f-stack/dpdk/app/test-flow-perf/main.c

2148 lines
59 KiB
C

/* SPDX-License-Identifier: BSD-3-Clause
* Copyright 2020 Mellanox Technologies, Ltd
*
* This file contain the application main file
* This application provides the user the ability to test the
* insertion rate for specific rte_flow rule under stress state ~4M rule/
*
* Then it will also provide packet per second measurement after installing
* all rules, the user may send traffic to test the PPS that match the rules
* after all rules are installed, to check performance or functionality after
* the stress.
*
* The flows insertion will go for all ports first, then it will print the
* results, after that the application will go into forwarding packets mode
* it will start receiving traffic if any and then forwarding it back and
* gives packet per second measurement.
*/
#include <locale.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <stdint.h>
#include <inttypes.h>
#include <stdarg.h>
#include <errno.h>
#include <getopt.h>
#include <stdbool.h>
#include <sys/time.h>
#include <signal.h>
#include <unistd.h>
#include <rte_malloc.h>
#include <rte_mempool.h>
#include <rte_mbuf.h>
#include <rte_ethdev.h>
#include <rte_flow.h>
#include <rte_mtr.h>
#include "config.h"
#include "actions_gen.h"
#include "flow_gen.h"
#define MAX_BATCHES_COUNT 100
#define DEFAULT_RULES_COUNT 4000000
#define DEFAULT_RULES_BATCH 100000
#define DEFAULT_GROUP 0
struct rte_flow *flow;
static uint8_t flow_group;
static uint64_t encap_data;
static uint64_t decap_data;
static uint64_t all_actions[RTE_COLORS][MAX_ACTIONS_NUM];
static char *actions_str[RTE_COLORS];
static uint64_t flow_items[MAX_ITEMS_NUM];
static uint64_t flow_actions[MAX_ACTIONS_NUM];
static uint64_t flow_attrs[MAX_ATTRS_NUM];
static uint32_t policy_id[MAX_PORTS];
static uint8_t items_idx, actions_idx, attrs_idx;
static uint64_t ports_mask;
static uint16_t dst_ports[RTE_MAX_ETHPORTS];
static volatile bool force_quit;
static bool dump_iterations;
static bool delete_flag;
static bool dump_socket_mem_flag;
static bool enable_fwd;
static bool unique_data;
static bool policy_mtr;
static bool packet_mode;
static uint8_t rx_queues_count;
static uint8_t tx_queues_count;
static uint8_t rxd_count;
static uint8_t txd_count;
static uint32_t mbuf_size;
static uint32_t mbuf_cache_size;
static uint32_t total_mbuf_num;
static struct rte_mempool *mbuf_mp;
static uint32_t nb_lcores;
static uint32_t rules_count;
static uint32_t rules_batch;
static uint32_t hairpin_queues_num; /* total hairpin q number - default: 0 */
static uint32_t nb_lcores;
static uint8_t max_priority;
static uint32_t rand_seed;
static uint64_t meter_profile_values[3]; /* CIR CBS EBS values. */
#define MAX_PKT_BURST 32
#define LCORE_MODE_PKT 1
#define LCORE_MODE_STATS 2
#define MAX_STREAMS 64
#define METER_CREATE 1
#define METER_DELETE 2
struct stream {
int tx_port;
int tx_queue;
int rx_port;
int rx_queue;
};
struct lcore_info {
int mode;
int streams_nb;
struct stream streams[MAX_STREAMS];
/* stats */
uint64_t tx_pkts;
uint64_t tx_drops;
uint64_t rx_pkts;
struct rte_mbuf *pkts[MAX_PKT_BURST];
} __rte_cache_aligned;
static struct lcore_info lcore_infos[RTE_MAX_LCORE];
struct used_cpu_time {
double insertion[MAX_PORTS][RTE_MAX_LCORE];
double deletion[MAX_PORTS][RTE_MAX_LCORE];
};
struct multi_cores_pool {
uint32_t cores_count;
uint32_t rules_count;
struct used_cpu_time meters_record;
struct used_cpu_time flows_record;
int64_t last_alloc[RTE_MAX_LCORE];
int64_t current_alloc[RTE_MAX_LCORE];
} __rte_cache_aligned;
static struct multi_cores_pool mc_pool = {
.cores_count = 1,
};
static const struct option_dict {
const char *str;
const uint64_t mask;
uint64_t *map;
uint8_t *map_idx;
} flow_options[] = {
{
.str = "ether",
.mask = FLOW_ITEM_MASK(RTE_FLOW_ITEM_TYPE_ETH),
.map = &flow_items[0],
.map_idx = &items_idx
},
{
.str = "ipv4",
.mask = FLOW_ITEM_MASK(RTE_FLOW_ITEM_TYPE_IPV4),
.map = &flow_items[0],
.map_idx = &items_idx
},
{
.str = "ipv6",
.mask = FLOW_ITEM_MASK(RTE_FLOW_ITEM_TYPE_IPV6),
.map = &flow_items[0],
.map_idx = &items_idx
},
{
.str = "vlan",
.mask = FLOW_ITEM_MASK(RTE_FLOW_ITEM_TYPE_VLAN),
.map = &flow_items[0],
.map_idx = &items_idx
},
{
.str = "tcp",
.mask = FLOW_ITEM_MASK(RTE_FLOW_ITEM_TYPE_TCP),
.map = &flow_items[0],
.map_idx = &items_idx
},
{
.str = "udp",
.mask = FLOW_ITEM_MASK(RTE_FLOW_ITEM_TYPE_UDP),
.map = &flow_items[0],
.map_idx = &items_idx
},
{
.str = "vxlan",
.mask = FLOW_ITEM_MASK(RTE_FLOW_ITEM_TYPE_VXLAN),
.map = &flow_items[0],
.map_idx = &items_idx
},
{
.str = "vxlan-gpe",
.mask = FLOW_ITEM_MASK(RTE_FLOW_ITEM_TYPE_VXLAN_GPE),
.map = &flow_items[0],
.map_idx = &items_idx
},
{
.str = "gre",
.mask = FLOW_ITEM_MASK(RTE_FLOW_ITEM_TYPE_GRE),
.map = &flow_items[0],
.map_idx = &items_idx
},
{
.str = "geneve",
.mask = FLOW_ITEM_MASK(RTE_FLOW_ITEM_TYPE_GENEVE),
.map = &flow_items[0],
.map_idx = &items_idx
},
{
.str = "gtp",
.mask = FLOW_ITEM_MASK(RTE_FLOW_ITEM_TYPE_GTP),
.map = &flow_items[0],
.map_idx = &items_idx
},
{
.str = "meta",
