f-stack/dpdk/drivers/common/mlx5/mlx5_common_mr.c

2113 lines
59 KiB
C

/* SPDX-License-Identifier: BSD-3-Clause
* Copyright 2016 6WIND S.A.
* Copyright 2020 Mellanox Technologies, Ltd
*/
#include <stddef.h>
#include <rte_eal_memconfig.h>
#include <rte_eal_paging.h>
#include <rte_errno.h>
#include <rte_mempool.h>
#include <rte_malloc.h>
#include <rte_rwlock.h>
#include "mlx5_glue.h"
#include "mlx5_common.h"
#include "mlx5_common_mp.h"
#include "mlx5_common_mr.h"
#include "mlx5_common_os.h"
#include "mlx5_common_log.h"
#include "mlx5_malloc.h"
struct mr_find_contig_memsegs_data {
uintptr_t addr;
uintptr_t start;
uintptr_t end;
const struct rte_memseg_list *msl;
};
/* Virtual memory range. */
struct mlx5_range {
uintptr_t start;
uintptr_t end;
};
/** Memory region for a mempool. */
struct mlx5_mempool_mr {
struct mlx5_pmd_mr pmd_mr;
uint32_t refcnt; /**< Number of mempools sharing this MR. */
};
/* Mempool registration. */
struct mlx5_mempool_reg {
LIST_ENTRY(mlx5_mempool_reg) next;
/** Registered mempool, used to designate registrations. */
struct rte_mempool *mp;
/** Memory regions for the address ranges of the mempool. */
struct mlx5_mempool_mr *mrs;
/** Number of memory regions. */
unsigned int mrs_n;
/** Whether the MR were created for external pinned memory. */
bool is_extmem;
};
void
mlx5_mprq_buf_free_cb(void *addr __rte_unused, void *opaque)
{
struct mlx5_mprq_buf *buf = opaque;
if (__atomic_load_n(&buf->refcnt, __ATOMIC_RELAXED) == 1) {
rte_mempool_put(buf->mp, buf);
} else if (unlikely(__atomic_sub_fetch(&buf->refcnt, 1,
__ATOMIC_RELAXED) == 0)) {
__atomic_store_n(&buf->refcnt, 1, __ATOMIC_RELAXED);
rte_mempool_put(buf->mp, buf);
}
}
/**
* Expand B-tree table to a given size. Can't be called with holding
* memory_hotplug_lock or share_cache.rwlock due to rte_realloc().
*
* @param bt
* Pointer to B-tree structure.
* @param n
* Number of entries for expansion.
*
* @return
* 0 on success, -1 on failure.
*/
static int
mr_btree_expand(struct mlx5_mr_btree *bt, uint32_t n)
{
void *mem;
int ret = 0;
if (n <= bt->size)
return ret;
/*
* Downside of directly using rte_realloc() is that SOCKET_ID_ANY is
* used inside if there's no room to expand. Because this is a quite
* rare case and a part of very slow path, it is very acceptable.
* Initially cache_bh[] will be given practically enough space and once
* it is expanded, expansion wouldn't be needed again ever.
*/
mem = mlx5_realloc(bt->table, MLX5_MEM_RTE | MLX5_MEM_ZERO,
n * sizeof(struct mr_cache_entry), 0, SOCKET_ID_ANY);
if (mem == NULL) {
/* Not an error, B-tree search will be skipped. */
DRV_LOG(WARNING, "failed to expand MR B-tree (%p) table",
(void *)bt);
ret = -1;
} else {
DRV_LOG(DEBUG, "expanded MR B-tree table (size=%u)", n);
bt->table = mem;
bt->size = n;
}
return ret;
}
/**
* Look up LKey from given B-tree lookup table, store the last index and return
* searched LKey.
*
* @param bt
* Pointer to B-tree structure.
* @param[out] idx
* Pointer to index. Even on search failure, returns index where it stops
* searching so that index can be used when inserting a new entry.
* @param addr
* Search key.
*
* @return
* Searched LKey on success, UINT32_MAX on no match.
*/
static uint32_t
mr_btree_lookup(struct mlx5_mr_btree *bt, uint32_t *idx, uintptr_t addr)
{
struct mr_cache_entry *lkp_tbl;
uint32_t n;
uint32_t base = 0;
MLX5_ASSERT(bt != NULL);
lkp_tbl = *bt->table;
n = bt->len;
/* First entry must be NULL for comparison. */
MLX5_ASSERT(bt->len > 0 || (lkp_tbl[0].start == 0 &&
lkp_tbl[0].lkey == UINT32_MAX));
/* Binary search. */
do {
register uint32_t delta = n >> 1;
if (addr < lkp_tbl[base + delta].start) {
n = delta;
} else {
base += delta;
n -= delta;
}
} while (n > 1);
MLX5_ASSERT(addr >= lkp_tbl[base].start);
*idx = base;
if (addr < lkp_tbl[base].end)
return lkp_tbl[base].lkey;
/* Not found. */
return UINT32_MAX;
}
/**
* Insert an entry to B-tree lookup table.
*
* @param bt
* Pointer to B-tree structure.
* @param entry
* Pointer to new entry to insert.
*
* @return
* 0 on success, -1 on failure.
*/
static int
mr_btree_insert(struct mlx5_mr_btree *bt, struct mr_cache_entry *entry)
{
struct mr_cache_entry *lkp_tbl;
uint32_t idx = 0;
size_t shift;
MLX5_ASSERT(bt != NULL);
MLX5_ASSERT(bt->len <= bt->size);
MLX5_ASSERT(bt->len > 0);
lkp_tbl = *bt->table;
/* Find out the slot for insertion. */
if (mr_btree_lookup(bt, &idx, entry->start) != UINT32_MAX) {
DRV_LOG(DEBUG,
"abort insertion to B-tree(%p): already exist at"
" idx=%u [0x%" PRIxPTR ", 0x%" PRIxPTR ") lkey=0x%x",
(void *)bt, idx, entry->start, entry->end, entry->lkey);
/* Already exist, return. */
return 0;
}
/* Caller must ensure that there is enough place for a new entry. */
MLX5_ASSERT(bt->len < bt->size);
/* Insert entry. */
++idx;
shift = (bt->len - idx) * sizeof(struct mr_cache_entry);
if (shift)
memmove(&lkp_tbl[idx + 1], &lkp_tbl[idx], shift);
lkp_tbl[idx] = *entry;
bt->len++;
DRV_LOG(DEBUG,
"inserted B-tree(%p)[%u],"
" [0x%" PRIxPTR ", 0x%" PRIxPTR ") lkey=0x%x",
(void *)bt, idx, entry->start, entry->end, entry->lkey);
return 0;
}
/**
* Initialize B-tree and allocate memory for lookup table.
*
* @param bt
* Pointer to B-tree structure.
* @param n
* Number of entries to allocate.
* @param socket
* NUMA socket on which memory must be allocated.
*
* @return
* 0 on success, a negative errno value otherwise and rte_errno is set.
*/
static int
mlx5_mr_btree_init(struct mlx5_mr_btree *bt, int n, int socket)
{
if (bt == NULL) {
rte_errno = EINVAL;
return -rte_errno;
}
MLX5_ASSERT(!bt->table && !bt->size);
memset(bt, 0, sizeof(*bt));
bt->table = mlx5_malloc(MLX5_MEM_RTE | MLX5_MEM_ZERO,
sizeof(struct mr_cache_entry) * n,
0, socket);
if (bt->table == NULL) {
rte_errno = ENOMEM;
DRV_LOG(DEBUG,
"failed to allocate memory for btree cache on socket "
"%d", socket);
return -rte_errno;
}
bt->size = n;
/* First entry must be NULL for binary search. */
(*bt->table)[bt->len++] = (struct mr_cache_entry) {
.lkey = UINT32_MAX,
};
DRV_LOG(DEBUG, "initialized B-tree %p with table %p",
(void *)bt, (void *)bt->table);
return 0;
}
/**
* Free B-tree resources.
*
* @param bt
* Pointer to B-tree structure.
*/
void
mlx5_mr_btree_free(struct mlx5_mr_btree *bt)
{
if (bt == NULL)
return;
DRV_LOG(DEBUG, "freeing B-tree %p with table %p",
(void *)bt, (void *)bt->table);
mlx5_free(bt->table);
memset(bt, 0, sizeof(*bt));
}
/**
* Dump all the entries in a B-tree
*
* @param bt
* Pointer to B-tree structure.
*/
void
mlx5_mr_btree_dump(struct mlx5_mr_btree *bt __rte_unused)
{
#ifdef RTE_LIBRTE_MLX5_DEBUG
uint32_t idx;
struct mr_cache_entry *lkp_tbl;
if (bt == NULL)
return;
lkp_tbl = *bt->table;
for (idx = 0; idx < bt->len; ++idx) {
struct mr_cache_entry *entry = &lkp_tbl[idx];
DRV_LOG(DEBUG, "B-tree(%p)[%u],"
" [0x%" PRIxPTR ", 0x%" PRIxPTR ") lkey=0x%x",
(void *)bt, idx, entry->start, entry->end, entry->lkey);
}
#endif
}
/**
* Initialize per-queue MR control descriptor.
