f-stack/dpdk/drivers/common/sfc_efx/base/efx_tunnel.c

730 lines
17 KiB
C

/* SPDX-License-Identifier: BSD-3-Clause
*
* Copyright(c) 2019-2021 Xilinx, Inc.
* Copyright(c) 2007-2019 Solarflare Communications Inc.
*/
#include "efx.h"
#include "efx_impl.h"
/*
* State diagram of the UDP tunnel table entries
* (efx_tunnel_udp_entry_state_t and busy flag):
*
* +---------+
* +--------| APPLIED |<-------+
* | +---------+ |
* | |
* | efx_tunnel_reconfigure (end)
* efx_tunnel_config_udp_remove |
* | +------------+
* v | BUSY ADDED |
* +---------+ +------------+
* | REMOVED | ^
* +---------+ |
* | efx_tunnel_reconfigure (begin)
* efx_tunnel_reconfigure (begin) |
* | |
* v +-----------+
* +--------------+ | ADDED |<---------+
* | BUSY REMOVED | +-----------+ |
* +--------------+ | |
* | efx_tunnel_config_udp_remove |
* efx_tunnel_reconfigure (end) | |
* | | |
* | +---------+ | |
* | |+-------+| | |
* +------->|| empty ||<-------+ |
* |+-------+| |
* +---------+ efx_tunnel_config_udp_add
* | |
* +------------------------------+
*
* Note that there is no BUSY APPLIED state since removing an applied entry
* should not be blocked by ongoing reconfiguration in another thread -
* reconfiguration will remove only busy entries.
*/
#if EFSYS_OPT_TUNNEL
#if EFSYS_OPT_MEDFORD || EFSYS_OPT_MEDFORD2
static __checkReturn boolean_t
ef10_udp_encap_supported(
__in efx_nic_t *enp);
static __checkReturn efx_rc_t
ef10_tunnel_reconfigure(
__in efx_nic_t *enp);
static void
ef10_tunnel_fini(
__in efx_nic_t *enp);
#endif /* EFSYS_OPT_MEDFORD || EFSYS_OPT_MEDFORD2 */
#if EFSYS_OPT_SIENA || EFSYS_OPT_HUNTINGTON
static const efx_tunnel_ops_t __efx_tunnel_dummy_ops = {
NULL, /* eto_reconfigure */
NULL, /* eto_fini */
};
#endif /* EFSYS_OPT_SIENA || EFSYS_OPT_HUNTINGTON */
#if EFSYS_OPT_MEDFORD || EFSYS_OPT_MEDFORD2
static const efx_tunnel_ops_t __efx_tunnel_ef10_ops = {
ef10_tunnel_reconfigure, /* eto_reconfigure */
ef10_tunnel_fini, /* eto_fini */
};
#endif /* EFSYS_OPT_MEDFORD || EFSYS_OPT_MEDFORD2 */
#if EFSYS_OPT_RIVERHEAD
static const efx_tunnel_ops_t __efx_tunnel_rhead_ops = {
rhead_tunnel_reconfigure, /* eto_reconfigure */
rhead_tunnel_fini, /* eto_fini */
};
#endif /* EFSYS_OPT_RIVERHEAD */
/* Indicates that an entry is to be set */
static __checkReturn boolean_t
ef10_entry_staged(
__in efx_tunnel_udp_entry_t *entry)
{
switch (entry->etue_state) {
case EFX_TUNNEL_UDP_ENTRY_ADDED:
return (entry->etue_busy);
case EFX_TUNNEL_UDP_ENTRY_REMOVED:
return (!entry->etue_busy);