.mask = FLOW_ITEM_MASK(RTE_FLOW_ITEM_TYPE_META),
.map = &flow_items[0],
.map_idx = &items_idx
},
{
.str = "tag",
.mask = FLOW_ITEM_MASK(RTE_FLOW_ITEM_TYPE_TAG),
.map = &flow_items[0],
.map_idx = &items_idx
},
{
.str = "icmpv4",
.mask = FLOW_ITEM_MASK(RTE_FLOW_ITEM_TYPE_ICMP),
.map = &flow_items[0],
.map_idx = &items_idx
},
{
.str = "icmpv6",
.mask = FLOW_ITEM_MASK(RTE_FLOW_ITEM_TYPE_ICMP6),
.map = &flow_items[0],
.map_idx = &items_idx
},
{
.str = "ingress",
.mask = INGRESS,
.map = &flow_attrs[0],
.map_idx = &attrs_idx
},
{
.str = "egress",
.mask = EGRESS,
.map = &flow_attrs[0],
.map_idx = &attrs_idx
},
{
.str = "transfer",
.mask = TRANSFER,
.map = &flow_attrs[0],
.map_idx = &attrs_idx
},
{
.str = "port-id",
.mask = FLOW_ACTION_MASK(RTE_FLOW_ACTION_TYPE_PORT_ID),
.map = &flow_actions[0],
.map_idx = &actions_idx
},
{
.str = "rss",
.mask = FLOW_ACTION_MASK(RTE_FLOW_ACTION_TYPE_RSS),
.map = &flow_actions[0],
.map_idx = &actions_idx
},
{
.str = "queue",
.mask = FLOW_ACTION_MASK(RTE_FLOW_ACTION_TYPE_QUEUE),
.map = &flow_actions[0],
.map_idx = &actions_idx
},
{
.str = "jump",
.mask = FLOW_ACTION_MASK(RTE_FLOW_ACTION_TYPE_JUMP),
.map = &flow_actions[0],
.map_idx = &actions_idx
},
{
.str = "mark",
.mask = FLOW_ACTION_MASK(RTE_FLOW_ACTION_TYPE_MARK),
.map = &flow_actions[0],
.map_idx = &actions_idx
},
{
.str = "count",
.mask = FLOW_ACTION_MASK(RTE_FLOW_ACTION_TYPE_COUNT),
.map = &flow_actions[0],
.map_idx = &actions_idx
},
{
.str = "set-meta",
.mask = FLOW_ACTION_MASK(RTE_FLOW_ACTION_TYPE_SET_META),
.map = &flow_actions[0],
.map_idx = &actions_idx
},
{
.str = "set-tag",
.mask = FLOW_ACTION_MASK(RTE_FLOW_ACTION_TYPE_SET_TAG),
.map = &flow_actions[0],
.map_idx = &actions_idx
},
{
.str = "drop",
.mask = FLOW_ACTION_MASK(RTE_FLOW_ACTION_TYPE_DROP),
.map = &flow_actions[0],
.map_idx = &actions_idx
},
{
.str = "set-src-mac",
.mask = FLOW_ACTION_MASK(
RTE_FLOW_ACTION_TYPE_SET_MAC_SRC
),
.map = &flow_actions[0],
.map_idx = &actions_idx
},
{
.str = "set-dst-mac",
.mask = FLOW_ACTION_MASK(
RTE_FLOW_ACTION_TYPE_SET_MAC_DST
),
.map = &flow_actions[0],
.map_idx = &actions_idx
},
{
.str = "set-src-ipv4",
.mask = FLOW_ACTION_MASK(
RTE_FLOW_ACTION_TYPE_SET_IPV4_SRC
),
.map = &flow_actions[0],
.map_idx = &actions_idx
},
{
.str = "set-dst-ipv4",
.mask = FLOW_ACTION_MASK(
RTE_FLOW_ACTION_TYPE_SET_IPV4_DST
),
.map = &flow_actions[0],
.map_idx = &actions_idx
},
{
.str = "set-src-ipv6",
.mask = FLOW_ACTION_MASK(
RTE_FLOW_ACTION_TYPE_SET_IPV6_SRC
),
.map = &flow_actions[0],
.map_idx = &actions_idx
},
{
.str = "set-dst-ipv6",
.mask = FLOW_ACTION_MASK(
RTE_FLOW_ACTION_TYPE_SET_IPV6_DST
),
.map = &flow_actions[0],
.map_idx = &actions_idx
},
{
.str = "set-src-tp",
.mask = FLOW_ACTION_MASK(
RTE_FLOW_ACTION_TYPE_SET_TP_SRC
),
.map = &flow_actions[0],
.map_idx = &actions_idx
},
{
.str = "set-dst-tp",
.mask = FLOW_ACTION_MASK(
RTE_FLOW_ACTION_TYPE_SET_TP_DST
),
.map = &flow_actions[0],
.map_idx = &actions_idx
},
{
.str = "inc-tcp-ack",
.mask = FLOW_ACTION_MASK(
RTE_FLOW_ACTION_TYPE_INC_TCP_ACK
),
.map = &flow_actions[0],
.map_idx = &actions_idx
},
{
.str = "dec-tcp-ack",
.mask = FLOW_ACTION_MASK(
RTE_FLOW_ACTION_TYPE_DEC_TCP_ACK
),
.map = &flow_actions[0],
.map_idx = &actions_idx
},
{
.str = "inc-tcp-seq",
.mask = FLOW_ACTION_MASK(
RTE_FLOW_ACTION_TYPE_INC_TCP_SEQ
),
.map = &flow_actions[0],
.map_idx = &actions_idx
},
{
.str = "dec-tcp-seq",
.mask = FLOW_ACTION_MASK(
RTE_FLOW_ACTION_TYPE_DEC_TCP_SEQ
),
.map = &flow_actions[0],
.map_idx = &actions_idx
},
{
.str = "set-ttl",
.mask = FLOW_ACTION_MASK(
RTE_FLOW_ACTION_TYPE_SET_TTL
),
.map = &flow_actions[0],
.map_idx = &actions_idx
},
{
.str = "dec-ttl",
.mask = FLOW_ACTION_MASK(
RTE_FLOW_ACTION_TYPE_DEC_TTL
),
.map = &flow_actions[0],
.map_idx = &actions_idx
},
{
.str = "set-ipv4-dscp",
.mask = FLOW_ACTION_MASK(
RTE_FLOW_ACTION_TYPE_SET_IPV4_DSCP
),
.map = &flow_actions[0],
.map_idx = &actions_idx
},
{
.str = "set-ipv6-dscp",
.mask = FLOW_ACTION_MASK(
RTE_FLOW_ACTION_TYPE_SET_IPV6_DSCP
),
.map = &flow_actions[0],
.map_idx = &actions_idx
},
{
.str = "flag",
.mask = FLOW_ACTION_MASK(
RTE_FLOW_ACTION_TYPE_FLAG
),
.map = &flow_actions[0],
.map_idx = &actions_idx
},
{
.str = "meter",
.mask = FLOW_ACTION_MASK(
RTE_FLOW_ACTION_TYPE_METER
),
.map = &flow_actions[0],
.map_idx = &actions_idx
},
{
.str = "vxlan-encap",
.mask = FLOW_ACTION_MASK(
RTE_FLOW_ACTION_TYPE_VXLAN_ENCAP
),
.map = &flow_actions[0],
.map_idx = &actions_idx
},
{
.str = "vxlan-decap",
.mask = FLOW_ACTION_MASK(
RTE_FLOW_ACTION_TYPE_VXLAN_DECAP
),
.map = &flow_actions[0],
.map_idx = &actions_idx
},
};
static void
usage(char *progname)
{
printf("\nusage: %s\n", progname);
printf("\nControl configurations:\n");
printf(" --rules-count=N: to set the number of needed"
" rules to insert, default is %d\n", DEFAULT_RULES_COUNT);
printf(" --rules-batch=N: set number of batched rules,"
" default is %d\n", DEFAULT_RULES_BATCH);
printf(" --dump-iterations: To print rates for each"
" iteration\n");
printf(" --deletion-rate: Enable deletion rate"
" calculations\n");