*
* @param mr_ctrl
* Pointer to MR control structure.
* @param dev_gen_ptr
* Pointer to generation number of global cache.
* @param socket
* NUMA socket on which memory must be allocated.
*
* @return
* 0 on success, a negative errno value otherwise and rte_errno is set.
*/
int
mlx5_mr_ctrl_init(struct mlx5_mr_ctrl *mr_ctrl, uint32_t *dev_gen_ptr,
int socket)
{
if (mr_ctrl == NULL) {
rte_errno = EINVAL;
return -rte_errno;
}
/* Save pointer of global generation number to check memory event. */
mr_ctrl->dev_gen_ptr = dev_gen_ptr;
/* Initialize B-tree and allocate memory for bottom-half cache table. */
return mlx5_mr_btree_init(&mr_ctrl->cache_bh, MLX5_MR_BTREE_CACHE_N,
socket);
}
/**
* Find virtually contiguous memory chunk in a given MR.
*
* @param dev
* Pointer to MR structure.
* @param[out] entry
* Pointer to returning MR cache entry. If not found, this will not be
* updated.
* @param start_idx
* Start index of the memseg bitmap.
*
* @return
* Next index to go on lookup.
*/
static int
mr_find_next_chunk(struct mlx5_mr *mr, struct mr_cache_entry *entry,
int base_idx)
{
uintptr_t start = 0;
uintptr_t end = 0;
uint32_t idx = 0;
/* MR for external memory doesn't have memseg list. */
if (mr->msl == NULL) {
MLX5_ASSERT(mr->ms_bmp_n == 1);
MLX5_ASSERT(mr->ms_n == 1);
MLX5_ASSERT(base_idx == 0);
/*
* Can't search it from memseg list but get it directly from
* pmd_mr as there's only one chunk.
*/
entry->start = (uintptr_t)mr->pmd_mr.addr;
entry->end = (uintptr_t)mr->pmd_mr.addr + mr->pmd_mr.len;
entry->lkey = rte_cpu_to_be_32(mr->pmd_mr.lkey);
/* Returning 1 ends iteration. */
return 1;
}
for (idx = base_idx; idx < mr->ms_bmp_n; ++idx) {
if (rte_bitmap_get(mr->ms_bmp, idx)) {
const struct rte_memseg_list *msl;
const struct rte_memseg *ms;
msl = mr->msl;
ms = rte_fbarray_get(&msl->memseg_arr,
mr->ms_base_idx + idx);
MLX5_ASSERT(msl->page_sz == ms->hugepage_sz);
if (!start)
start = ms->addr_64;
end = ms->addr_64 + ms->hugepage_sz;
} else if (start) {
/* Passed the end of a fragment. */
break;
}
}
if (start) {
/* Found one chunk. */
entry->start = start;
entry->end = end;
entry->lkey = rte_cpu_to_be_32(mr->pmd_mr.lkey);
}
return idx;
}
/**
* Insert a MR to the global B-tree cache. It may fail due to low-on-memory.
* Then, this entry will have to be searched by mr_lookup_list() in
* mlx5_mr_create() on miss.
*
* @param share_cache
* Pointer to a global shared MR cache.
* @param mr
* Pointer to MR to insert.
*
* @return
* 0 on success, -1 on failure.
*/
int
mlx5_mr_insert_cache(struct mlx5_mr_share_cache *share_cache,
struct mlx5_mr *mr)
{
unsigned int n;
DRV_LOG(DEBUG, "Inserting MR(%p) to global cache(%p)",
(void *)mr, (void *)share_cache);
for (n = 0; n < mr->ms_bmp_n; ) {
struct mr_cache_entry entry;
memset(&entry, 0, sizeof(entry));
/* Find a contiguous chunk and advance the index. */
n = mr_find_next_chunk(mr, &entry, n);
if (!entry.end)
break;
if (mr_btree_insert(&share_cache->cache, &entry) < 0)
return -1;
}
return 0;
}
/**
* Look up address in the original global MR list.
*
* @param share_cache
* Pointer to a global shared MR cache.
* @param[out] entry
* Pointer to returning MR cache entry. If no match, this will not be updated.
* @param addr
* Search key.
*
* @return
* Found MR on match, NULL otherwise.
*/
struct mlx5_mr *
mlx5_mr_lookup_list(struct mlx5_mr_share_cache *share_cache,
struct mr_cache_entry *entry, uintptr_t addr)
{
struct mlx5_mr *mr;
/* Iterate all the existing MRs. */
LIST_FOREACH(mr, &share_cache->mr_list, mr) {
unsigned int n;
if (mr->ms_n == 0)
continue;
for (n = 0; n < mr->ms_bmp_n; ) {
struct mr_cache_entry ret;
memset(&ret, 0, sizeof(ret));
n = mr_find_next_chunk(mr, &ret, n);
if (addr >= ret.start && addr < ret.end) {
/* Found. */
*entry = ret;
return mr;
}
}
}
return NULL;
}
/**
* Look up address on global MR cache.
*
* @param share_cache
* Pointer to a global shared MR cache.
* @param[out] entry
* Pointer to returning MR cache entry. If no match, this will not be updated.
* @param addr
* Search key.
*
* @return
* Searched LKey on success, UINT32_MAX on failure and rte_errno is set.
*/
static uint32_t
mlx5_mr_lookup_cache(struct mlx5_mr_share_cache *share_cache,
struct mr_cache_entry *entry, uintptr_t addr)
{
uint32_t idx;
uint32_t lkey;
lkey = mr_btree_lookup(&share_cache->cache, &idx, addr);
if (lkey != UINT32_MAX)
*entry = (*share_cache->cache.table)[idx];
MLX5_ASSERT(lkey == UINT32_MAX || (addr >= entry->start &&
addr < entry->end));
return lkey;
}
/**
* Free MR resources. MR lock must not be held to avoid a deadlock. rte_free()
* can raise memory free event and the callback function will spin on the lock.
*
* @param mr
* Pointer to MR to free.
*/
void
mlx5_mr_free(struct mlx5_mr *mr, mlx5_dereg_mr_t dereg_mr_cb)
{
if (mr == NULL)
return;
DRV_LOG(DEBUG, "freeing MR(%p):", (void *)mr);
dereg_mr_cb(&mr->pmd_mr);
if (mr->ms_bmp != NULL)
rte_bitmap_free(mr->ms_bmp);
mlx5_free(mr);
}
void
mlx5_mr_rebuild_cache(struct mlx5_mr_share_cache *share_cache)
{
struct mlx5_mr *mr;
DRV_LOG(DEBUG, "Rebuild dev cache[] %p", (void *)share_cache);
/* Flush cache to rebuild. */
share_cache->cache.len = 1;
/* Iterate all the existing MRs. */
LIST_FOREACH(mr, &share_cache->mr_list, mr)
if (mlx5_mr_insert_cache(share_cache, mr) < 0)
return;
}
/**
* Release resources of detached MR having no online entry.
*
* @param share_cache
* Pointer to a global shared MR cache.
*/
static void
mlx5_mr_garbage_collect(struct mlx5_mr_share_cache *share_cache)
{
struct mlx5_mr *mr_next;
struct mlx5_mr_list free_list = LIST_HEAD_INITIALIZER(free_list);
/* Must be called from the primary process. */
MLX5_ASSERT(rte_eal_process_type() == RTE_PROC_PRIMARY);
/*
* MR can't be freed with holding the lock because rte_free() could call
* memory free callback function. This will be a deadlock situation.
*/
rte_rwlock_write_lock(&share_cache->rwlock);
/* Detach the whole free list and release it after unlocking. */
free_list = share_cache->mr_free_list;
LIST_INIT(&share_cache->mr_free_list);
rte_rwlock_write_unlock(&share_cache->rwlock);
/* Release resources. */
mr_next = LIST_FIRST(&free_list);
while (mr_next != NULL) {
struct mlx5_mr *mr = mr_next;
mr_next = LIST_NEXT(mr, mr);
mlx5_mr_free(mr, share_cache->dereg_mr_cb);
}
}
/* Called during rte_memseg_contig_walk() by mlx5_mr_create(). */
static int
mr_find_contig_memsegs_cb(const struct rte_memseg_list *msl,
const struct rte_memseg *ms, size_t len, void *arg)
{
struct mr_find_contig_memsegs_data *data = arg;
if (data->addr < ms->addr_64 || data->addr >= ms->addr_64 + len)
return 0;
/* Found, save it and stop walking. */
data->start = ms->addr_64;
data->end = ms->addr_64 + len;
data->msl = msl;
return 1;
}
/**
* Get the number of virtually-contiguous chunks in the MR.
* HW MR does not need to be already created to use this function.
*
* @param mr
* Pointer to the MR.
*
* @return
* Number of chunks.
*/
static uint32_t
mr_get_chunk_count(const struct mlx5_mr *mr)
{
uint32_t i, count = 0;
bool was_in_chunk = false;
bool is_in_chunk;
/* There is only one chunk in case of external memory. */
if (mr->msl == NULL)
return 1;
for (i = 0; i < mr->ms_bmp_n; i++) {
is_in_chunk = rte_bitmap_get(mr->ms_bmp, i);
if (!was_in_chunk && is_in_chunk)
count++;
was_in_chunk = is_in_chunk;
}
return count;
}
/**
* Thread-safely expand the global MR cache to at least @p new_size slots.