case EFX_TUNNEL_UDP_ENTRY_APPLIED:
return (B_TRUE);
default:
EFSYS_ASSERT(0);
return (B_FALSE);
}
}
static __checkReturn efx_rc_t
efx_mcdi_set_tunnel_encap_udp_ports(
__in efx_nic_t *enp,
__in efx_tunnel_cfg_t *etcp,
__in boolean_t unloading,
__out boolean_t *resetting)
{
efx_mcdi_req_t req;
EFX_MCDI_DECLARE_BUF(payload,
MC_CMD_SET_TUNNEL_ENCAP_UDP_PORTS_IN_LENMAX,
MC_CMD_SET_TUNNEL_ENCAP_UDP_PORTS_OUT_LEN);
efx_word_t flags;
efx_rc_t rc;
unsigned int i;
unsigned int entries_num;
unsigned int entry;
entries_num = 0;
if (etcp != NULL) {
for (i = 0; i < etcp->etc_udp_entries_num; i++) {
if (ef10_entry_staged(&etcp->etc_udp_entries[i]) !=
B_FALSE) {
entries_num++;
}
}
}
req.emr_cmd = MC_CMD_SET_TUNNEL_ENCAP_UDP_PORTS;
req.emr_in_buf = payload;
req.emr_in_length =
MC_CMD_SET_TUNNEL_ENCAP_UDP_PORTS_IN_LEN(entries_num);
req.emr_out_buf = payload;
req.emr_out_length = MC_CMD_SET_TUNNEL_ENCAP_UDP_PORTS_OUT_LEN;
EFX_POPULATE_WORD_1(flags,
MC_CMD_SET_TUNNEL_ENCAP_UDP_PORTS_IN_UNLOADING,
(unloading == B_TRUE) ? 1 : 0);
MCDI_IN_SET_WORD(req, SET_TUNNEL_ENCAP_UDP_PORTS_IN_FLAGS,
EFX_WORD_FIELD(flags, EFX_WORD_0));
MCDI_IN_SET_WORD(req, SET_TUNNEL_ENCAP_UDP_PORTS_IN_NUM_ENTRIES,
entries_num);
for (i = 0, entry = 0; entry < entries_num; ++entry, ++i) {
uint16_t mcdi_udp_protocol;
while (ef10_entry_staged(&etcp->etc_udp_entries[i]) == B_FALSE)
i++;
switch (etcp->etc_udp_entries[i].etue_protocol) {
case EFX_TUNNEL_PROTOCOL_VXLAN:
mcdi_udp_protocol = TUNNEL_ENCAP_UDP_PORT_ENTRY_VXLAN;
break;
case EFX_TUNNEL_PROTOCOL_GENEVE:
mcdi_udp_protocol = TUNNEL_ENCAP_UDP_PORT_ENTRY_GENEVE;
break;
default:
rc = EINVAL;
goto fail1;
}
/*
* UDP port is MCDI native little-endian in the request
* and EFX_POPULATE_DWORD cares about conversion from
* host/CPU byte order to little-endian.
*/
EFX_STATIC_ASSERT(sizeof (efx_dword_t) ==
TUNNEL_ENCAP_UDP_PORT_ENTRY_LEN);
EFX_POPULATE_DWORD_2(
MCDI_IN2(req, efx_dword_t,
SET_TUNNEL_ENCAP_UDP_PORTS_IN_ENTRIES)[entry],
TUNNEL_ENCAP_UDP_PORT_ENTRY_UDP_PORT,
etcp->etc_udp_entries[i].etue_port,
TUNNEL_ENCAP_UDP_PORT_ENTRY_PROTOCOL,
mcdi_udp_protocol);
}
efx_mcdi_execute(enp, &req);
if (req.emr_rc != 0) {
rc = req.emr_rc;
goto fail2;
}
if (req.emr_out_length_used !=
MC_CMD_SET_TUNNEL_ENCAP_UDP_PORTS_OUT_LEN) {
rc = EMSGSIZE;
goto fail3;
}
*resetting = MCDI_OUT_WORD_FIELD(req,
SET_TUNNEL_ENCAP_UDP_PORTS_OUT_FLAGS,
SET_TUNNEL_ENCAP_UDP_PORTS_OUT_RESETTING);
return (0);
fail3:
EFSYS_PROBE(fail3);
fail2:
EFSYS_PROBE(fail2);
fail1:
EFSYS_PROBE1(fail1, efx_rc_t, rc);
return (rc);
}
__checkReturn efx_rc_t
efx_tunnel_init(
__in efx_nic_t *enp)
{
efx_tunnel_cfg_t *etcp = &enp->en_tunnel_cfg;
const efx_tunnel_ops_t *etop;
efx_rc_t rc;
EFSYS_ASSERT3U(enp->en_magic, ==, EFX_NIC_MAGIC);
EFSYS_ASSERT3U(enp->en_mod_flags, &, EFX_MOD_PROBE);
EFSYS_ASSERT(!(enp->en_mod_flags & EFX_MOD_TUNNEL));
EFX_STATIC_ASSERT(EFX_TUNNEL_MAXNENTRIES ==
MC_CMD_SET_TUNNEL_ENCAP_UDP_PORTS_IN_ENTRIES_MAXNUM);
switch (enp->en_family) {
#if EFSYS_OPT_SIENA
case EFX_FAMILY_SIENA:
etop = &__efx_tunnel_dummy_ops;
break;
#endif /* EFSYS_OPT_SIENA */
#if EFSYS_OPT_HUNTINGTON
case EFX_FAMILY_HUNTINGTON:
etop = &__efx_tunnel_dummy_ops;
break;
#endif /* EFSYS_OPT_HUNTINGTON */
#if EFSYS_OPT_MEDFORD
case EFX_FAMILY_MEDFORD:
etop = &__efx_tunnel_ef10_ops;
break;
#endif /* EFSYS_OPT_MEDFORD */
#if EFSYS_OPT_MEDFORD2
case EFX_FAMILY_MEDFORD2:
etop = &__efx_tunnel_ef10_ops;
break;
#endif /* EFSYS_OPT_MEDFORD2 */
#if EFSYS_OPT_RIVERHEAD
case EFX_FAMILY_RIVERHEAD:
etop = &__efx_tunnel_rhead_ops;
break;
#endif /* EFSYS_OPT_RIVERHEAD */
default:
EFSYS_ASSERT(0);
rc = ENOTSUP;
goto fail1;
}
memset(etcp->etc_udp_entries, 0, sizeof (etcp->etc_udp_entries));
etcp->etc_udp_entries_num = 0;
enp->en_etop = etop;
enp->en_mod_flags |= EFX_MOD_TUNNEL;
return (0);
fail1:
EFSYS_PROBE1(fail1, efx_rc_t, rc);
enp->en_etop = NULL;
enp->en_mod_flags &= ~EFX_MOD_TUNNEL;
return (rc);
}
void
efx_tunnel_fini(
__in efx_nic_t *enp)
{
EFSYS_ASSERT3U(enp->en_magic, ==, EFX_NIC_MAGIC);
EFSYS_ASSERT3U(enp->en_mod_flags, &, EFX_MOD_PROBE);
EFSYS_ASSERT3U(enp->en_mod_flags, &, EFX_MOD_TUNNEL);
if (enp->en_etop->eto_fini != NULL)
enp->en_etop->eto_fini(enp);
enp->en_etop = NULL;
enp->en_mod_flags &= ~EFX_MOD_TUNNEL;
}
static __checkReturn efx_rc_t
efx_tunnel_config_find_udp_tunnel_entry(
__in efx_tunnel_cfg_t *etcp,
__in uint16_t port,
__out unsigned int *entryp)
{
unsigned int i;
for (i = 0; i < etcp->etc_udp_entries_num; ++i) {
efx_tunnel_udp_entry_t *p = &etcp->etc_udp_entries[i];
if (p->etue_port == port &&
p->etue_state != EFX_TUNNEL_UDP_ENTRY_REMOVED) {
*entryp = i;
return (0);
}
}
return (ENOENT);
}
__checkReturn efx_rc_t
efx_tunnel_config_udp_add(
__in efx_nic_t *enp,
__in uint16_t port /* host/cpu-endian */,
__in efx_tunnel_protocol_t protocol)
{
const efx_nic_cfg_t *encp = &enp->en_nic_cfg;
efx_tunnel_cfg_t *etcp = &enp->en_tunnel_cfg;
efsys_lock_state_t state;
efx_rc_t rc;
unsigned int entry;
EFSYS_ASSERT3U(enp->en_mod_flags, &, EFX_MOD_TUNNEL);