printf(" --dump-socket-mem: To dump all socket memory\n");
printf(" --enable-fwd: To enable packets forwarding"
" after insertion\n");
printf(" --portmask=N: hexadecimal bitmask of ports used\n");
printf(" --random-priority=N,S: use random priority levels "
"from 0 to (N - 1) for flows "
"and S as seed for pseudo-random number generator\n");
printf(" --unique-data: flag to set using unique data for all"
" actions that support data, such as header modify and encap actions\n");
printf(" --meter-profile=cir,cbs,ebs: set CIR CBS EBS parameters in meter"
" profile, default values are %d,%d,%d\n", METER_CIR,
METER_CIR / 8, 0);
printf(" --packet-mode: to enable packet mode for meter profile\n");
printf("To set flow attributes:\n");
printf(" --ingress: set ingress attribute in flows\n");
printf(" --egress: set egress attribute in flows\n");
printf(" --transfer: set transfer attribute in flows\n");
printf(" --group=N: set group for all flows,"
" default is %d\n", DEFAULT_GROUP);
printf(" --cores=N: to set the number of needed "
"cores to insert rte_flow rules, default is 1\n");
printf(" --rxq=N: to set the count of receive queues\n");
printf(" --txq=N: to set the count of send queues\n");
printf(" --rxd=N: to set the count of rxd\n");
printf(" --txd=N: to set the count of txd\n");
printf(" --mbuf-size=N: to set the size of mbuf\n");
printf(" --mbuf-cache-size=N: to set the size of mbuf cache\n");
printf(" --total-mbuf-count=N: to set the count of total mbuf count\n");
printf("To set flow items:\n");
printf(" --ether: add ether layer in flow items\n");
printf(" --vlan: add vlan layer in flow items\n");
printf(" --ipv4: add ipv4 layer in flow items\n");
printf(" --ipv6: add ipv6 layer in flow items\n");
printf(" --tcp: add tcp layer in flow items\n");
printf(" --udp: add udp layer in flow items\n");
printf(" --vxlan: add vxlan layer in flow items\n");
printf(" --vxlan-gpe: add vxlan-gpe layer in flow items\n");
printf(" --gre: add gre layer in flow items\n");
printf(" --geneve: add geneve layer in flow items\n");
printf(" --gtp: add gtp layer in flow items\n");
printf(" --meta: add meta layer in flow items\n");
printf(" --tag: add tag layer in flow items\n");
printf(" --icmpv4: add icmpv4 layer in flow items\n");
printf(" --icmpv6: add icmpv6 layer in flow items\n");
printf("To set flow actions:\n");
printf(" --port-id: add port-id action in flow actions\n");
printf(" --rss: add rss action in flow actions\n");
printf(" --queue: add queue action in flow actions\n");
printf(" --jump: add jump action in flow actions\n");
printf(" --mark: add mark action in flow actions\n");
printf(" --count: add count action in flow actions\n");
printf(" --set-meta: add set meta action in flow actions\n");
printf(" --set-tag: add set tag action in flow actions\n");
printf(" --drop: add drop action in flow actions\n");
printf(" --hairpin-queue=N: add hairpin-queue action in flow actions\n");
printf(" --hairpin-rss=N: add hairpin-rss action in flow actions\n");
printf(" --set-src-mac: add set src mac action to flow actions\n"
"Src mac to be set is random each flow\n");
printf(" --set-dst-mac: add set dst mac action to flow actions\n"
"Dst mac to be set is random each flow\n");
printf(" --set-src-ipv4: add set src ipv4 action to flow actions\n"
"Src ipv4 to be set is random each flow\n");
printf(" --set-dst-ipv4 add set dst ipv4 action to flow actions\n"
"Dst ipv4 to be set is random each flow\n");
printf(" --set-src-ipv6: add set src ipv6 action to flow actions\n"
"Src ipv6 to be set is random each flow\n");
printf(" --set-dst-ipv6: add set dst ipv6 action to flow actions\n"
"Dst ipv6 to be set is random each flow\n");
printf(" --set-src-tp: add set src tp action to flow actions\n"
"Src tp to be set is random each flow\n");
printf(" --set-dst-tp: add set dst tp action to flow actions\n"
"Dst tp to be set is random each flow\n");
printf(" --inc-tcp-ack: add inc tcp ack action to flow actions\n"
"tcp ack will be increments by 1\n");
printf(" --dec-tcp-ack: add dec tcp ack action to flow actions\n"
"tcp ack will be decrements by 1\n");
printf(" --inc-tcp-seq: add inc tcp seq action to flow actions\n"
"tcp seq will be increments by 1\n");
printf(" --dec-tcp-seq: add dec tcp seq action to flow actions\n"
"tcp seq will be decrements by 1\n");
printf(" --set-ttl: add set ttl action to flow actions\n"
"L3 ttl to be set is random each flow\n");
printf(" --dec-ttl: add dec ttl action to flow actions\n"
"L3 ttl will be decrements by 1\n");
printf(" --set-ipv4-dscp: add set ipv4 dscp action to flow actions\n"
"ipv4 dscp value to be set is random each flow\n");
printf(" --set-ipv6-dscp: add set ipv6 dscp action to flow actions\n"
"ipv6 dscp value to be set is random each flow\n");
printf(" --flag: add flag action to flow actions\n");
printf(" --meter: add meter action to flow actions\n");
printf(" --policy-mtr=\"g1,g2:y1:r1\": to create meter with specified "
"colored actions\n");
printf(" --raw-encap=<data>: add raw encap action to flow actions\n"