*
* @param share_cache
* Shared MR cache for locking.
* @param new_size
* Desired cache size.
* @param socket
* NUMA node.
*
* @return
* 0 in success, negative on failure and rte_errno is set.
*/
int
mlx5_mr_expand_cache(struct mlx5_mr_share_cache *share_cache,
uint32_t size, int socket)
{
struct mlx5_mr_btree cache = {0};
struct mlx5_mr_btree *bt;
struct mr_cache_entry *lkp_tbl;
int ret;
size = rte_align32pow2(size);
ret = mlx5_mr_btree_init(&cache, size, socket);
if (ret < 0)
return ret;
rte_rwlock_write_lock(&share_cache->rwlock);
bt = &share_cache->cache;
lkp_tbl = *bt->table;
if (cache.size > bt->size) {
rte_memcpy(cache.table, lkp_tbl, bt->len * sizeof(lkp_tbl[0]));
RTE_SWAP(*bt, cache);
DRV_LOG(DEBUG, "Global MR cache expanded to %u slots", size);
}
rte_rwlock_write_unlock(&share_cache->rwlock);
mlx5_mr_btree_free(&cache);
return 0;
}
/**
* Create a new global Memory Region (MR) for a missing virtual address.
* This API should be called on a secondary process, then a request is sent to
* the primary process in order to create a MR for the address. As the global MR
* list is on the shared memory, following LKey lookup should succeed unless the
* request fails.
*
* @param cdev
* Pointer to the mlx5 common device.
* @param share_cache
* Pointer to a global shared MR cache.
* @param[out] entry
* Pointer to returning MR cache entry, found in the global cache or newly
* created. If failed to create one, this will not be updated.
* @param addr
* Target virtual address to register.
*
* @return
* Searched LKey on success, UINT32_MAX on failure and rte_errno is set.
*/
static uint32_t
mlx5_mr_create_secondary(struct mlx5_common_device *cdev,
struct mlx5_mr_share_cache *share_cache,
struct mr_cache_entry *entry, uintptr_t addr)
{
int ret;
DRV_LOG(DEBUG, "Requesting MR creation for address (%p)", (void *)addr);
ret = mlx5_mp_req_mr_create(cdev, addr);
if (ret) {
DRV_LOG(DEBUG, "Fail to request MR creation for address (%p)",
(void *)addr);
return UINT32_MAX;
}
rte_rwlock_read_lock(&share_cache->rwlock);
/* Fill in output data. */
mlx5_mr_lookup_cache(share_cache, entry, addr);
/* Lookup can't fail. */
MLX5_ASSERT(entry->lkey != UINT32_MAX);
rte_rwlock_read_unlock(&share_cache->rwlock);
DRV_LOG(DEBUG, "MR CREATED by primary process for %p:\n"
" [0x%" PRIxPTR ", 0x%" PRIxPTR "), lkey=0x%x",
(void *)addr, entry->start, entry->end, entry->lkey);
return entry->lkey;
}
/**
* Create a new global Memory Region (MR) for a missing virtual address.
* Register entire virtually contiguous memory chunk around the address.
*
* @param pd
* Pointer to pd of a device (net, regex, vdpa,...).
* @param share_cache
* Pointer to a global shared MR cache.
* @param[out] entry
* Pointer to returning MR cache entry, found in the global cache or newly
* created. If failed to create one, this will not be updated.
* @param addr
* Target virtual address to register.
* @param mr_ext_memseg_en
* Configurable flag about external memory segment enable or not.
*
* @return
* Searched LKey on success, UINT32_MAX on failure and rte_errno is set.
*/
static uint32_t
mlx5_mr_create_primary(void *pd,
struct mlx5_mr_share_cache *share_cache,
struct mr_cache_entry *entry, uintptr_t addr,
unsigned int mr_ext_memseg_en)
{
struct mr_find_contig_memsegs_data data = {.addr = addr, };
struct mr_find_contig_memsegs_data data_re;
const struct rte_memseg_list *msl;
const struct rte_memseg *ms;
struct mlx5_mr_btree *bt;
struct mlx5_mr *mr = NULL;
int ms_idx_shift = -1;
uint32_t bmp_size;
void *bmp_mem;
uint32_t ms_n;
uint32_t n;
uint32_t chunks_n;
size_t len;
DRV_LOG(DEBUG, "Creating a MR using address (%p)", (void *)addr);
/*
* Release detached MRs if any. This can't be called with holding either
* memory_hotplug_lock or share_cache->rwlock. MRs on the free list have
* been detached by the memory free event but it couldn't be released
* inside the callback due to deadlock. As a result, releasing resources
* is quite opportunistic.
*/
mlx5_mr_garbage_collect(share_cache);
find_range:
/*
* If enabled, find out a contiguous virtual address chunk in use, to
* which the given address belongs, in order to register maximum range.
* In the best case where mempools are not dynamically recreated and
* '--socket-mem' is specified as an EAL option, it is very likely to
* have only one MR(LKey) per a socket and per a hugepage-size even
* though the system memory is highly fragmented. As the whole memory
* chunk will be pinned by kernel, it can't be reused unless entire
* chunk is freed from EAL.
*
* If disabled, just register one memseg (page). Then, memory
* consumption will be minimized but it may drop performance if there
* are many MRs to lookup on the datapath.
*/
if (!mr_ext_memseg_en) {
data.msl = rte_mem_virt2memseg_list((void *)addr);
data.start = RTE_ALIGN_FLOOR(addr, data.msl->page_sz);
data.end = data.start + data.msl->page_sz;
} else if (!rte_memseg_contig_walk(mr_find_contig_memsegs_cb, &data)) {
DRV_LOG(WARNING,
"Unable to find virtually contiguous"
" chunk for address (%p)."
" rte_memseg_contig_walk() failed.", (void *)addr);
rte_errno = ENXIO;
goto err_nolock;
}
alloc_resources:
/* Addresses must be page-aligned. */
MLX5_ASSERT(data.msl);
MLX5_ASSERT(rte_is_aligned((void *)data.start, data.msl->page_sz));
MLX5_ASSERT(rte_is_aligned((void *)data.end, data.msl->page_sz));
msl = data.msl;
ms = rte_mem_virt2memseg((void *)data.start, msl);
len = data.end - data.start;
MLX5_ASSERT(ms);
MLX5_ASSERT(msl->page_sz == ms->hugepage_sz);
/* Number of memsegs in the range. */
ms_n = len / msl->page_sz;
DRV_LOG(DEBUG, "Extending %p to [0x%" PRIxPTR ", 0x%" PRIxPTR "),"
" page_sz=0x%" PRIx64 ", ms_n=%u",
(void *)addr, data.start, data.end, msl->page_sz, ms_n);
/* Size of memory for bitmap. */
bmp_size = rte_bitmap_get_memory_footprint(ms_n);
mr = mlx5_malloc(MLX5_MEM_RTE | MLX5_MEM_ZERO,
RTE_ALIGN_CEIL(sizeof(*mr), RTE_CACHE_LINE_SIZE) +
bmp_size, RTE_CACHE_LINE_SIZE, msl->socket_id);
if (mr == NULL) {
DRV_LOG(DEBUG, "Unable to allocate memory for a new MR of"
" address (%p).", (void *)addr);
rte_errno = ENOMEM;
goto err_nolock;
}
mr->msl = msl;
/*
* Save the index of the first memseg and initialize memseg bitmap. To
* see if a memseg of ms_idx in the memseg-list is still valid, check:
* rte_bitmap_get(mr->bmp, ms_idx - mr->ms_base_idx)
*/
mr->ms_base_idx = rte_fbarray_find_idx(&msl->memseg_arr, ms);
bmp_mem = RTE_PTR_ALIGN_CEIL(mr + 1, RTE_CACHE_LINE_SIZE);
mr->ms_bmp = rte_bitmap_init(ms_n, bmp_mem, bmp_size);
if (mr->ms_bmp == NULL) {
DRV_LOG(DEBUG, "Unable to initialize bitmap for a new MR of"
" address (%p).", (void *)addr);
rte_errno = EINVAL;
goto err_nolock;
}
/*
* Should recheck whether the extended contiguous chunk is still valid.
* Because memory_hotplug_lock can't be held if there's any memory
* related calls in a critical path, resource allocation above can't be
* locked. If the memory has been changed at this point, try again with
* just single page. If not, go on with the big chunk atomically from
* here.
*/
rte_mcfg_mem_read_lock();
data_re = data;
if (len > msl->page_sz &&
!rte_memseg_contig_walk(mr_find_contig_memsegs_cb, &data_re)) {
DRV_LOG(DEBUG,
"Unable to find virtually contiguous chunk for address "
"(%p). rte_memseg_contig_walk() failed.", (void *)addr);
rte_errno = ENXIO;
goto err_memlock;
}
if (data.start != data_re.start || data.end != data_re.end) {
/*
* The extended contiguous chunk has been changed. Try again
* with single memseg instead.
