addr0, dma_addr1;
rxdp = rxq->rx_ring + rxq->rxrearm_start;
/* Pull 'n' more MBUFs into the software ring */
if (rte_mempool_get_bulk(rxq->mp,
(void *)rxep,
RTE_I40E_RXQ_REARM_THRESH) < 0) {
if (rxq->rxrearm_nb + RTE_I40E_RXQ_REARM_THRESH >=
rxq->nb_rx_desc) {
dma_addr0 = (__vector unsigned long){};
for (i = 0; i < RTE_I40E_DESCS_PER_LOOP; i++) {
rxep[i].mbuf = &rxq->fake_mbuf;
vec_st(dma_addr0, 0,
(__vector unsigned long *)&rxdp[i].read);
}
}
rte_eth_devices[rxq->port_id].data->rx_mbuf_alloc_failed +=
RTE_I40E_RXQ_REARM_THRESH;
return;
}
/* Initialize the mbufs in vector, process 2 mbufs in one loop */
for (i = 0; i < RTE_I40E_RXQ_REARM_THRESH; i += 2, rxep += 2) {
__vector unsigned long vaddr0, vaddr1;
uintptr_t p0, p1;
mb0 = rxep[0].mbuf;
mb1 = rxep[1].mbuf;
/* Flush mbuf with pkt template.
* Data to be rearmed is 6 bytes long.
* Though, RX will overwrite ol_flags that are coming next
* anyway. So overwrite whole 8 bytes with one load:
* 6 bytes of rearm_data plus first 2 bytes of ol_flags.
*/
p0 = (uintptr_t)&mb0->rearm_data;
*(uint64_t *)p0 = rxq->mbuf_initializer;
p1 = (uintptr_t)&mb1->rearm_data;
*(uint64_t *)p1 = rxq->mbuf_initializer;
/* load buf_addr(lo 64bit) and buf_iova(hi 64bit) */
vaddr0 = vec_ld(0, (__vector unsigned long *)&mb0->buf_addr);
vaddr1 = vec_ld(0, (__vector unsigned long *)&mb1->buf_addr);
/* convert pa to dma_addr hdr/data */
dma_addr0 = vec_mergel(vaddr0, vaddr0);
dma_addr1 = vec_mergel(vaddr1, vaddr1);
/* add headroom to pa values */
dma_addr0 = vec_add(dma_addr0, hdr_room);
dma_addr1 = vec_add(dma_addr1, hdr_room);
/* flush desc with pa dma_addr */
vec_st(dma_addr0, 0, (__vector unsigned long *)&rxdp++->read);
vec_st(dma_addr1, 0, (__vector unsigned long *)&rxdp++->read);
}
rxq->rxrearm_start += RTE_I40E_RXQ_REARM_THRESH;
if (rxq->rxrearm_start >= rxq->nb_rx_desc)
rxq->rxrearm_start = 0;
rxq->rxrearm_nb -= RTE_I40E_RXQ_REARM_THRESH;
rx_id = (uint16_t)((rxq->rxrearm_start == 0) ?
(rxq->nb_rx_desc - 1) : (rxq->rxrearm_start - 1));
/* Update the tail pointer on the NIC */
I40E_PCI_REG_WRITE(rxq->qrx_tail, rx_id);
}
static inline void
desc_to_olflags_v(__vector unsigned long descs[4], struct rte_mbuf **rx_pkts)
{
__vector unsigned int vlan0, vlan1, rss, l3_l4e;
/* mask everything except RSS, flow director and VLAN flags
* bit2 is for VLAN tag, bit11 for flow director indication
* bit13:12 for RSS indication.