"Data is the data needed to be encaped\n"
"Example: raw-encap=ether,ipv4,udp,vxlan\n");
printf(" --raw-decap=<data>: add raw decap action to flow actions\n"
"Data is the data needed to be decaped\n"
"Example: raw-decap=ether,ipv4,udp,vxlan\n");
printf(" --vxlan-encap: add vxlan-encap action to flow actions\n"
"Encapped data is fixed with pattern: ether,ipv4,udp,vxlan\n"
"With fixed values\n");
printf(" --vxlan-decap: add vxlan_decap action to flow actions\n");
}
static void
read_meter_policy(char *prog, char *arg)
{
char *token;
size_t i, j, k;
j = 0;
k = 0;
policy_mtr = true;
token = strsep(&arg, ":\0");
while (token != NULL && j < RTE_COLORS) {
actions_str[j++] = token;
token = strsep(&arg, ":\0");
}
j = 0;
token = strtok(actions_str[0], ",\0");
while (token == NULL && j < RTE_COLORS - 1)
token = strtok(actions_str[++j], ",\0");
while (j < RTE_COLORS && token != NULL) {
for (i = 0; i < RTE_DIM(flow_options); i++) {
if (!strcmp(token, flow_options[i].str)) {
all_actions[j][k++] = flow_options[i].mask;
break;
}
}
/* Reached last action with no match */
if (i >= RTE_DIM(flow_options)) {
fprintf(stderr, "Invalid colored actions: %s\n", token);
usage(prog);
rte_exit(EXIT_SUCCESS, "Invalid colored actions\n");
}
token = strtok(NULL, ",\0");
while (!token && j < RTE_COLORS - 1) {
token = strtok(actions_str[++j], ",\0");
k = 0;
}
}
}
static void
args_parse(int argc, char **argv)
{
uint64_t pm, seed;
char **argvopt;
uint32_t prio;
char *token;
char *end;
int n, opt;
int opt_idx;
size_t i;
static const struct option lgopts[] = {
/* Control */
{ "help", 0, 0, 0 },
{ "rules-count", 1, 0, 0 },
{ "rules-batch", 1, 0, 0 },
{ "dump-iterations", 0, 0, 0 },
{ "deletion-rate", 0, 0, 0 },
{ "dump-socket-mem", 0, 0, 0 },
{ "enable-fwd", 0, 0, 0 },
{ "unique-data", 0, 0, 0 },
{ "portmask", 1, 0, 0 },
{ "cores", 1, 0, 0 },
{ "random-priority", 1, 0, 0 },
{ "meter-profile-alg", 1, 0, 0 },
{ "rxq", 1, 0, 0 },
{ "txq", 1, 0, 0 },
{ "rxd", 1, 0, 0 },
{ "txd", 1, 0, 0 },
{ "mbuf-size", 1, 0, 0 },
{ "mbuf-cache-size", 1, 0, 0 },
{ "total-mbuf-count", 1, 0, 0 },
/* Attributes */
{ "ingress", 0, 0, 0 },
{ "egress", 0, 0, 0 },
{ "transfer", 0, 0, 0 },
{ "group", 1, 0, 0 },
/* Items */
{ "ether", 0, 0, 0 },
{ "vlan", 0, 0, 0 },
{ "ipv4", 0, 0, 0 },
{ "ipv6", 0, 0, 0 },
{ "tcp", 0, 0, 0 },
{ "udp", 0, 0, 0 },
{ "vxlan", 0, 0, 0 },
{ "vxlan-gpe", 0, 0, 0 },
{ "gre", 0, 0, 0 },
{ "geneve", 0, 0, 0 },
{ "gtp", 0, 0, 0 },
{ "meta", 0, 0, 0 },
{ "tag", 0, 0, 0 },
{ "icmpv4", 0, 0, 0 },
{ "icmpv6", 0, 0, 0 },
/* Actions */
{ "port-id", 2, 0, 0 },
{ "rss", 0, 0, 0 },
{ "queue", 0, 0, 0 },
{ "jump", 0, 0, 0 },
{ "mark", 0, 0, 0 },
{ "count", 0, 0, 0 },
{ "set-meta", 0, 0, 0 },
{ "set-tag", 0, 0, 0 },
{ "drop", 0, 0, 0 },
{ "hairpin-queue", 1, 0, 0 },
{ "hairpin-rss", 1, 0, 0 },
{ "set-src-mac", 0, 0, 0 },
{ "set-dst-mac", 0, 0, 0 },
{ "set-src-ipv4", 0, 0, 0 },
{ "set-dst-ipv4", 0, 0, 0 },
{ "set-src-ipv6", 0, 0, 0 },
{ "set-dst-ipv6", 0, 0, 0 },
{ "set-src-tp", 0, 0, 0 },
{ "set-dst-tp", 0, 0, 0 },
{ "inc-tcp-ack", 0, 0, 0 },
{ "dec-tcp-ack", 0, 0, 0 },
{ "inc-tcp-seq", 0, 0, 0 },
{ "dec-tcp-seq", 0, 0, 0 },
{ "set-ttl", 0, 0, 0 },
{ "dec-ttl", 0, 0, 0 },
{ "set-ipv4-dscp", 0, 0, 0 },
{ "set-ipv6-dscp", 0, 0, 0 },
{ "flag", 0, 0, 0 },
{ "meter", 0, 0, 0 },
{ "raw-encap", 1, 0, 0 },
{ "raw-decap", 1, 0, 0 },
{ "vxlan-encap", 0, 0, 0 },
{ "vxlan-decap", 0, 0, 0 },
{ "policy-mtr", 1, 0, 0 },
{ "meter-profile", 1, 0, 0 },
{ "packet-mode", 0, 0, 0 },
{ 0, 0, 0, 0 },
};
RTE_ETH_FOREACH_DEV(i)
ports_mask |= 1 << i;
for (i = 0; i < RTE_MAX_ETHPORTS; i++)
dst_ports[i] = PORT_ID_DST;
hairpin_queues_num = 0;
argvopt = argv;
printf(":: Flow -> ");
while ((opt = getopt_long(argc, argvopt, "",
lgopts, &opt_idx)) != EOF) {
switch (opt) {
case 0:
if (strcmp(lgopts[opt_idx].name, "help") == 0) {
usage(argv[0]);
exit(EXIT_SUCCESS);
}
if (strcmp(lgopts[opt_idx].name, "group") == 0) {
n = atoi(optarg);
if (n >= 0)
flow_group = n;
else
rte_exit(EXIT_FAILURE,
"flow group should be >= 0\n");
printf("group %d / ", flow_group);
}
for (i = 0; i < RTE_DIM(flow_options); i++)
if (strcmp(lgopts[opt_idx].name,
flow_options[i].str) == 0) {
flow_options[i].map[
(*flow_options[i].map_idx)++] =
flow_options[i].mask;
printf("%s / ", flow_options[i].str);
}
if (strcmp(lgopts[opt_idx].name,
"hairpin-rss") == 0) {
n = atoi(optarg);
if (n > 0)
hairpin_queues_num = n;
else
rte_exit(EXIT_FAILURE,
"Hairpin queues should be > 0\n");
flow_actions[actions_idx++] =
HAIRPIN_RSS_ACTION;
printf("hairpin-rss / ");
}
if (strcmp(lgopts[opt_idx].name,
"hairpin-queue") == 0) {
n = atoi(optarg);
if (n > 0)
hairpin_queues_num = n;
else
rte_exit(EXIT_FAILURE,
"Hairpin queues should be > 0\n");
flow_actions[actions_idx++] =
HAIRPIN_QUEUE_ACTION;
printf("hairpin-queue / ");
}
if (strcmp(lgopts[opt_idx].name, "raw-encap") == 0) {
printf("raw-encap ");
flow_actions[actions_idx++] =
FLOW_ITEM_MASK(
RTE_FLOW_ACTION_TYPE_RAW_ENCAP
);
token = strtok(optarg, ",");
while (token != NULL) {
for (i = 0; i < RTE_DIM(flow_options); i++) {