*/
data.start = RTE_ALIGN_FLOOR(addr, msl->page_sz);
data.end = data.start + msl->page_sz;
rte_mcfg_mem_read_unlock();
mlx5_mr_free(mr, share_cache->dereg_mr_cb);
goto alloc_resources;
}
MLX5_ASSERT(data.msl == data_re.msl);
rte_rwlock_write_lock(&share_cache->rwlock);
/*
* Check the address is really missing. If other thread already created
* one or it is not found due to overflow, abort and return.
*/
if (mlx5_mr_lookup_cache(share_cache, entry, addr) != UINT32_MAX) {
/*
* Insert to the global cache table. It may fail due to
* low-on-memory. Then, this entry will have to be searched
* here again.
*/
mr_btree_insert(&share_cache->cache, entry);
DRV_LOG(DEBUG, "Found MR for %p on final lookup, abort",
(void *)addr);
rte_rwlock_write_unlock(&share_cache->rwlock);
rte_mcfg_mem_read_unlock();
/*
* Must be unlocked before calling rte_free() because
* mlx5_mr_mem_event_free_cb() can be called inside.
*/
mlx5_mr_free(mr, share_cache->dereg_mr_cb);
return entry->lkey;
}
/*
* Trim start and end addresses for verbs MR. Set bits for registering
* memsegs but exclude already registered ones. Bitmap can be
* fragmented.
*/
for (n = 0; n < ms_n; ++n) {
uintptr_t start;
struct mr_cache_entry ret;
memset(&ret, 0, sizeof(ret));
start = data_re.start + n * msl->page_sz;
/* Exclude memsegs already registered by other MRs. */
if (mlx5_mr_lookup_cache(share_cache, &ret, start) ==
UINT32_MAX) {
/*
* Start from the first unregistered memseg in the
* extended range.
*/
if (ms_idx_shift == -1) {
mr->ms_base_idx += n;
data.start = start;
ms_idx_shift = n;
}
data.end = start + msl->page_sz;
rte_bitmap_set(mr->ms_bmp, n - ms_idx_shift);
++mr->ms_n;
}
}
len = data.end - data.start;
mr->ms_bmp_n = len / msl->page_sz;
MLX5_ASSERT(ms_idx_shift + mr->ms_bmp_n <= ms_n);
/*
* It is now known how many entries will be used in the global cache.
* If there is not enough, expand the cache.
* This cannot be done while holding the memory hotplug lock.
* While it is released, memory layout may change,
* so the process must be repeated from the beginning.
*/
bt = &share_cache->cache;
chunks_n = mr_get_chunk_count(mr);
if (bt->len + chunks_n > bt->size) {
struct mlx5_common_device *cdev;
uint32_t size;
size = bt->size + chunks_n;
MLX5_ASSERT(size > bt->size);
cdev = container_of(share_cache, struct mlx5_common_device,
mr_scache);
rte_rwlock_write_unlock(&share_cache->rwlock);
rte_mcfg_mem_read_unlock();
if (mlx5_mr_expand_cache(share_cache, size,
cdev->dev->numa_node) < 0) {
DRV_LOG(ERR, "Failed to expand global MR cache to %u slots",
size);
goto err_nolock;
}
goto find_range;
}
/*
* Finally create an MR for the memory chunk. Verbs: ibv_reg_mr() can
* be called with holding the memory lock because it doesn't use
* mlx5_alloc_buf_extern() which eventually calls rte_malloc_socket()
* through mlx5_alloc_verbs_buf().
*/
share_cache->reg_mr_cb(pd, (void *)data.start, len, &mr->pmd_mr);
if (mr->pmd_mr.obj == NULL) {
DRV_LOG(DEBUG, "Fail to create an MR for address (%p)",
(void *)addr);
rte_errno = EINVAL;
goto err_mrlock;
}
MLX5_ASSERT((uintptr_t)mr->pmd_mr.addr == data.start);
MLX5_ASSERT(mr->pmd_mr.len);
LIST_INSERT_HEAD(&share_cache->mr_list, mr, mr);
DRV_LOG(DEBUG, "MR CREATED (%p) for %p:\n"
" [0x%" PRIxPTR ", 0x%" PRIxPTR "),"
" lkey=0x%x base_idx=%u ms_n=%u, ms_bmp_n=%u",
(void *)mr, (void *)addr, data.start, data.end,
rte_cpu_to_be_32(mr->pmd_mr.lkey),
mr->ms_base_idx, mr->ms_n, mr->ms_bmp_n);
/* Insert to the global cache table. */
mlx5_mr_insert_cache(share_cache, mr);
/* Fill in output data. */
mlx5_mr_lookup_cache(share_cache, entry, addr);
/* Lookup can't fail. */
MLX5_ASSERT(entry->lkey != UINT32_MAX);
rte_rwlock_write_unlock(&share_cache->rwlock);
rte_mcfg_mem_read_unlock();
return entry->lkey;
err_mrlock:
rte_rwlock_write_unlock(&share_cache->rwlock);
err_memlock:
rte_mcfg_mem_read_unlock();
err_nolock:
/*
* In case of error, as this can be called in a datapath, a warning
* message per an error is preferable instead. Must be unlocked before
* calling rte_free() because mlx5_mr_mem_event_free_cb() can be called
* inside.
*/
mlx5_mr_free(mr, share_cache->dereg_mr_cb);
return UINT32_MAX;
}
/**
* Create a new global Memory Region (MR) for a missing virtual address.
* This can be called from primary and secondary process.
*
* @param cdev
* Pointer to the mlx5 common device.
* @param share_cache
* Pointer to a global shared MR cache.
* @param[out] entry
* Pointer to returning MR cache entry, found in the global cache or newly
* created. If failed to create one, this will not be updated.
* @param addr
* Target virtual address to register.
*
* @return
* Searched LKey on success, UINT32_MAX on failure and rte_errno is set.
*/
uint32_t
mlx5_mr_create(struct mlx5_common_device *cdev,
struct mlx5_mr_share_cache *share_cache,
struct mr_cache_entry *entry, uintptr_t addr)
{
uint32_t ret = 0;
switch (rte_eal_process_type()) {
case RTE_PROC_PRIMARY:
ret = mlx5_mr_create_primary(cdev->pd, share_cache, entry, addr,
cdev->config.mr_ext_memseg_en);
break;
case RTE_PROC_SECONDARY:
ret = mlx5_mr_create_secondary(cdev, share_cache, entry, addr);
break;
default:
break;
}
return ret;
}
/**
* Look up address in the global MR cache table. If not found, create a new MR.
* Insert the found/created entry to local bottom-half cache table.
*
* @param mr_ctrl
* Pointer to per-queue MR control structure.
* @param[out] entry
* Pointer to returning MR cache entry, found in the global cache or newly
* created. If failed to create one, this is not written.
* @param addr
* Search key.
*
* @return
* Searched LKey on success, UINT32_MAX on no match.
*/
static uint32_t
mr_lookup_caches(struct mlx5_mr_ctrl *mr_ctrl,
struct mr_cache_entry *entry, uintptr_t addr)
{
struct mlx5_mr_share_cache *share_cache =
container_of(mr_ctrl->dev_gen_ptr, struct mlx5_mr_share_cache,
dev_gen);
struct mlx5_common_device *cdev =
container_of(share_cache, struct mlx5_common_device, mr_scache);
struct mlx5_mr_btree *bt = &mr_ctrl->cache_bh;
uint32_t lkey;
uint32_t idx;
/* If local cache table is full, try to double it. */
if (unlikely(bt->len == bt->size))
mr_btree_expand(bt, bt->size << 1);
/* Look up in the global cache. */
rte_rwlock_read_lock(&share_cache->rwlock);
lkey = mr_btree_lookup(&share_cache->cache, &idx, addr);
if (lkey != UINT32_MAX) {
/* Found. */
*entry = (*share_cache->cache.table)[idx];
rte_rwlock_read_unlock(&share_cache->rwlock);
/*
* Update local cache. Even if it fails, return the found entry
* to update top-half cache. Next time, this entry will be found
* in the global cache.
*/
mr_btree_insert(bt, entry);
return lkey;
}
rte_rwlock_read_unlock(&share_cache->rwlock);
/* First time to see the address? Create a new MR. */
lkey = mlx5_mr_create(cdev, share_cache, entry, addr);
/*
* Update the local cache if successfully created a new global MR. Even
* if failed to create one, there's no action to take in this datapath
* code. As returning LKey is invalid, this will eventually make HW
* fail.
*/
if (lkey != UINT32_MAX)
mr_btree_insert(bt, entry);
return lkey;
}
/**
* Bottom-half of LKey search on datapath. First search in cache_bh[] and if
* misses, search in the global MR cache table and update the new entry to
* per-queue local caches.
*
* @param mr_ctrl
* Pointer to per-queue MR control structure.
* @param addr
* Search key.
*
* @return
* Searched LKey on success, UINT32_MAX on no match.
*/
static uint32_t
mlx5_mr_addr2mr_bh(struct mlx5_mr_ctrl *mr_ctrl, uintptr_t addr)
{
uint32_t lkey;
uint32_t bh_idx = 0;
/* Victim in top-half cache to replace with new entry. */
struct mr_cache_entry *repl = &mr_ctrl->cache[mr_ctrl->head];
/* Binary-search MR translation table. */
lkey = mr_btree_lookup(&mr_ctrl->cache_bh, &bh_idx, addr);
/* Update top-half cache. */
if (likely(lkey != UINT32_MAX)) {
*repl = (*mr_ctrl->cache_bh.table)[bh_idx];
} else {
/*
* If missed in local lookup table, search in the global cache
* and local cache_bh[] will be updated inside if possible.