if (protocol >= EFX_TUNNEL_NPROTOS) {
rc = EINVAL;
goto fail1;
}
if ((encp->enc_tunnel_encapsulations_supported &
(1u << protocol)) == 0) {
rc = ENOTSUP;
goto fail2;
}
EFSYS_LOCK(enp->en_eslp, state);
rc = efx_tunnel_config_find_udp_tunnel_entry(etcp, port, &entry);
if (rc == 0) {
rc = EEXIST;
goto fail3;
}
if (etcp->etc_udp_entries_num ==
encp->enc_tunnel_config_udp_entries_max) {
rc = ENOSPC;
goto fail4;
}
etcp->etc_udp_entries[etcp->etc_udp_entries_num].etue_port = port;
etcp->etc_udp_entries[etcp->etc_udp_entries_num].etue_protocol =
protocol;
etcp->etc_udp_entries[etcp->etc_udp_entries_num].etue_state =
EFX_TUNNEL_UDP_ENTRY_ADDED;
etcp->etc_udp_entries_num++;
EFSYS_UNLOCK(enp->en_eslp, state);
return (0);
fail4:
EFSYS_PROBE(fail4);
fail3:
EFSYS_PROBE(fail3);
EFSYS_UNLOCK(enp->en_eslp, state);
fail2:
EFSYS_PROBE(fail2);
fail1:
EFSYS_PROBE1(fail1, efx_rc_t, rc);
return (rc);
}
/*
* Returns the index of the entry after the deleted one,
* or one past the last entry.
*/
static unsigned int
efx_tunnel_config_udp_do_remove(
__in efx_tunnel_cfg_t *etcp,
__in unsigned int entry)
{
EFSYS_ASSERT3U(etcp->etc_udp_entries_num, >, 0);
etcp->etc_udp_entries_num--;
if (entry < etcp->etc_udp_entries_num) {
memmove(&etcp->etc_udp_entries[entry],
&etcp->etc_udp_entries[entry + 1],
(etcp->etc_udp_entries_num - entry) *
sizeof (etcp->etc_udp_entries[0]));
}
memset(&etcp->etc_udp_entries[etcp->etc_udp_entries_num], 0,
sizeof (etcp->etc_udp_entries[0]));
return (entry);
}
/*
* Returns the index of the entry after the specified one,
* or one past the last entry. The index is correct whether
* the specified entry was removed or not.
*/
static unsigned int
efx_tunnel_config_udp_remove_prepare(
__in efx_tunnel_cfg_t *etcp,
__in unsigned int entry)
{
unsigned int next = entry + 1;
switch (etcp->etc_udp_entries[entry].etue_state) {
case EFX_TUNNEL_UDP_ENTRY_ADDED:
next = efx_tunnel_config_udp_do_remove(etcp, entry);
break;
case EFX_TUNNEL_UDP_ENTRY_REMOVED:
break;
case EFX_TUNNEL_UDP_ENTRY_APPLIED:
etcp->etc_udp_entries[entry].etue_state =
EFX_TUNNEL_UDP_ENTRY_REMOVED;
break;
default:
EFSYS_ASSERT(0);
break;
}
return (next);
}
__checkReturn efx_rc_t
efx_tunnel_config_udp_remove(
__in efx_nic_t *enp,
__in uint16_t port /* host/cpu-endian */,
__in efx_tunnel_protocol_t protocol)
{
efx_tunnel_cfg_t *etcp = &enp->en_tunnel_cfg;
efsys_lock_state_t state;
unsigned int entry;
efx_rc_t rc;
EFSYS_ASSERT3U(enp->en_mod_flags, &, EFX_MOD_TUNNEL);
EFSYS_LOCK(enp->en_eslp, state);