if (strcmp(flow_options[i].str, token) == 0) {
printf("%s,", token);
encap_data |= flow_options[i].mask;
break;
}
/* Reached last item with no match */
if (i == (RTE_DIM(flow_options) - 1))
rte_exit(EXIT_FAILURE,
"Invalid encap item: %s\n", token);
}
token = strtok(NULL, ",");
}
printf(" / ");
}
if (strcmp(lgopts[opt_idx].name, "raw-decap") == 0) {
printf("raw-decap ");
flow_actions[actions_idx++] =
FLOW_ITEM_MASK(
RTE_FLOW_ACTION_TYPE_RAW_DECAP
);
token = strtok(optarg, ",");
while (token != NULL) {
for (i = 0; i < RTE_DIM(flow_options); i++) {
if (strcmp(flow_options[i].str, token) == 0) {
printf("%s,", token);
decap_data |= flow_options[i].mask;
break;
}
/* Reached last item with no match */
if (i == (RTE_DIM(flow_options) - 1))
rte_exit(EXIT_FAILURE,
"Invalid decap item %s\n", token);
}
token = strtok(NULL, ",");
}
printf(" / ");
}
/* Control */
if (strcmp(lgopts[opt_idx].name,
"rules-batch") == 0) {
rules_batch = atoi(optarg);
}
if (strcmp(lgopts[opt_idx].name,
"rules-count") == 0) {
rules_count = atoi(optarg);
}
if (strcmp(lgopts[opt_idx].name, "random-priority") ==
0) {
end = NULL;
prio = strtol(optarg, &end, 10);
if ((optarg[0] == '\0') || (end == NULL))
rte_exit(EXIT_FAILURE,
"Invalid value for random-priority\n");
max_priority = prio;
token = end + 1;
seed = strtoll(token, &end, 10);
if ((token[0] == '\0') || (*end != '\0'))
rte_exit(EXIT_FAILURE,
"Invalid value for random-priority\n");
rand_seed = seed;
}
if (strcmp(lgopts[opt_idx].name,
"dump-iterations") == 0)
dump_iterations = true;
if (strcmp(lgopts[opt_idx].name,
"unique-data") == 0)
unique_data = true;
if (strcmp(lgopts[opt_idx].name,
"deletion-rate") == 0)
delete_flag = true;
if (strcmp(lgopts[opt_idx].name,
"dump-socket-mem") == 0)
dump_socket_mem_flag = true;
if (strcmp(lgopts[opt_idx].name,
"enable-fwd") == 0)
enable_fwd = true;
if (strcmp(lgopts[opt_idx].name,
"portmask") == 0) {
/* parse hexadecimal string */
end = NULL;
pm = strtoull(optarg, &end, 16);
if ((optarg[0] == '\0') || (end == NULL) || (*end != '\0'))
rte_exit(EXIT_FAILURE, "Invalid fwd port mask\n");
ports_mask = pm;
}
if (strcmp(lgopts[opt_idx].name,
"port-id") == 0) {
uint16_t port_idx = 0;
char *token;
token = strtok(optarg, ",");
while (token != NULL) {
dst_ports[port_idx++] = atoi(token);
token = strtok(NULL, ",");
}
}
if (strcmp(lgopts[opt_idx].name, "rxq") == 0) {
n = atoi(optarg);
rx_queues_count = (uint8_t) n;
}
if (strcmp(lgopts[opt_idx].name, "txq") == 0) {
n = atoi(optarg);
tx_queues_count = (uint8_t) n;
}
if (strcmp(lgopts[opt_idx].name, "rxd") == 0) {
n = atoi(optarg);
rxd_count = (uint8_t) n;
}
if (strcmp(lgopts[opt_idx].name, "txd") == 0) {
n = atoi(optarg);
txd_count = (uint8_t) n;
}
if (strcmp(lgopts[opt_idx].name, "mbuf-size") == 0) {
n = atoi(optarg);
mbuf_size = (uint32_t) n;
}
if (strcmp(lgopts[opt_idx].name, "mbuf-cache-size") == 0) {
n = atoi(optarg);
mbuf_cache_size = (uint32_t) n;
}
if (strcmp(lgopts[opt_idx].name, "total-mbuf-count") == 0) {
n = atoi(optarg);
total_mbuf_num = (uint32_t) n;
}
if (strcmp(lgopts[opt_idx].name, "cores") == 0) {
n = atoi(optarg);
if ((int) rte_lcore_count() <= n) {
rte_exit(EXIT_FAILURE,
"Error: you need %d cores to run on multi-cores\n"
"Existing cores are: %d\n", n, rte_lcore_count());
}
if (n <= RTE_MAX_LCORE && n > 0)
mc_pool.cores_count = n;
else {
rte_exit(EXIT_FAILURE,
"Error: cores count must be > 0 and < %d\n",
RTE_MAX_LCORE);
}
}
if (strcmp(lgopts[opt_idx].name, "policy-mtr") == 0)
read_meter_policy(argv[0], optarg);
if (strcmp(lgopts[opt_idx].name,
"meter-profile") == 0) {
i = 0;
token = strsep(&optarg, ",\0");
while (token != NULL && i < sizeof(
meter_profile_values) /
sizeof(uint64_t)) {
meter_profile_values[i++] = atol(token);
token = strsep(&optarg, ",\0");
}
}
if (strcmp(lgopts[opt_idx].name, "packet-mode") == 0)
packet_mode = true;
break;
default:
usage(argv[0]);
rte_exit(EXIT_FAILURE, "Invalid option: %s\n",
argv[optind - 1]);
break;
}
}
if (rules_count % rules_batch != 0) {
rte_exit(EXIT_FAILURE,
"rules_count %% rules_batch should be 0\n");
}
if (rules_count / rules_batch > MAX_BATCHES_COUNT) {
rte_exit(EXIT_FAILURE,
"rules_count / rules_batch should be <= %d\n",
MAX_BATCHES_COUNT);
}
printf("end_flow\n");
}
/* Dump the socket memory statistics on console */
static size_t
dump_socket_mem(FILE *f)
{
struct rte_malloc_socket_stats socket_stats;
unsigned int i = 0;
size_t total = 0;
size_t alloc = 0;
size_t free = 0;
unsigned int n_alloc = 0;
unsigned int n_free = 0;
bool active_nodes = false;
for (i = 0; i < RTE_MAX_NUMA_NODES; i++) {
if (rte_malloc_get_socket_stats(i, &socket_stats) ||
!socket_stats.heap_totalsz_bytes)
continue;
active_nodes = true;
total += socket_stats.heap_totalsz_bytes;
alloc += socket_stats.heap_allocsz_bytes;
free += socket_stats.heap_freesz_bytes;
n_alloc += socket_stats.alloc_count;
n_free += socket_stats.free_count;
if (dump_socket_mem_flag) {
fprintf(f, "::::::::::::::::::::::::::::::::::::::::");
fprintf(f,
"\nSocket %u:\nsize(M) total: %.6lf\nalloc:"
" %.6lf(%.3lf%%)\nfree: %.6lf"