*/
const __vector unsigned int rss_vlan_msk = (__vector unsigned int){
(int32_t)0x1c03804, (int32_t)0x1c03804,
(int32_t)0x1c03804, (int32_t)0x1c03804};
/* map rss and vlan type to rss hash and vlan flag */
const __vector unsigned char vlan_flags = (__vector unsigned char){
0, 0, 0, 0,
RTE_MBUF_F_RX_VLAN | RTE_MBUF_F_RX_VLAN_STRIPPED, 0, 0, 0,
0, 0, 0, 0,
0, 0, 0, 0};
const __vector unsigned char rss_flags = (__vector unsigned char){
0, RTE_MBUF_F_RX_FDIR, 0, 0,
0, 0, RTE_MBUF_F_RX_RSS_HASH, RTE_MBUF_F_RX_RSS_HASH | RTE_MBUF_F_RX_FDIR,
0, 0, 0, 0,
0, 0, 0, 0};
const __vector unsigned char l3_l4e_flags = (__vector unsigned char){
0,
RTE_MBUF_F_RX_IP_CKSUM_BAD,
RTE_MBUF_F_RX_L4_CKSUM_BAD,
RTE_MBUF_F_RX_L4_CKSUM_BAD | RTE_MBUF_F_RX_IP_CKSUM_BAD,
RTE_MBUF_F_RX_OUTER_IP_CKSUM_BAD,
RTE_MBUF_F_RX_OUTER_IP_CKSUM_BAD | RTE_MBUF_F_RX_IP_CKSUM_BAD,
RTE_MBUF_F_RX_OUTER_IP_CKSUM_BAD | RTE_MBUF_F_RX_L4_CKSUM_BAD,
RTE_MBUF_F_RX_OUTER_IP_CKSUM_BAD | RTE_MBUF_F_RX_L4_CKSUM_BAD
| RTE_MBUF_F_RX_IP_CKSUM_BAD,
0, 0, 0, 0, 0, 0, 0, 0};
vlan0 = (__vector unsigned int)vec_mergel(descs[0], descs[1]);
vlan1 = (__vector unsigned int)vec_mergel(descs[2], descs[3]);
vlan0 = (__vector unsigned int)vec_mergeh(vlan0, vlan1);
vlan1 = vec_and(vlan0, rss_vlan_msk);
vlan0 = (__vector unsigned int)vec_perm(vlan_flags,
(__vector unsigned char){},
*(__vector unsigned char *)&vlan1);
rss = vec_sr(vlan1, (__vector unsigned int){11, 11, 11, 11});
rss = (__vector unsigned int)vec_perm(rss_flags, (__vector unsigned char){},
*(__vector unsigned char *)&rss);
l3_l4e = vec_sr(vlan1, (__vector unsigned int){22, 22, 22, 22});
l3_l4e = (__vector unsigned int)vec_perm(l3_l4e_flags,
(__vector unsigned char){},
*(__vector unsigned char *)&l3_l4e);
vlan0 = vec_or(vlan0, rss);
vlan0 = vec_or(vlan0, l3_l4e);
rx_pkts[0]->ol_flags = (uint64_t)vlan0[2];
rx_pkts[1]->ol_flags = (uint64_t)vlan0[3];
rx_pkts[2]->ol_flags = (uint64_t)vlan0[0];
rx_pkts[3]->ol_flags = (uint64_t)vlan0[1];
}
#define PKTLEN_SHIFT 10
static inline void
desc_to_ptype_v(__vector unsigned long descs[4], struct rte_mbuf **rx_pkts,
uint32_t *ptype_tbl)
{
__vector unsigned long ptype0 = vec_mergel(descs[0], descs[1]);
__vector unsigned long ptype1 = vec_mergel(descs[2], descs[3]);
ptype0 = vec_sr(ptype0, (__vector unsigned long){30, 30});
ptype1 = vec_sr(ptype1, (__vector unsigned long){30, 30});
rx_pkts[0]->packet_type =
ptype_tbl[(*(__vector unsigned char *)&ptype0)[0]];
rx_pkts[1]->packet_type =
ptype_tbl[(*(__vector unsigned char *)&ptype0)[8]];
rx_pkts[2]->packet_type =
ptype_tbl[(*(__vector unsigned char *)&ptype1)[0]];
rx_pkts[3]->packet_type =
ptype_tbl[(*(__vector unsigned char *)&ptype1)[8]];
}
/**
* vPMD raw receive routine, only accept(nb_pkts >= RTE_I40E_DESCS_PER_LOOP)
*
* Notice:
* - nb_pkts < RTE_I40E_DESCS_PER_LOOP, just return no packet
* - floor align nb_pkts to a RTE_I40E_DESCS_PER_LOOP power-of-two
*/
static inline uint16_t
_recv_raw_pkts_vec(struct i40e_rx_queue *rxq, struct rte_mbuf **rx_pkts,
uint16_t nb_pkts, uint8_t *split_packet)
{
volatile union i40e_rx_desc *rxdp;
struct i40e_rx_entry *sw_ring;
uint16_t nb_pkts_recd;
int pos;
uint64_t var;
__vector unsigned char shuf_msk;
uint32_t *ptype_tbl = rxq->vsi->adapter->ptype_tbl;
__vector unsigned short crc_adjust = (__vector unsigned short){
0, 0, /* ignore pkt_type field */
rxq->crc_len, /* sub crc on pkt_len */
0, /* ignore high-16bits of pkt_len */
rxq->crc_len, /* sub crc on data_len */
0, 0, 0 /* ignore non-length fields */
};
__vector unsigned long dd_check, eop_check;
/* nb_pkts has to be floor-aligned to RTE_I40E_DESCS_PER_LOOP */
nb_pkts = RTE_ALIGN_FLOOR(nb_pkts, RTE_I40E_DESCS_PER_LOOP);
/* Just the act of getting into the function from the application is
* going to cost about 7 cycles
*/
rxdp = rxq->rx_ring + rxq->rx_tail;
rte_prefetch0(rxdp);
/* See if we need to rearm the RX queue - gives the prefetch a bit
* of time to act
*/
if (rxq->rxrearm_nb > RTE_I40E_RXQ_REARM_THRESH)
i40e_rxq_rearm(rxq);
/* Before we start moving massive data around, check to see if
* there is actually a packet available
*/
if (!(rxdp->wb.qword1.status_error_len &
rte_cpu_to_le_32(1 << I40E_RX_DESC_STATUS_DD_SHIFT)))
return 0;
/* 4 packets DD mask */
dd_check = (__vector unsigned long){0x0000000100000001ULL,
0x0000000100000001ULL};
/* 4 packets EOP mask */
eop_check = (__vector unsigned long){0x0000000200000002ULL,
0x0000000200000002ULL};
/* mask to shuffle from desc. to mbuf */
shuf_msk = (__vector unsigned char){
0xFF, 0xFF, /* pkt_type set as unknown */
0xFF, 0xFF, /* pkt_type set as unknown */
14, 15, /* octet 15~14, low 16 bits pkt_len */
0xFF, 0xFF, /* skip high 16 bits pkt_len, zero out */
14, 15, /* octet 15~14, 16 bits data_len */
2, 3, /* octet 2~3, low 16 bits vlan_macip */
4, 5, 6, 7 /* octet 4~7, 32bits rss */
};
/* Cache is empty -> need to scan the buffer rings, but first move
* the next 'n' mbufs into the cache
*/
sw_ring = &rxq->sw_ring[rxq->rx_tail];
/* A. load 4 packet in one loop
* [A*. mask out 4 unused dirty field in desc]
* B. copy 4 mbuf point from swring to rx_pkts
* C. calc the number of DD bits among the 4 packets
* [C*. extract the end-of-packet bit, if requested]
* D. fill info. from desc to mbuf
*/
for (pos = 0, nb_pkts_recd = 0; pos < nb_pkts;
pos += RTE_I40E_DESCS_PER_LOOP,
rxdp += RTE_I40E_DESCS_PER_LOOP) {
__vector unsigned long descs[RTE_I40E_DESCS_PER_LOOP];
__vector unsigned char pkt_mb1, pkt_mb2, pkt_mb3, pkt_mb4;
__vector unsigned short staterr, sterr_tmp1, sterr_tmp2;
__vector unsigned long mbp1, mbp2; /* two mbuf pointer
* in one XMM reg.