* Top-half cache entry will also be updated.
*/
lkey = mr_lookup_caches(mr_ctrl, repl, addr);
if (unlikely(lkey == UINT32_MAX))
return UINT32_MAX;
}
/* Update the most recently used entry. */
mr_ctrl->mru = mr_ctrl->head;
/* Point to the next victim, the oldest. */
mr_ctrl->head = (mr_ctrl->head + 1) % MLX5_MR_CACHE_N;
return lkey;
}
/**
* Release all the created MRs and resources on global MR cache of a device
* list.
*
* @param share_cache
* Pointer to a global shared MR cache.
*/
void
mlx5_mr_release_cache(struct mlx5_mr_share_cache *share_cache)
{
struct mlx5_mr *mr_next;
rte_rwlock_write_lock(&share_cache->rwlock);
/* Detach from MR list and move to free list. */
mr_next = LIST_FIRST(&share_cache->mr_list);
while (mr_next != NULL) {
struct mlx5_mr *mr = mr_next;
mr_next = LIST_NEXT(mr, mr);
LIST_REMOVE(mr, mr);
LIST_INSERT_HEAD(&share_cache->mr_free_list, mr, mr);
}
LIST_INIT(&share_cache->mr_list);
/* Free global cache. */
mlx5_mr_btree_free(&share_cache->cache);
rte_rwlock_write_unlock(&share_cache->rwlock);
/* Free all remaining MRs. */
mlx5_mr_garbage_collect(share_cache);
}
/**
* Initialize global MR cache of a device.
*
* @param share_cache
* Pointer to a global shared MR cache.
* @param socket
* NUMA socket on which memory must be allocated.
*
* @return
* 0 on success, a negative errno value otherwise and rte_errno is set.
*/
int
mlx5_mr_create_cache(struct mlx5_mr_share_cache *share_cache, int socket)
{
/* Set the reg_mr and dereg_mr callback functions */
mlx5_os_set_reg_mr_cb(&share_cache->reg_mr_cb,
&share_cache->dereg_mr_cb);
rte_rwlock_init(&share_cache->rwlock);
rte_rwlock_init(&share_cache->mprwlock);
share_cache->mp_cb_registered = 0;
/* Initialize B-tree and allocate memory for global MR cache table. */
return mlx5_mr_btree_init(&share_cache->cache,
MLX5_MR_BTREE_CACHE_N * 2, socket);
}
/**
* Flush all of the local cache entries.
*
* @param mr_ctrl
* Pointer to per-queue MR local cache.
*/
void
mlx5_mr_flush_local_cache(struct mlx5_mr_ctrl *mr_ctrl)
{
/* Reset the most-recently-used index. */
mr_ctrl->mru = 0;
/* Reset the linear search array. */
mr_ctrl->head = 0;
memset(mr_ctrl->cache, 0, sizeof(mr_ctrl->cache));
/* Reset the B-tree table. */
mr_ctrl->cache_bh.len = 1;
/* Update the generation number. */
mr_ctrl->cur_gen = *mr_ctrl->dev_gen_ptr;
DRV_LOG(DEBUG, "mr_ctrl(%p): flushed, cur_gen=%d",
(void *)mr_ctrl, mr_ctrl->cur_gen);
}
/**
* Creates a memory region for external memory, that is memory which is not
* part of the DPDK memory segments.
*
* @param pd
* Pointer to pd of a device (net, regex, vdpa,...).
* @param addr
* Starting virtual address of memory.
* @param len
* Length of memory segment being mapped.
* @param socked_id
* Socket to allocate heap memory for the control structures.
*
* @return
* Pointer to MR structure on success, NULL otherwise.
*/
struct mlx5_mr *
mlx5_create_mr_ext(void *pd, uintptr_t addr, size_t len, int socket_id,
mlx5_reg_mr_t reg_mr_cb)
{
struct mlx5_mr *mr = NULL;
mr = mlx5_malloc(MLX5_MEM_RTE | MLX5_MEM_ZERO,
RTE_ALIGN_CEIL(sizeof(*mr), RTE_CACHE_LINE_SIZE),
RTE_CACHE_LINE_SIZE, socket_id);
if (mr == NULL)
return NULL;
reg_mr_cb(pd, (void *)addr, len, &mr->pmd_mr);
if (mr->pmd_mr.obj == NULL) {
DRV_LOG(WARNING,
"Fail to create MR for address (%p)",
(void *)addr);
mlx5_free(mr);
return NULL;
}
mr->msl = NULL; /* Mark it is external memory. */
mr->ms_bmp = NULL;
mr->ms_n = 1;
mr->ms_bmp_n = 1;
DRV_LOG(DEBUG,
"MR CREATED (%p) for external memory %p:\n"
" [0x%" PRIxPTR ", 0x%" PRIxPTR "),"
" lkey=0x%x base_idx=%u ms_n=%u, ms_bmp_n=%u",
(void *)mr, (void *)addr,
addr, addr + len, rte_cpu_to_be_32(mr->pmd_mr.lkey),
mr->ms_base_idx, mr->ms_n, mr->ms_bmp_n);
return mr;
}
/**
* Callback for memory free event. Iterate freed memsegs and check whether it
* belongs to an existing MR. If found, clear the bit from bitmap of MR. As a
* result, the MR would be fragmented. If it becomes empty, the MR will be freed
* later by mlx5_mr_garbage_collect(). Even if this callback is called from a
* secondary process, the garbage collector will be called in primary process
* as the secondary process can't call mlx5_mr_create().
*
* The global cache must be rebuilt if there's any change and this event has to
* be propagated to dataplane threads to flush the local caches.
*
* @param share_cache
* Pointer to a global shared MR cache.
* @param ibdev_name
* Name of ibv device.
* @param addr
* Address of freed memory.
* @param len
* Size of freed memory.
*/
void
mlx5_free_mr_by_addr(struct mlx5_mr_share_cache *share_cache,
const char *ibdev_name, const void *addr, size_t len)
{
const struct rte_memseg_list *msl;
struct mlx5_mr *mr;
int ms_n;
int i;
int rebuild = 0;
DRV_LOG(DEBUG, "device %s free callback: addr=%p, len=%zu",
ibdev_name, addr, len);
msl = rte_mem_virt2memseg_list(addr);
/* addr and len must be page-aligned. */
MLX5_ASSERT((uintptr_t)addr ==
RTE_ALIGN((uintptr_t)addr, msl->page_sz));
MLX5_ASSERT(len == RTE_ALIGN(len, msl->page_sz));
ms_n = len / msl->page_sz;
rte_rwlock_write_lock(&share_cache->rwlock);
/* Clear bits of freed memsegs from MR. */
for (i = 0; i < ms_n; ++i) {
const struct rte_memseg *ms;
struct mr_cache_entry entry;
uintptr_t start;
int ms_idx;
uint32_t pos;
/* Find MR having this memseg. */
start = (uintptr_t)addr + i * msl->page_sz;
mr = mlx5_mr_lookup_list(share_cache, &entry, start);
if (mr == NULL)
continue;
MLX5_ASSERT(mr->msl); /* Can't be external memory. */
ms = rte_mem_virt2memseg((void *)start, msl);
MLX5_ASSERT(ms != NULL);
MLX5_ASSERT(msl->page_sz == ms->hugepage_sz);
ms_idx = rte_fbarray_find_idx(&msl->memseg_arr, ms);
pos = ms_idx - mr->ms_base_idx;
MLX5_ASSERT(rte_bitmap_get(mr->ms_bmp, pos));
MLX5_ASSERT(pos < mr->ms_bmp_n);
DRV_LOG(DEBUG, "device %s MR(%p): clear bitmap[%u] for addr %p",
ibdev_name, (void *)mr, pos, (void *)start);
rte_bitmap_clear(mr->ms_bmp, pos);
if (--mr->ms_n == 0) {
LIST_REMOVE(mr, mr);
LIST_INSERT_HEAD(&share_cache->mr_free_list, mr, mr);
DRV_LOG(DEBUG, "device %s remove MR(%p) from list",
ibdev_name, (void *)mr);
}
/*
* MR is fragmented or will be freed. the global cache must be
* rebuilt.
*/
rebuild = 1;
}
if (rebuild) {
mlx5_mr_rebuild_cache(share_cache);
/*
* No explicit wmb is needed after updating dev_gen due to
* store-release ordering in unlock that provides the
* implicit barrier at the software visible level.
*/
++share_cache->dev_gen;
DRV_LOG(DEBUG, "broadcasting local cache flush, gen=%d",
share_cache->dev_gen);
}
rte_rwlock_write_unlock(&share_cache->rwlock);
}
/**
* Dump all the created MRs and the global cache entries.
*
* @param share_cache
* Pointer to a global shared MR cache.