"\nmax: %.6lf"
"\ncount alloc: %u\nfree: %u\n",
i,
socket_stats.heap_totalsz_bytes / 1.0e6,
socket_stats.heap_allocsz_bytes / 1.0e6,
(double)socket_stats.heap_allocsz_bytes * 100 /
(double)socket_stats.heap_totalsz_bytes,
socket_stats.heap_freesz_bytes / 1.0e6,
socket_stats.greatest_free_size / 1.0e6,
socket_stats.alloc_count,
socket_stats.free_count);
fprintf(f, "::::::::::::::::::::::::::::::::::::::::");
}
}
if (dump_socket_mem_flag && active_nodes) {
fprintf(f,
"\nTotal: size(M)\ntotal: %.6lf"
"\nalloc: %.6lf(%.3lf%%)\nfree: %.6lf"
"\ncount alloc: %u\nfree: %u\n",
total / 1.0e6, alloc / 1.0e6,
(double)alloc * 100 / (double)total, free / 1.0e6,
n_alloc, n_free);
fprintf(f, "::::::::::::::::::::::::::::::::::::::::\n");
}
return alloc;
}
static void
print_flow_error(struct rte_flow_error error)
{
printf("Flow can't be created %d message: %s\n",
error.type,
error.message ? error.message : "(no stated reason)");
}
static inline void
print_rules_batches(double *cpu_time_per_batch)
{
uint8_t idx;
double delta;
double rate;
for (idx = 0; idx < MAX_BATCHES_COUNT; idx++) {
if (!cpu_time_per_batch[idx])
break;
delta = (double)(rules_batch / cpu_time_per_batch[idx]);
rate = delta / 1000; /* Save rate in K unit. */
printf(":: Rules batch #%d: %d rules "
"in %f sec[ Rate = %f K Rule/Sec ]\n",
idx, rules_batch,
cpu_time_per_batch[idx], rate);
}
}
static inline int
has_meter(void)
{
int i;
for (i = 0; i < MAX_ACTIONS_NUM; i++) {
if (flow_actions[i] == 0)
break;
if (flow_actions[i]
& FLOW_ACTION_MASK(RTE_FLOW_ACTION_TYPE_METER))
return 1;
}
return 0;
}
static void
create_meter_policy(void)
{
struct rte_mtr_error error;
int ret, port_id;
struct rte_mtr_meter_policy_params policy;
uint16_t nr_ports;
struct rte_flow_action actions[RTE_COLORS][MAX_ACTIONS_NUM];
int i;
memset(actions, 0, sizeof(actions));
memset(&policy, 0, sizeof(policy));
nr_ports = rte_eth_dev_count_avail();
for (port_id = 0; port_id < nr_ports; port_id++) {
for (i = 0; i < RTE_COLORS; i++)
fill_actions(actions[i], all_actions[i], 0, 0, 0,
0, 0, 0, unique_data, rx_queues_count,
dst_ports[port_id]);
policy.actions[RTE_COLOR_GREEN] = actions[RTE_COLOR_GREEN];
policy.actions[RTE_COLOR_YELLOW] = actions[RTE_COLOR_YELLOW];
policy.actions[RTE_COLOR_RED] = actions[RTE_COLOR_RED];
policy_id[port_id] = port_id + 10;
ret = rte_mtr_meter_policy_add(port_id, policy_id[port_id],
&policy, &error);
if (ret) {
fprintf(stderr, "port %d: failed to create meter policy\n",
port_id);
policy_id[port_id] = UINT32_MAX;
}
memset(actions, 0, sizeof(actions));
}
}
static void
destroy_meter_policy(void)
{
struct rte_mtr_error error;
uint16_t nr_ports;
int port_id;
nr_ports = rte_eth_dev_count_avail();
for (port_id = 0; port_id < nr_ports; port_id++) {
/* If port outside portmask */
if (!((ports_mask >> port_id) & 0x1))
continue;
if (rte_mtr_meter_policy_delete
(port_id, policy_id[port_id], &error)) {
fprintf(stderr, "port %u: failed to delete meter policy\n",
port_id);
rte_exit(EXIT_FAILURE, "Error: Failed to delete meter policy.\n");
}
}
}
static void
create_meter_rule(int port_id, uint32_t counter)
{
int ret;
struct rte_mtr_params params;
struct rte_mtr_error error;
memset(&params, 0, sizeof(struct rte_mtr_params));
params.meter_enable = 1;
params.stats_mask = 0xffff;
params.use_prev_mtr_color = 0;
params.dscp_table = NULL;
/*create meter*/
params.meter_profile_id = DEFAULT_METER_PROF_ID;
if (!policy_mtr) {
ret = rte_mtr_create(port_id, counter, &params, 1, &error);
} else {
params.meter_policy_id = policy_id[port_id];
ret = rte_mtr_create(port_id, counter, &params, 0, &error);
}
if (ret != 0) {
printf("Port %u create meter idx(%d) error(%d) message: %s\n",
port_id, counter, error.type,
error.message ? error.message : "(no stated reason)");
rte_exit(EXIT_FAILURE, "Error in creating meter\n");
}
}
static void
destroy_meter_rule(int port_id, uint32_t counter)
{
struct rte_mtr_error error;
if (policy_mtr && policy_id[port_id] != UINT32_MAX) {
if (rte_mtr_meter_policy_delete(port_id, policy_id[port_id],
&error))
fprintf(stderr, "Error: Failed to delete meter policy\n");
policy_id[port_id] = UINT32_MAX;
}
if (rte_mtr_destroy(port_id, counter, &error)) {
fprintf(stderr, "Port %d: Failed to delete meter.\n",
port_id);
rte_exit(EXIT_FAILURE, "Error in deleting meter rule");
}
}
static void
meters_handler(int port_id, uint8_t core_id, uint8_t ops)
{
uint64_t start_batch;
double cpu_time_used, insertion_rate;
int rules_count_per_core, rules_batch_idx;
uint32_t counter, start_counter = 0, end_counter;
double cpu_time_per_batch[MAX_BATCHES_COUNT] = { 0 };
rules_count_per_core = rules_count / mc_pool.cores_count;
if (core_id)
start_counter = core_id * rules_count_per_core;
end_counter = (core_id + 1) * rules_count_per_core;
cpu_time_used = 0;
start_batch = rte_get_timer_cycles();
for (counter = start_counter; counter < end_counter; counter++) {
if (ops == METER_CREATE)
create_meter_rule(port_id, counter);
else
destroy_meter_rule(port_id, counter);
/*
* Save the insertion rate for rules batch.