*/
/* B.1 load 2 mbuf point */
mbp1 = *(__vector unsigned long *)&sw_ring[pos];
/* Read desc statuses backwards to avoid race condition */
/* A.1 load desc[3] */
descs[3] = *(__vector unsigned long *)(rxdp + 3);
rte_compiler_barrier();
/* B.2 copy 2 mbuf point into rx_pkts */
*(__vector unsigned long *)&rx_pkts[pos] = mbp1;
/* B.1 load 2 mbuf point */
mbp2 = *(__vector unsigned long *)&sw_ring[pos + 2];
/* A.1 load desc[2-0] */
descs[2] = *(__vector unsigned long *)(rxdp + 2);
rte_compiler_barrier();
descs[1] = *(__vector unsigned long *)(rxdp + 1);
rte_compiler_barrier();
descs[0] = *(__vector unsigned long *)(rxdp);
/* B.2 copy 2 mbuf point into rx_pkts */
*(__vector unsigned long *)&rx_pkts[pos + 2] = mbp2;
if (split_packet) {
rte_mbuf_prefetch_part2(rx_pkts[pos]);
rte_mbuf_prefetch_part2(rx_pkts[pos + 1]);
rte_mbuf_prefetch_part2(rx_pkts[pos + 2]);
rte_mbuf_prefetch_part2(rx_pkts[pos + 3]);
}
/* avoid compiler reorder optimization */
rte_compiler_barrier();
/* pkt 3,4 shift the pktlen field to be 16-bit aligned*/
const __vector unsigned int len3 = vec_sl(
vec_ld(0, (__vector unsigned int *)&descs[3]),
(__vector unsigned int){0, 0, 0, PKTLEN_SHIFT});
const __vector unsigned int len2 = vec_sl(
vec_ld(0, (__vector unsigned int *)&descs[2]),
(__vector unsigned int){0, 0, 0, PKTLEN_SHIFT});
/* merge the now-aligned packet length fields back in */
descs[3] = (__vector unsigned long)len3;
descs[2] = (__vector unsigned long)len2;
/* D.1 pkt 3,4 convert format from desc to pktmbuf */
pkt_mb4 = vec_perm((__vector unsigned char)descs[3],
(__vector unsigned char){}, shuf_msk);
pkt_mb3 = vec_perm((__vector unsigned char)descs[2],
(__vector unsigned char){}, shuf_msk);
/* C.1 4=>2 filter staterr info only */
sterr_tmp2 = vec_mergel((__vector unsigned short)descs[3],
(__vector unsigned short)descs[2]);
/* C.1 4=>2 filter staterr info only */
sterr_tmp1 = vec_mergel((__vector unsigned short)descs[1],
(__vector unsigned short)descs[0]);
/* D.2 pkt 3,4 set in_port/nb_seg and remove crc */
pkt_mb4 = (__vector unsigned char)vec_sub(
(__vector unsigned short)pkt_mb4, crc_adjust);
pkt_mb3 = (__vector unsigned char)vec_sub(
(__vector unsigned short)pkt_mb3, crc_adjust);
/* pkt 1,2 shift the pktlen field to be 16-bit aligned*/
const __vector unsigned int len1 = vec_sl(
vec_ld(0, (__vector unsigned int *)&descs[1]),
(__vector unsigned int){0, 0, 0, PKTLEN_SHIFT});
const __vector unsigned int len0 = vec_sl(
vec_ld(0, (__vector unsigned int *)&descs[0]),
(__vector unsigned int){0, 0, 0, PKTLEN_SHIFT});
/* merge the now-aligned packet length fields back in */
descs[1] = (__vector unsigned long)len1;
descs[0] = (__vector unsigned long)len0;
/* D.1 pkt 1,2 convert format from desc to pktmbuf */
pkt_mb2 = vec_perm((__vector unsigned char)descs[1],
(__vector unsigned char){}, shuf_msk);
pkt_mb1 = vec_perm((__vector unsigned char)descs[0],
(__vector unsigned char){}, shuf_msk);
/* C.2 get 4 pkts staterr value */
staterr = (__vector unsigned short)vec_mergeh(
sterr_tmp1, sterr_tmp2);
/* D.3 copy final 3,4 data to rx_pkts */
vec_st(pkt_mb4, 0,
(__vector unsigned char *)&rx_pkts[pos + 3]
->rx_descriptor_fields1
);
vec_st(pkt_mb3, 0,
(__vector unsigned char *)&rx_pkts[pos + 2]
->rx_descriptor_fields1
);
/* D.2 pkt 1,2 set in_port/nb_seg and remove crc */
pkt_mb2 = (__vector unsigned char)vec_sub(
(__vector unsigned short)pkt_mb2, crc_adjust);