*/
void
mlx5_mr_dump_cache(struct mlx5_mr_share_cache *share_cache __rte_unused)
{
#ifdef RTE_LIBRTE_MLX5_DEBUG
struct mlx5_mr *mr;
int mr_n = 0;
int chunk_n = 0;
rte_rwlock_read_lock(&share_cache->rwlock);
/* Iterate all the existing MRs. */
LIST_FOREACH(mr, &share_cache->mr_list, mr) {
unsigned int n;
DRV_LOG(DEBUG, "MR[%u], LKey = 0x%x, ms_n = %u, ms_bmp_n = %u",
mr_n++, rte_cpu_to_be_32(mr->pmd_mr.lkey),
mr->ms_n, mr->ms_bmp_n);
if (mr->ms_n == 0)
continue;
for (n = 0; n < mr->ms_bmp_n; ) {
struct mr_cache_entry ret = { 0, };
n = mr_find_next_chunk(mr, &ret, n);
if (!ret.end)
break;
DRV_LOG(DEBUG,
" chunk[%u], [0x%" PRIxPTR ", 0x%" PRIxPTR ")",
chunk_n++, ret.start, ret.end);
}
}
DRV_LOG(DEBUG, "Dumping global cache %p", (void *)share_cache);
mlx5_mr_btree_dump(&share_cache->cache);
rte_rwlock_read_unlock(&share_cache->rwlock);
#endif
}
static int
mlx5_range_compare_start(const void *lhs, const void *rhs)
{
const struct mlx5_range *r1 = lhs, *r2 = rhs;
if (r1->start > r2->start)
return 1;
else if (r1->start < r2->start)
return -1;
return 0;
}
static void
mlx5_range_from_mempool_chunk(struct rte_mempool *mp, void *opaque,
struct rte_mempool_memhdr *memhdr,
unsigned int idx)
{
struct mlx5_range *ranges = opaque, *range = &ranges[idx];
uintptr_t start = (uintptr_t)memhdr->addr;
uint64_t page_size = rte_mem_page_size();
RTE_SET_USED(mp);
range->start = RTE_ALIGN_FLOOR(start, page_size);
range->end = RTE_ALIGN_CEIL(start + memhdr->len, page_size);
}
/**
* Collect page-aligned memory ranges of the mempool.
*/
static int
mlx5_mempool_get_chunks(struct rte_mempool *mp, struct mlx5_range **out,
unsigned int *out_n)
{
unsigned int n;
DRV_LOG(DEBUG, "Collecting chunks of regular mempool %s", mp->name);
n = mp->nb_mem_chunks;
*out = calloc(sizeof(**out), n);
if (*out == NULL)
return -1;
rte_mempool_mem_iter(mp, mlx5_range_from_mempool_chunk, *out);
*out_n = n;
return 0;
}
struct mlx5_mempool_get_extmem_data {
struct mlx5_range *heap;
unsigned int heap_size;
int ret;
};
static void
mlx5_mempool_get_extmem_cb(struct rte_mempool *mp, void *opaque,
void *obj, unsigned int obj_idx)
{
struct mlx5_mempool_get_extmem_data *data = opaque;
struct rte_mbuf *mbuf = obj;
uintptr_t addr = (uintptr_t)mbuf->buf_addr;
struct mlx5_range *seg, *heap;
struct rte_memseg_list *msl;
size_t page_size;
uintptr_t page_start;
unsigned int pos = 0, len = data->heap_size, delta;
RTE_SET_USED(mp);
RTE_SET_USED(obj_idx);
if (data->ret < 0)
return;
/* Binary search for an already visited page. */
while (len > 1) {
delta = len / 2;
if (addr < data->heap[pos + delta].start) {
len = delta;
} else {
pos += delta;
len -= delta;
}
}
if (data->heap != NULL) {
seg = &data->heap[pos];
if (seg->start <= addr && addr < seg->end)
return;
}
/* Determine the page boundaries and remember them. */
heap = realloc(data->heap, sizeof(heap[0]) * (data->heap_size + 1));
if (heap == NULL) {
free(data->heap);
data->heap = NULL;
data->ret = -1;
return;
}
data->heap = heap;
data->heap_size++;
seg = &heap[data->heap_size - 1];
msl = rte_mem_virt2memseg_list((void *)addr);
page_size = msl != NULL ? msl->page_sz : rte_mem_page_size();
page_start = RTE_PTR_ALIGN_FLOOR(addr, page_size);
seg->start = page_start;
seg->end = page_start + page_size;
/* Maintain the heap order. */
qsort(data->heap, data->heap_size, sizeof(heap[0]),
mlx5_range_compare_start);
}
/**
* Recover pages of external memory as close as possible
* for a mempool with RTE_PKTMBUF_POOL_PINNED_EXT_BUF.
* Pages are stored in a heap for efficient search, for mbufs are many.
*/
static int
mlx5_mempool_get_extmem(struct rte_mempool *mp, struct mlx5_range **out,
unsigned int *out_n)
{
struct mlx5_mempool_get_extmem_data data;
DRV_LOG(DEBUG, "Recovering external pinned pages of mempool %s",
mp->name);
memset(&data, 0, sizeof(data));
rte_mempool_obj_iter(mp, mlx5_mempool_get_extmem_cb, &data);
*out = data.heap;
*out_n = data.heap_size;
return data.ret;
}
/**
* Get VA-contiguous ranges of the mempool memory.
* Each range start and end is aligned to the system page size.
*
* @param[in] mp
* Analyzed mempool.
* @param[in] is_extmem
* Whether the pool is contains only external pinned buffers.
* @param[out] out
* Receives the ranges, caller must release it with free().
* @param[out] out_n
* Receives the number of @p out elements.
*
* @return
* 0 on success, (-1) on failure.
*/
static int
mlx5_get_mempool_ranges(struct rte_mempool *mp, bool is_extmem,
struct mlx5_range **out, unsigned int *out_n)
{
struct mlx5_range *chunks;
unsigned int chunks_n, contig_n, i;
int ret;
/* Collect the pool underlying memory. */
ret = is_extmem ? mlx5_mempool_get_extmem(mp, &chunks, &chunks_n) :
mlx5_mempool_get_chunks(mp, &chunks, &chunks_n);
if (ret < 0)
return ret;
/* Merge adjacent chunks and place them at the beginning. */
qsort(chunks, chunks_n, sizeof(chunks[0]), mlx5_range_compare_start);
contig_n = 1;
for (i = 1; i < chunks_n; i++)
if (chunks[i - 1].end != chunks[i].start) {
chunks[contig_n - 1].end = chunks[i - 1].end;
chunks[contig_n] = chunks[i];
contig_n++;
}
/* Extend the last contiguous chunk to the end of the mempool. */
chunks[contig_n - 1].end = chunks[i - 1].end;
*out = chunks;
*out_n = contig_n;
return 0;
}
/**
* Analyze mempool memory to select memory ranges to register.
*
* @param[in] mp
* Mempool to analyze.
* @param[in] is_extmem
* Whether the pool is contains only external pinned buffers.
* @param[out] out
* Receives memory ranges to register, aligned to the system page size.
* The caller must release them with free().
* @param[out] out_n
* Receives the number of @p out items.
* @param[out] share_hugepage
* Receives True if the entire pool resides within a single hugepage.
*
* @return
* 0 on success, (-1) on failure.
*/
static int
mlx5_mempool_reg_analyze(struct rte_mempool *mp, bool is_extmem,
struct mlx5_range **out, unsigned int *out_n,
bool *share_hugepage)
{
struct mlx5_range *ranges = NULL;
unsigned int i, ranges_n = 0;
struct rte_memseg_list *msl;
if (mlx5_get_mempool_ranges(mp, is_extmem, &ranges, &ranges_n) < 0) {
DRV_LOG(ERR, "Cannot get address ranges for mempool %s",
mp->name);
return -1;
}
/* Check if the hugepage of the pool can be shared. */
*share_hugepage = false;
msl = rte_mem_virt2memseg_list((void *)ranges[0].start);
if (msl != NULL) {
uint64_t hugepage_sz = 0;
/* Check that all ranges are on pages of the same size. */
for (i = 0; i < ranges_n; i++) {
if (hugepage_sz != 0 && hugepage_sz != msl->page_sz)
break;
hugepage_sz = msl->page_sz;
}
if (i == ranges_n) {
/*
* If the entire pool is within one hugepage,
* combine all ranges into one of the hugepage size.