* Check if the insertion reached the rules
* patch counter, then save the insertion rate
* for this batch.
*/
if (!((counter + 1) % rules_batch)) {
rules_batch_idx = ((counter + 1) / rules_batch) - 1;
cpu_time_per_batch[rules_batch_idx] =
((double)(rte_get_timer_cycles() - start_batch))
/ rte_get_timer_hz();
cpu_time_used += cpu_time_per_batch[rules_batch_idx];
start_batch = rte_get_timer_cycles();
}
}
/* Print insertion rates for all batches */
if (dump_iterations)
print_rules_batches(cpu_time_per_batch);
insertion_rate =
((double) (rules_count_per_core / cpu_time_used) / 1000);
/* Insertion rate for all rules in one core */
printf(":: Port %d :: Core %d Meter %s :: start @[%d] - end @[%d],"
" use:%.02fs, rate:%.02fk Rule/Sec\n",
port_id, core_id, ops == METER_CREATE ? "create" : "delete",
start_counter, end_counter - 1,
cpu_time_used, insertion_rate);
if (ops == METER_CREATE)
mc_pool.meters_record.insertion[port_id][core_id]
= cpu_time_used;
else
mc_pool.meters_record.deletion[port_id][core_id]
= cpu_time_used;
}
static void
destroy_meter_profile(void)
{
struct rte_mtr_error error;
uint16_t nr_ports;
int port_id;
nr_ports = rte_eth_dev_count_avail();
for (port_id = 0; port_id < nr_ports; port_id++) {
/* If port outside portmask */
if (!((ports_mask >> port_id) & 0x1))
continue;
if (rte_mtr_meter_profile_delete
(port_id, DEFAULT_METER_PROF_ID, &error)) {
printf("Port %u del profile error(%d) message: %s\n",
port_id, error.type,
error.message ? error.message : "(no stated reason)");
rte_exit(EXIT_FAILURE, "Error: Destroy meter profile Failed!\n");
}
}
}
static void
create_meter_profile(void)
{
uint16_t nr_ports;
int ret, port_id;
struct rte_mtr_meter_profile mp;
struct rte_mtr_error error;
/*
*currently , only create one meter file for one port
*1 meter profile -> N meter rules -> N rte flows
*/
memset(&mp, 0, sizeof(struct rte_mtr_meter_profile));
nr_ports = rte_eth_dev_count_avail();
for (port_id = 0; port_id < nr_ports; port_id++) {
/* If port outside portmask */
if (!((ports_mask >> port_id) & 0x1))
continue;
mp.alg = RTE_MTR_SRTCM_RFC2697;
mp.srtcm_rfc2697.cir = meter_profile_values[0] ?
meter_profile_values[0] : METER_CIR;
mp.srtcm_rfc2697.cbs = meter_profile_values[1] ?
meter_profile_values[1] : METER_CIR / 8;
mp.srtcm_rfc2697.ebs = meter_profile_values[2];
mp.packet_mode = packet_mode;
ret = rte_mtr_meter_profile_add
(port_id, DEFAULT_METER_PROF_ID, &mp, &error);
if (ret != 0) {
printf("Port %u create Profile error(%d) message: %s\n",
port_id, error.type,
error.message ? error.message : "(no stated reason)");
rte_exit(EXIT_FAILURE, "Error: Creation meter profile Failed!\n");
}
}
}
static inline void
destroy_flows(int port_id, uint8_t core_id, struct rte_flow **flows_list)
{
struct rte_flow_error error;
clock_t start_batch, end_batch;
double cpu_time_used = 0;
double deletion_rate;
double cpu_time_per_batch[MAX_BATCHES_COUNT] = { 0 };
double delta;
uint32_t i;
int rules_batch_idx;
int rules_count_per_core;
rules_count_per_core = rules_count / mc_pool.cores_count;
/* If group > 0 , should add 1 flow which created in group 0 */
if (flow_group > 0 && core_id == 0)
rules_count_per_core++;
start_batch = rte_get_timer_cycles();
for (i = 0; i < (uint32_t) rules_count_per_core; i++) {
if (flows_list[i] == 0)
break;
memset(&error, 0x33, sizeof(error));
if (rte_flow_destroy(port_id, flows_list[i], &error)) {
print_flow_error(error);
rte_exit(EXIT_FAILURE, "Error in deleting flow\n");
}
/*
* Save the deletion rate for rules batch.
* Check if the deletion reached the rules
* patch counter, then save the deletion rate
* for this batch.