pkt_mb1 = (__vector unsigned char)vec_sub(
(__vector unsigned short)pkt_mb1, crc_adjust);
/* C* extract and record EOP bit */
if (split_packet) {
__vector unsigned char eop_shuf_mask =
(__vector unsigned char){
0xFF, 0xFF, 0xFF, 0xFF,
0xFF, 0xFF, 0xFF, 0xFF,
0xFF, 0xFF, 0xFF, 0xFF,
0x04, 0x0C, 0x00, 0x08
};
/* and with mask to extract bits, flipping 1-0 */
__vector unsigned char eop_bits = vec_and(
(__vector unsigned char)vec_nor(staterr, staterr),
(__vector unsigned char)eop_check);
/* the staterr values are not in order, as the count
* of dd bits doesn't care. However, for end of
* packet tracking, we do care, so shuffle. This also
* compresses the 32-bit values to 8-bit
*/
eop_bits = vec_perm(eop_bits, (__vector unsigned char){},
eop_shuf_mask);
/* store the resulting 32-bit value */
*split_packet = (vec_ld(0,
(__vector unsigned int *)&eop_bits))[0];
split_packet += RTE_I40E_DESCS_PER_LOOP;
/* zero-out next pointers */
rx_pkts[pos]->next = NULL;
rx_pkts[pos + 1]->next = NULL;
rx_pkts[pos + 2]->next = NULL;
rx_pkts[pos + 3]->next = NULL;
}
/* C.3 calc available number of desc */
staterr = vec_and(staterr, (__vector unsigned short)dd_check);
/* D.3 copy final 1,2 data to rx_pkts */
vec_st(pkt_mb2, 0,
(__vector unsigned char *)&rx_pkts[pos + 1]
->rx_descriptor_fields1
);
vec_st(pkt_mb1, 0,
(__vector unsigned char *)&rx_pkts[pos]->rx_descriptor_fields1
);
desc_to_ptype_v(descs, &rx_pkts[pos], ptype_tbl);
desc_to_olflags_v(descs, &rx_pkts[pos]);
/* C.4 calc available number of desc */
var = __builtin_popcountll((vec_ld(0,
(__vector unsigned long *)&staterr)[0]));
nb_pkts_recd += var;
if (likely(var != RTE_I40E_DESCS_PER_LOOP))
break;
}
/* Update our internal tail pointer */
rxq->rx_tail = (uint16_t)(rxq->rx_tail + nb_pkts_recd);
rxq->rx_tail = (uint16_t)(rxq->rx_tail & (rxq->nb_rx_desc - 1));
rxq->rxrearm_nb = (uint16_t)(rxq->rxrearm_nb + nb_pkts_recd);
return nb_pkts_recd;
}
/* Notice:
* - nb_pkts < RTE_I40E_DESCS_PER_LOOP, just return no packet
* - nb_pkts > RTE_I40E_VPMD_RX_BURST, only scan RTE_I40E_VPMD_RX_BURST
* numbers of DD bits
*/
uint16_t
i40e_recv_pkts_vec(void *rx_queue, struct rte_mbuf **rx_pkts,
uint16_t nb_pkts)
{
return _recv_raw_pkts_vec(rx_queue, rx_pkts, nb_pkts, NULL);
}
/**
* vPMD receive routine that reassembles single burst of 32 scattered packets
*
* Notice:
* - nb_pkts < RTE_I40E_DESCS_PER_LOOP, just return no packet
*/
static uint16_t
i40e_recv_scattered_burst_vec(void *rx_queue, struct rte_mbuf **rx_pkts,
uint16_t nb_pkts)
{
struct i40e_rx_queue *rxq = rx_queue;
uint8_t split_flags[RTE_I40E_VPMD_RX_BURST] = {0};
/* get some new buffers */
uint16_t nb_bufs = _recv_raw_pkts_vec(rxq, rx_pkts, nb_pkts,
split_flags);
if (nb_bufs == 0)
return 0;
/* happy day case, full burst + no packets to be joined */
const uint64_t *split_fl64 = (uint64_t *)split_flags;
if (rxq->pkt_first_seg == NULL &&
split_fl64[0] == 0 && split_fl64[1] == 0 &&
split_fl64[2] == 0 && split_fl64[3] == 0)
return nb_bufs;
/* reassemble any packets that need reassembly*/
unsigned int i = 0;
if (!rxq->pkt_first_seg) {
/* find the first split flag, and only reassemble then*/
while (i < nb_bufs && !split_flags[i])
i++;
if (i == nb_bufs)
return nb_bufs;
}
return i + reassemble_packets(rxq, &rx_pkts[i], nb_bufs - i,
&split_flags[i]);
}
/**
* vPMD receive routine that reassembles scattered packets.