*/
uintptr_t reg_start = ranges[0].start;
uintptr_t reg_end = ranges[ranges_n - 1].end;
uintptr_t hugepage_start =
RTE_ALIGN_FLOOR(reg_start, hugepage_sz);
uintptr_t hugepage_end = hugepage_start + hugepage_sz;
if (reg_end < hugepage_end) {
ranges[0].start = hugepage_start;
ranges[0].end = hugepage_end;
ranges_n = 1;
*share_hugepage = true;
}
}
}
*out = ranges;
*out_n = ranges_n;
return 0;
}
/** Create a registration object for the mempool. */
static struct mlx5_mempool_reg *
mlx5_mempool_reg_create(struct rte_mempool *mp, unsigned int mrs_n,
bool is_extmem)
{
struct mlx5_mempool_reg *mpr = NULL;
mpr = mlx5_malloc(MLX5_MEM_RTE | MLX5_MEM_ZERO,
sizeof(struct mlx5_mempool_reg),
RTE_CACHE_LINE_SIZE, SOCKET_ID_ANY);
if (mpr == NULL) {
DRV_LOG(ERR, "Cannot allocate mempool %s registration object",
mp->name);
return NULL;
}
mpr->mrs = mlx5_malloc(MLX5_MEM_RTE | MLX5_MEM_ZERO,
mrs_n * sizeof(struct mlx5_mempool_mr),
RTE_CACHE_LINE_SIZE, SOCKET_ID_ANY);
if (!mpr->mrs) {
DRV_LOG(ERR, "Cannot allocate mempool %s registration MRs",
mp->name);
mlx5_free(mpr);
return NULL;
}
mpr->mp = mp;
mpr->mrs_n = mrs_n;
mpr->is_extmem = is_extmem;
return mpr;
}
/**
* Destroy a mempool registration object.
*
* @param standalone
* Whether @p mpr owns its MRs exclusively, i.e. they are not shared.
*/
static void
mlx5_mempool_reg_destroy(struct mlx5_mr_share_cache *share_cache,
struct mlx5_mempool_reg *mpr, bool standalone)
{
if (standalone) {
unsigned int i;
for (i = 0; i < mpr->mrs_n; i++)
share_cache->dereg_mr_cb(&mpr->mrs[i].pmd_mr);
mlx5_free(mpr->mrs);
}
mlx5_free(mpr);
}
/** Find registration object of a mempool. */
static struct mlx5_mempool_reg *
mlx5_mempool_reg_lookup(struct mlx5_mr_share_cache *share_cache,
struct rte_mempool *mp)
{
struct mlx5_mempool_reg *mpr;
LIST_FOREACH(mpr, &share_cache->mempool_reg_list, next)
if (mpr->mp == mp)
break;
return mpr;
}
/** Increment reference counters of MRs used in the registration. */
static void
mlx5_mempool_reg_attach(struct mlx5_mempool_reg *mpr)
{
unsigned int i;
for (i = 0; i < mpr->mrs_n; i++)
__atomic_add_fetch(&mpr->mrs[i].refcnt, 1, __ATOMIC_RELAXED);
}
/**
* Decrement reference counters of MRs used in the registration.
*
* @return True if no more references to @p mpr MRs exist, False otherwise.
*/
static bool
mlx5_mempool_reg_detach(struct mlx5_mempool_reg *mpr)
{
unsigned int i;
bool ret = false;
for (i = 0; i < mpr->mrs_n; i++)
ret |= __atomic_sub_fetch(&mpr->mrs[i].refcnt, 1,
__ATOMIC_RELAXED) == 0;
return ret;
}
static int
mlx5_mr_mempool_register_primary(struct mlx5_mr_share_cache *share_cache,
void *pd, struct rte_mempool *mp,
bool is_extmem)
{
struct mlx5_range *ranges = NULL;
struct mlx5_mempool_reg *mpr, *old_mpr, *new_mpr;
unsigned int i, ranges_n;
bool share_hugepage, standalone = false;
int ret = -1;
/* Early check to avoid unnecessary creation of MRs. */
rte_rwlock_read_lock(&share_cache->rwlock);
old_mpr = mlx5_mempool_reg_lookup(share_cache, mp);
rte_rwlock_read_unlock(&share_cache->rwlock);
if (old_mpr != NULL && (!is_extmem || old_mpr->is_extmem)) {
DRV_LOG(DEBUG, "Mempool %s is already registered for PD %p",
mp->name, pd);
rte_errno = EEXIST;
goto exit;
}
if (mlx5_mempool_reg_analyze(mp, is_extmem, &ranges, &ranges_n,
&share_hugepage) < 0) {
DRV_LOG(ERR, "Cannot get mempool %s memory ranges", mp->name);
rte_errno = ENOMEM;
goto exit;
}
new_mpr = mlx5_mempool_reg_create(mp, ranges_n, is_extmem);
if (new_mpr == NULL) {
DRV_LOG(ERR,
"Cannot create a registration object for mempool %s in PD %p",
mp->name, pd);
rte_errno = ENOMEM;
goto exit;
}
/*
* If the entire mempool fits in a single hugepage, the MR for this
* hugepage can be shared across mempools that also fit in it.
*/
if (share_hugepage) {
rte_rwlock_write_lock(&share_cache->rwlock);
LIST_FOREACH(mpr, &share_cache->mempool_reg_list, next) {
if (mpr->mrs[0].pmd_mr.addr == (void *)ranges[0].start)
break;
}
if (mpr != NULL) {
new_mpr->mrs = mpr->mrs;
mlx5_mempool_reg_attach(new_mpr);
LIST_INSERT_HEAD(&share_cache->mempool_reg_list,
new_mpr, next);
}
rte_rwlock_write_unlock(&share_cache->rwlock);
if (mpr != NULL) {
DRV_LOG(DEBUG, "Shared MR %#x in PD %p for mempool %s with mempool %s",
mpr->mrs[0].pmd_mr.lkey, pd, mp->name,
mpr->mp->name);
ret = 0;
goto exit;
}
}
for (i = 0; i < ranges_n; i++) {
struct mlx5_mempool_mr *mr = &new_mpr->mrs[i];
const struct mlx5_range *range = &ranges[i];
size_t len = range->end - range->start;
if (share_cache->reg_mr_cb(pd, (void *)range->start, len,
&mr->pmd_mr) < 0) {
DRV_LOG(ERR,
"Failed to create an MR in PD %p for address range "
"[0x%" PRIxPTR ", 0x%" PRIxPTR "] (%zu bytes) for mempool %s",
pd, range->start, range->end, len, mp->name);
break;
}
DRV_LOG(DEBUG,
"Created a new MR %#x in PD %p for address range "
"[0x%" PRIxPTR ", 0x%" PRIxPTR "] (%zu bytes) for mempool %s",
mr->pmd_mr.lkey, pd, range->start, range->end, len,
mp->name);
}
if (i != ranges_n) {
mlx5_mempool_reg_destroy(share_cache, new_mpr, true);
rte_errno = EINVAL;
goto exit;
}
/* Concurrent registration is not supposed to happen. */
rte_rwlock_write_lock(&share_cache->rwlock);
mpr = mlx5_mempool_reg_lookup(share_cache, mp);
if (mpr == old_mpr && old_mpr != NULL) {
LIST_REMOVE(old_mpr, next);
standalone = mlx5_mempool_reg_detach(mpr);
/* No need to flush the cache: old MRs cannot be in use. */
mpr = NULL;
}
if (mpr == NULL) {
mlx5_mempool_reg_attach(new_mpr);
LIST_INSERT_HEAD(&share_cache->mempool_reg_list, new_mpr, next);
ret = 0;
}
rte_rwlock_write_unlock(&share_cache->rwlock);
if (mpr != NULL) {
DRV_LOG(DEBUG, "Mempool %s is already registered for PD %p",
mp->name, pd);
mlx5_mempool_reg_destroy(share_cache, new_mpr, true);
rte_errno = EEXIST;
goto exit;
} else if (old_mpr != NULL) {
DRV_LOG(DEBUG, "Mempool %s registration for PD %p updated for external memory",
mp->name, pd);
mlx5_mempool_reg_destroy(share_cache, old_mpr, standalone);
}
exit:
free(ranges);
return ret;
}
static int
mlx5_mr_mempool_register_secondary(struct mlx5_common_device *cdev,
struct rte_mempool *mp, bool is_extmem)
{
return mlx5_mp_req_mempool_reg(cdev, mp, true, is_extmem);
}
/**
* Register the memory of a mempool in the protection domain.
*
* @param cdev
* Pointer to the mlx5 common device.
* @param mp
* Mempool to register.
*
* @return
* 0 on success, (-1) on failure and rte_errno is set.
*/
int
mlx5_mr_mempool_register(struct mlx5_common_device *cdev,
struct rte_mempool *mp, bool is_extmem)
{
if (mp->flags & RTE_MEMPOOL_F_NON_IO)
return 0;
switch (rte_eal_process_type()) {
case RTE_PROC_PRIMARY:
return mlx5_mr_mempool_register_primary(&cdev->mr_scache,
cdev->pd, mp,
is_extmem);
case RTE_PROC_SECONDARY:
return mlx5_mr_mempool_register_secondary(cdev, mp, is_extmem);
default:
return -1;
}
}
static int
mlx5_mr_mempool_unregister_primary(struct mlx5_mr_share_cache *share_cache,
struct rte_mempool *mp)
{
struct mlx5_mempool_reg *mpr;
bool standalone = false;
rte_rwlock_write_lock(&share_cache->rwlock);
LIST_FOREACH(mpr, &share_cache->mempool_reg_list, next)
if (mpr->mp == mp) {
LIST_REMOVE(mpr, next);
standalone = mlx5_mempool_reg_detach(mpr);
if (standalone)
/*
* The unlock operation below provides a memory
* barrier due to its store-release semantics.