rc = efx_tunnel_config_find_udp_tunnel_entry(etcp, port, &entry);
if (rc != 0)
goto fail1;
if (etcp->etc_udp_entries[entry].etue_busy != B_FALSE) {
rc = EBUSY;
goto fail2;
}
if (etcp->etc_udp_entries[entry].etue_protocol != protocol) {
rc = EINVAL;
goto fail3;
}
(void) efx_tunnel_config_udp_remove_prepare(etcp, entry);
EFSYS_UNLOCK(enp->en_eslp, state);
return (0);
fail3:
EFSYS_PROBE(fail3);
fail2:
EFSYS_PROBE(fail2);
fail1:
EFSYS_PROBE1(fail1, efx_rc_t, rc);
EFSYS_UNLOCK(enp->en_eslp, state);
return (rc);
}
static boolean_t
efx_tunnel_table_all_available(
__in efx_tunnel_cfg_t *etcp)
{
unsigned int i;
for (i = 0; i < etcp->etc_udp_entries_num; i++) {
if (etcp->etc_udp_entries[i].etue_busy != B_FALSE)
return (B_FALSE);
}
return (B_TRUE);
}
__checkReturn efx_rc_t
efx_tunnel_config_clear(
__in efx_nic_t *enp)
{
efx_tunnel_cfg_t *etcp = &enp->en_tunnel_cfg;
efsys_lock_state_t state;
unsigned int i;
efx_rc_t rc;
EFSYS_ASSERT3U(enp->en_mod_flags, &, EFX_MOD_TUNNEL);
EFSYS_LOCK(enp->en_eslp, state);
if (efx_tunnel_table_all_available(etcp) == B_FALSE) {
rc = EBUSY;
goto fail1;
}
i = 0;
while (i < etcp->etc_udp_entries_num)
i = efx_tunnel_config_udp_remove_prepare(etcp, i);
EFSYS_UNLOCK(enp->en_eslp, state);
return (0);
fail1:
EFSYS_PROBE1(fail1, efx_rc_t, rc);
EFSYS_UNLOCK(enp->en_eslp, state);
return (rc);
}
__checkReturn efx_rc_t
efx_tunnel_reconfigure(
__in efx_nic_t *enp)
{
const efx_tunnel_ops_t *etop = enp->en_etop;
efx_tunnel_cfg_t *etcp = &enp->en_tunnel_cfg;
efx_tunnel_udp_entry_t *entry;
boolean_t locked = B_FALSE;
efsys_lock_state_t state;
boolean_t resetting;
unsigned int i;
efx_rc_t rc;
EFSYS_ASSERT3U(enp->en_mod_flags, &, EFX_MOD_TUNNEL);
if (etop->eto_reconfigure == NULL) {
rc = ENOTSUP;
goto fail1;
}
EFSYS_LOCK(enp->en_eslp, state);
locked = B_TRUE;
if (efx_tunnel_table_all_available(etcp) == B_FALSE) {
rc = EBUSY;
goto fail2;
}
for (i = 0; i < etcp->etc_udp_entries_num; i++) {
entry = &etcp->etc_udp_entries[i];
if (entry->etue_state != EFX_TUNNEL_UDP_ENTRY_APPLIED)
entry->etue_busy = B_TRUE;
}
EFSYS_UNLOCK(enp->en_eslp, state);
locked = B_FALSE;
rc = enp->en_etop->eto_reconfigure(enp);
if (rc != 0 && rc != EAGAIN)
goto fail3;
resetting = (rc == EAGAIN) ? B_TRUE : B_FALSE;
EFSYS_LOCK(enp->en_eslp, state);
locked = B_TRUE;
/*
* Delete entries marked for removal since they are no longer
* needed after successful NIC-specific reconfiguration.
* Added entries become applied because they are installed in
* the hardware.