*/
uint16_t
i40e_recv_scattered_pkts_vec(void *rx_queue, struct rte_mbuf **rx_pkts,
uint16_t nb_pkts)
{
uint16_t retval = 0;
while (nb_pkts > RTE_I40E_VPMD_RX_BURST) {
uint16_t burst;
burst = i40e_recv_scattered_burst_vec(rx_queue,
rx_pkts + retval,
RTE_I40E_VPMD_RX_BURST);
retval += burst;
nb_pkts -= burst;
if (burst < RTE_I40E_VPMD_RX_BURST)
return retval;
}
return retval + i40e_recv_scattered_burst_vec(rx_queue,
rx_pkts + retval,
nb_pkts);
}
static inline void
vtx1(volatile struct i40e_tx_desc *txdp,
struct rte_mbuf *pkt, uint64_t flags)
{
uint64_t high_qw = (I40E_TX_DESC_DTYPE_DATA |
((uint64_t)flags << I40E_TXD_QW1_CMD_SHIFT) |
((uint64_t)pkt->data_len << I40E_TXD_QW1_TX_BUF_SZ_SHIFT));
__vector unsigned long descriptor = (__vector unsigned long){
pkt->buf_iova + pkt->data_off, high_qw};
*(__vector unsigned long *)txdp = descriptor;
}
static inline void
vtx(volatile struct i40e_tx_desc *txdp,
struct rte_mbuf **pkt, uint16_t nb_pkts, uint64_t flags)
{
int i;
for (i = 0; i < nb_pkts; ++i, ++txdp, ++pkt)
vtx1(txdp, *pkt, flags);
}
uint16_t
i40e_xmit_fixed_burst_vec(void *tx_queue, struct rte_mbuf **tx_pkts,
uint16_t nb_pkts)
{
struct i40e_tx_queue *txq = (struct i40e_tx_queue *)tx_queue;
volatile struct i40e_tx_desc *txdp;
struct i40e_tx_entry *txep;
uint16_t n, nb_commit, tx_id;
uint64_t flags = I40E_TD_CMD;
uint64_t rs = I40E_TX_DESC_CMD_RS | I40E_TD_CMD;
int i;
/* cross rx_thresh boundary is not allowed */
nb_pkts = RTE_MIN(nb_pkts, txq->tx_rs_thresh);
if (txq->nb_tx_free < txq->tx_free_thresh)
i40e_tx_free_bufs(txq);
nb_pkts = (uint16_t)RTE_MIN(txq->nb_tx_free, nb_pkts);
nb_commit = nb_pkts;
if (unlikely(nb_pkts == 0))
return 0;
tx_id = txq->tx_tail;
txdp = &txq->tx_ring[tx_id];
txep = &txq->sw_ring[tx_id];
txq->nb_tx_free = (uint16_t)(txq->nb_tx_free - nb_pkts);
n = (uint16_t)(txq->nb_tx_desc - tx_id);
if (nb_commit >= n) {
tx_backlog_entry(txep, tx_pkts, n);
for (i = 0; i < n - 1; ++i, ++tx_pkts, ++txdp)
vtx1(txdp, *tx_pkts, flags);
vtx1(txdp, *tx_pkts++, rs);
nb_commit = (uint16_t)(nb_commit - n);
tx_id = 0;
txq->tx_next_rs = (uint16_t)(txq->tx_rs_thresh - 1);
/* avoid reach the end of ring */
txdp = &txq->tx_ring[tx_id];
txep = &txq->sw_ring[tx_id];
}
tx_backlog_entry(txep, tx_pkts, nb_commit);
vtx(txdp, tx_pkts, nb_commit, flags);
tx_id = (uint16_t)(tx_id + nb_commit);
if (tx_id > txq->tx_next_rs) {
txq->tx_ring[txq->tx_next_rs].cmd_type_offset_bsz |=
rte_cpu_to_le_64(((uint64_t)I40E_TX_DESC_CMD_RS) <<
I40E_TXD_QW1_CMD_SHIFT);
txq->tx_next_rs =
(uint16_t)(txq->tx_next_rs + txq->tx_rs_thresh);
}
txq->tx_tail = tx_id;
I40E_PCI_REG_WRITE(txq->qtx_tail, txq->tx_tail);
return nb_pkts;
}
void __rte_cold
i40e_rx_queue_release_mbufs_vec(struct i40e_rx_queue *rxq)
{
_i40e_rx_queue_release_mbufs_vec(rxq);
}
int __rte_cold
i40e_rxq_vec_setup(struct i40e_rx_queue *rxq)
{
return i40e_rxq_vec_setup_default(rxq);
}
int __rte_cold
i40e_txq_vec_setup(struct i40e_tx_queue __rte_unused * txq)
{
return 0;
}
int __rte_cold
i40e_rx_vec_dev_conf_condition_check(struct rte_eth_dev *dev)
{
return i40e_rx_vec_dev_conf_condition_check_default(dev);
}