*/
++share_cache->dev_gen;
break;
}
rte_rwlock_write_unlock(&share_cache->rwlock);
if (mpr == NULL) {
rte_errno = ENOENT;
return -1;
}
mlx5_mempool_reg_destroy(share_cache, mpr, standalone);
return 0;
}
static int
mlx5_mr_mempool_unregister_secondary(struct mlx5_common_device *cdev,
struct rte_mempool *mp)
{
return mlx5_mp_req_mempool_reg(cdev, mp, false, false /* is_extmem */);
}
/**
* Unregister the memory of a mempool from the protection domain.
*
* @param cdev
* Pointer to the mlx5 common device.
* @param mp
* Mempool to unregister.
*
* @return
* 0 on success, (-1) on failure and rte_errno is set.
*/
int
mlx5_mr_mempool_unregister(struct mlx5_common_device *cdev,
struct rte_mempool *mp)
{
if (mp->flags & RTE_MEMPOOL_F_NON_IO)
return 0;
switch (rte_eal_process_type()) {
case RTE_PROC_PRIMARY:
return mlx5_mr_mempool_unregister_primary(&cdev->mr_scache, mp);
case RTE_PROC_SECONDARY:
return mlx5_mr_mempool_unregister_secondary(cdev, mp);
default:
return -1;
}
}
/**
* Lookup a MR key by and address in a registered mempool.
*
* @param mpr
* Mempool registration object.
* @param addr
* Address within the mempool.
* @param entry
* Bottom-half cache entry to fill.
*
* @return
* MR key or UINT32_MAX on failure, which can only happen
* if the address is not from within the mempool.
*/
static uint32_t
mlx5_mempool_reg_addr2mr(struct mlx5_mempool_reg *mpr, uintptr_t addr,
struct mr_cache_entry *entry)
{
uint32_t lkey = UINT32_MAX;
unsigned int i;
for (i = 0; i < mpr->mrs_n; i++) {
const struct mlx5_pmd_mr *mr = &mpr->mrs[i].pmd_mr;
uintptr_t mr_start = (uintptr_t)mr->addr;
uintptr_t mr_end = mr_start + mr->len;
if (mr_start <= addr && addr < mr_end) {
lkey = rte_cpu_to_be_32(mr->lkey);
entry->start = mr_start;
entry->end = mr_end;
entry->lkey = lkey;
break;
}
}
return lkey;
}
/**
* Update bottom-half cache from the list of mempool registrations.
*
* @param mr_ctrl
* Per-queue MR control handle.
* @param entry
* Pointer to an entry in the bottom-half cache to update
* with the MR lkey looked up.
* @param mp
* Mempool containing the address.
* @param addr
* Address to lookup.
* @return
* MR lkey on success, UINT32_MAX on failure.
*/
static uint32_t
mlx5_lookup_mempool_regs(struct mlx5_mr_ctrl *mr_ctrl,
struct mr_cache_entry *entry,
struct rte_mempool *mp, uintptr_t addr)
{
struct mlx5_mr_share_cache *share_cache =
container_of(mr_ctrl->dev_gen_ptr, struct mlx5_mr_share_cache,
dev_gen);
struct mlx5_mr_btree *bt = &mr_ctrl->cache_bh;
struct mlx5_mempool_reg *mpr;
uint32_t lkey = UINT32_MAX;
/* If local cache table is full, try to double it. */
if (unlikely(bt->len == bt->size))
mr_btree_expand(bt, bt->size << 1);
/* Look up in mempool registrations. */
rte_rwlock_read_lock(&share_cache->rwlock);
mpr = mlx5_mempool_reg_lookup(share_cache, mp);
if (mpr != NULL)
lkey = mlx5_mempool_reg_addr2mr(mpr, addr, entry);
rte_rwlock_read_unlock(&share_cache->rwlock);
/*
* Update local cache. Even if it fails, return the found entry
* to update top-half cache. Next time, this entry will be found
* in the global cache.
*/
if (lkey != UINT32_MAX)
mr_btree_insert(bt, entry);
return lkey;
}
/**
* Populate cache with LKeys of all MRs used by the mempool.
* It is intended to be used to register Rx mempools in advance.
*
* @param mr_ctrl
* Per-queue MR control handle.
* @param mp
* Registered memory pool.
*
* @return
* 0 on success, (-1) on failure and rte_errno is set.
*/
int
mlx5_mr_mempool_populate_cache(struct mlx5_mr_ctrl *mr_ctrl,
struct rte_mempool *mp)
{
struct mlx5_mr_share_cache *share_cache =
container_of(mr_ctrl->dev_gen_ptr, struct mlx5_mr_share_cache,
dev_gen);
struct mlx5_mr_btree *bt = &mr_ctrl->cache_bh;
struct mlx5_mempool_reg *mpr;
unsigned int i;
/*
* Registration is valid after the lock is released,
* because the function is called after the mempool is registered.
*/
rte_rwlock_read_lock(&share_cache->rwlock);
mpr = mlx5_mempool_reg_lookup(share_cache, mp);
rte_rwlock_read_unlock(&share_cache->rwlock);
if (mpr == NULL) {
DRV_LOG(ERR, "Mempool %s is not registered", mp->name);
rte_errno = ENOENT;
return -1;
}
for (i = 0; i < mpr->mrs_n; i++) {
struct mlx5_mempool_mr *mr = &mpr->mrs[i];
struct mr_cache_entry entry;
uint32_t lkey;
uint32_t idx;
lkey = mr_btree_lookup(bt, &idx, (uintptr_t)mr->pmd_mr.addr);
if (lkey != UINT32_MAX)
continue;
if (bt->len == bt->size)
mr_btree_expand(bt, bt->size << 1);
entry.start = (uintptr_t)mr->pmd_mr.addr;
entry.end = entry.start + mr->pmd_mr.len;
entry.lkey = rte_cpu_to_be_32(mr->pmd_mr.lkey);
if (mr_btree_insert(bt, &entry) < 0) {
DRV_LOG(ERR, "Cannot insert cache entry for mempool %s MR %08x",
mp->name, entry.lkey);
rte_errno = EINVAL;
return -1;
}
}
return 0;
}
/**
* Bottom-half lookup for the address from the mempool.
*
* @param mr_ctrl
* Per-queue MR control handle.
* @param mp
* Mempool containing the address.
* @param addr
* Address to lookup.
* @return
* MR lkey on success, UINT32_MAX on failure.
*/
uint32_t
mlx5_mr_mempool2mr_bh(struct mlx5_mr_ctrl *mr_ctrl,
struct rte_mempool *mp, uintptr_t addr)
{
struct mr_cache_entry *repl = &mr_ctrl->cache[mr_ctrl->head];
uint32_t lkey;
uint32_t bh_idx = 0;
/* Binary-search MR translation table. */
lkey = mr_btree_lookup(&mr_ctrl->cache_bh, &bh_idx, addr);
/* Update top-half cache. */
if (likely(lkey != UINT32_MAX)) {
*repl = (*mr_ctrl->cache_bh.table)[bh_idx];
} else {
lkey = mlx5_lookup_mempool_regs(mr_ctrl, repl, mp, addr);
/* Can only fail if the address is not from the mempool. */
if (unlikely(lkey == UINT32_MAX))
return UINT32_MAX;
}
/* Update the most recently used entry. */
mr_ctrl->mru = mr_ctrl->head;
/* Point to the next victim, the oldest. */
mr_ctrl->head = (mr_ctrl->head + 1) % MLX5_MR_CACHE_N;
return lkey;
}
uint32_t
mlx5_mr_mb2mr_bh(struct mlx5_mr_ctrl *mr_ctrl, struct rte_mbuf *mb)
{
struct rte_mempool *mp;
struct mlx5_mprq_buf *buf;
uint32_t lkey;
uintptr_t addr = (uintptr_t)mb->buf_addr;
struct mlx5_mr_share_cache *share_cache =
container_of(mr_ctrl->dev_gen_ptr, struct mlx5_mr_share_cache,
dev_gen);
struct mlx5_common_device *cdev =
container_of(share_cache, struct mlx5_common_device, mr_scache);
bool external, mprq, pinned = false;
/* Recover MPRQ mempool. */
external = RTE_MBUF_HAS_EXTBUF(mb);
if (external && mb->shinfo->free_cb == mlx5_mprq_buf_free_cb) {
mprq = true;
buf = mb->shinfo->fcb_opaque;
mp = buf->mp;
} else {
mprq = false;
mp = mlx5_mb2mp(mb);
pinned = rte_pktmbuf_priv_flags(mp) &
RTE_PKTMBUF_POOL_F_PINNED_EXT_BUF;
}
if (!external || mprq || pinned) {
lkey = mlx5_mr_mempool2mr_bh(mr_ctrl, mp, addr);
if (lkey != UINT32_MAX)
return lkey;
/* MPRQ is always registered. */
MLX5_ASSERT(!mprq);
}
/* Register pinned external memory if the mempool is not used for Rx. */
if (cdev->config.mr_mempool_reg_en && pinned) {
if (mlx5_mr_mempool_register(cdev, mp, true) < 0)
return UINT32_MAX;
lkey = mlx5_mr_mempool2mr_bh(mr_ctrl, mp, addr);
MLX5_ASSERT(lkey != UINT32_MAX);
return lkey;
}
/* Fallback to generic mechanism in corner cases. */
return mlx5_mr_addr2mr_bh(mr_ctrl, addr);
}