*/
i = 0;
while (i < etcp->etc_udp_entries_num) {
unsigned int next = i + 1;
entry = &etcp->etc_udp_entries[i];
if (entry->etue_busy != B_FALSE) {
entry->etue_busy = B_FALSE;
switch (entry->etue_state) {
case EFX_TUNNEL_UDP_ENTRY_APPLIED:
break;
case EFX_TUNNEL_UDP_ENTRY_ADDED:
entry->etue_state =
EFX_TUNNEL_UDP_ENTRY_APPLIED;
break;
case EFX_TUNNEL_UDP_ENTRY_REMOVED:
next = efx_tunnel_config_udp_do_remove(etcp, i);
break;
default:
EFSYS_ASSERT(0);
break;
}
}
i = next;
}
EFSYS_UNLOCK(enp->en_eslp, state);
locked = B_FALSE;
return ((resetting == B_FALSE) ? 0 : EAGAIN);
fail3:
EFSYS_PROBE(fail3);
EFSYS_ASSERT(locked == B_FALSE);
EFSYS_LOCK(enp->en_eslp, state);
for (i = 0; i < etcp->etc_udp_entries_num; i++)
etcp->etc_udp_entries[i].etue_busy = B_FALSE;
EFSYS_UNLOCK(enp->en_eslp, state);
fail2:
EFSYS_PROBE(fail2);
fail1:
EFSYS_PROBE1(fail1, efx_rc_t, rc);
if (locked)
EFSYS_UNLOCK(enp->en_eslp, state);
return (rc);
}
#if EFSYS_OPT_MEDFORD || EFSYS_OPT_MEDFORD2
static __checkReturn boolean_t
ef10_udp_encap_supported(
__in efx_nic_t *enp)
{
const efx_nic_cfg_t *encp = &enp->en_nic_cfg;
uint32_t udp_tunnels_mask = 0;
udp_tunnels_mask |= (1u << EFX_TUNNEL_PROTOCOL_VXLAN);
udp_tunnels_mask |= (1u << EFX_TUNNEL_PROTOCOL_GENEVE);
return ((encp->enc_tunnel_encapsulations_supported &
udp_tunnels_mask) == 0 ? B_FALSE : B_TRUE);
}
static __checkReturn efx_rc_t
ef10_tunnel_reconfigure(
__in efx_nic_t *enp)
{
efx_tunnel_cfg_t *etcp = &enp->en_tunnel_cfg;
efx_rc_t rc;
boolean_t resetting = B_FALSE;
efsys_lock_state_t state;
efx_tunnel_cfg_t etc;
EFSYS_LOCK(enp->en_eslp, state);
memcpy(&etc, etcp, sizeof (etc));
EFSYS_UNLOCK(enp->en_eslp, state);
if (ef10_udp_encap_supported(enp) == B_FALSE) {
/*
* It is OK to apply empty UDP tunnel ports when UDP
* tunnel encapsulations are not supported - just nothing
* should be done.
*/
if (etc.etc_udp_entries_num == 0)
return (0);
rc = ENOTSUP;
goto fail1;
} else {
/*
* All PCI functions can see a reset upon the
* MCDI request completion
*/
rc = efx_mcdi_set_tunnel_encap_udp_ports(enp, &etc, B_FALSE,
&resetting);
if (rc != 0) {
/*
* Do not fail if the access is denied when no
* tunnel encap UDP ports are configured.
*/
if (rc != EACCES || etc.etc_udp_entries_num != 0)
goto fail2;
}
/*
* Although the caller should be able to handle MC reboot,
* it might come in handy to report the impending reboot
* by returning EAGAIN
*/
return ((resetting) ? EAGAIN : 0);
}
fail2:
EFSYS_PROBE(fail2);
fail1:
EFSYS_PROBE1(fail1, efx_rc_t, rc);
return (rc);
}
static void
ef10_tunnel_fini(
__in efx_nic_t *enp)
{
boolean_t resetting;
if (ef10_udp_encap_supported(enp) != B_FALSE) {
/*
* The UNLOADING flag allows the MC to suppress the datapath
* reset if it was set on the last call to
* MC_CMD_SET_TUNNEL_ENCAP_UDP_PORTS by all functions
*/
(void) efx_mcdi_set_tunnel_encap_udp_ports(enp, NULL, B_TRUE,
&resetting);
}
}
#endif /* EFSYS_OPT_MEDFORD || EFSYS_OPT_MEDFORD2 */
#endif /* EFSYS_OPT_TUNNEL */