*/
if (!((i + 1) % rules_batch)) {
end_batch = rte_get_timer_cycles();
delta = (double) (end_batch - start_batch);
rules_batch_idx = ((i + 1) / rules_batch) - 1;
cpu_time_per_batch[rules_batch_idx] = delta / rte_get_timer_hz();
cpu_time_used += cpu_time_per_batch[rules_batch_idx];
start_batch = rte_get_timer_cycles();
}
}
/* Print deletion rates for all batches */
if (dump_iterations)
print_rules_batches(cpu_time_per_batch);
/* Deletion rate for all rules */
deletion_rate = ((double) (rules_count_per_core / cpu_time_used) / 1000);
printf(":: Port %d :: Core %d :: Rules deletion rate -> %f K Rule/Sec\n",
port_id, core_id, deletion_rate);
printf(":: Port %d :: Core %d :: The time for deleting %d rules is %f seconds\n",
port_id, core_id, rules_count_per_core, cpu_time_used);
mc_pool.flows_record.deletion[port_id][core_id] = cpu_time_used;
}
static struct rte_flow **
insert_flows(int port_id, uint8_t core_id, uint16_t dst_port_id)
{
struct rte_flow **flows_list;
struct rte_flow_error error;
clock_t start_batch, end_batch;
double first_flow_latency;
double cpu_time_used;
double insertion_rate;
double cpu_time_per_batch[MAX_BATCHES_COUNT] = { 0 };
double delta;
uint32_t flow_index;
uint32_t counter, start_counter = 0, end_counter;
uint64_t global_items[MAX_ITEMS_NUM] = { 0 };
uint64_t global_actions[MAX_ACTIONS_NUM] = { 0 };
int rules_batch_idx;
int rules_count_per_core;
rules_count_per_core = rules_count / mc_pool.cores_count;
/* Set boundaries of rules for each core. */
if (core_id)
start_counter = core_id * rules_count_per_core;
end_counter = (core_id + 1) * rules_count_per_core;
global_items[0] = FLOW_ITEM_MASK(RTE_FLOW_ITEM_TYPE_ETH);
global_actions[0] = FLOW_ITEM_MASK(RTE_FLOW_ACTION_TYPE_JUMP);
flows_list = rte_zmalloc("flows_list",
(sizeof(struct rte_flow *) * rules_count_per_core) + 1, 0);
if (flows_list == NULL)
rte_exit(EXIT_FAILURE, "No Memory available!\n");
cpu_time_used = 0;
flow_index = 0;
if (flow_group > 0 && core_id == 0) {
/*
* Create global rule to jump into flow_group,
* this way the app will avoid the default rules.
*
* This rule will be created only once.
*
* Global rule:
* group 0 eth / end actions jump group <flow_group>
*/
flow = generate_flow(port_id, 0, flow_attrs,
global_items, global_actions,
flow_group, 0, 0, 0, 0, dst_port_id, core_id,
rx_queues_count, unique_data, max_priority, &error);
if (flow == NULL) {
print_flow_error(error);
rte_exit(EXIT_FAILURE, "Error in creating flow\n");
}
flows_list[flow_index++] = flow;
}
start_batch = rte_get_timer_cycles();
for (counter = start_counter; counter < end_counter; counter++) {
flow = generate_flow(port_id, flow_group,
flow_attrs, flow_items, flow_actions,
JUMP_ACTION_TABLE, counter,
hairpin_queues_num, encap_data,
decap_data, dst_port_id,
core_id, rx_queues_count,
unique_data, max_priority, &error);
if (!counter) {
first_flow_latency = (double) (rte_get_timer_cycles() - start_batch);
first_flow_latency /= rte_get_timer_hz();
/* In millisecond */
first_flow_latency *= 1000;
printf(":: First Flow Latency :: Port %d :: First flow "
"installed in %f milliseconds\n",
port_id, first_flow_latency);
}
if (force_quit)
counter = end_counter;
if (!flow) {
print_flow_error(error);
rte_exit(EXIT_FAILURE, "Error in creating flow\n");
}
flows_list[flow_index++] = flow;
/*
* Save the insertion rate for rules batch.
* Check if the insertion reached the rules
* patch counter, then save the insertion rate
* for this batch.
*/
if (!((counter + 1) % rules_batch)) {
end_batch = rte_get_timer_cycles();
delta = (double) (end_batch - start_batch);
rules_batch_idx = ((counter + 1) / rules_batch) - 1;
cpu_time_per_batch[rules_batch_idx] = delta / rte_get_timer_hz();
cpu_time_used += cpu_time_per_batch[rules_batch_idx];
start_batch = rte_get_timer_cycles();
}
}
/* Print insertion rates for all batches */
if (dump_iterations)
print_rules_batches(cpu_time_per_batch);
printf(":: Port %d :: Core %d boundaries :: start @[%d] - end @[%d]\n",
port_id, core_id, start_counter, end_counter - 1);
/* Insertion rate for all rules in one core */
insertion_rate = ((double) (rules_count_per_core / cpu_time_used) / 1000);
printf(":: Port %d :: Core %d :: Rules insertion rate -> %f K Rule/Sec\n",
port_id, core_id, insertion_rate);
printf(":: Port %d :: Core %d :: The time for creating %d in rules %f seconds\n",
port_id, core_id, rules_count_per_core, cpu_time_used);
mc_pool.flows_record.insertion[port_id][core_id] = cpu_time_used;
return flows_list;
}
static void
flows_handler(uint8_t core_id)
{
struct rte_flow **flows_list;
uint16_t port_idx = 0;
uint16_t nr_ports;
int port_id;
nr_ports = rte_eth_dev_count_avail();
if (rules_batch > rules_count)
rules_batch = rules_count;
printf(":: Rules Count per port: %d\n\n", rules_count);
for (port_id = 0; port_id < nr_ports; port_id++) {
/* If port outside portmask */
if (!((ports_mask >> port_id) & 0x1))
continue;
/* Insertion part. */
mc_pool.last_alloc[core_id] = (int64_t)dump_socket_mem(stdout);
if (has_meter())
meters_handler(port_id, core_id, METER_CREATE);
flows_list = insert_flows(port_id, core_id,
dst_ports[port_idx++]);
if (flows_list == NULL)
rte_exit(EXIT_FAILURE, "Error: Insertion Failed!\n");
mc_pool.current_alloc[core_id] = (int64_t)dump_socket_mem(stdout);
/* Deletion part. */
if (delete_flag) {
destroy_flows(port_id, core_id, flows_list);
if (has_meter())
meters_handler(port_id, core_id, METER_DELETE);
}
}
}
static void
dump_used_cpu_time(const char *item,
uint16_t port, struct used_cpu_time *used_time)
{
uint32_t i;
/* Latency: total count of rte rules divided
* over max time used by thread between all
* threads time.
*
* Throughput: total count of rte rules divided
* over the average of the time consumed by all
* threads time.
*/
double insertion_latency_time;
double insertion_throughput_time;
double deletion_latency_time;
double deletion_throughput_time;
double insertion_latency, insertion_throughput;
double deletion_latency, deletion_throughput;
/* Save first insertion/deletion rates from first thread.
* Start comparing with all threads, if any thread used
* time more than current saved, replace it.
*
* Thus in the end we will have the max time used for
* insertion/deletion by one thread.
*
* As for memory consumption, save the min of all threads
* of last alloc, and save the max for all threads for
* current alloc.
*/
insertion_latency_time = used_time->insertion[port][0];
deletion_latency_time = used_time->deletion[port][0];
insertion_throughput_time = used_time->insertion[port][0];
deletion_throughput_time = used_time->deletion[port][0];
i = mc_pool.cores_count;
while (i-- > 1) {
insertion_throughput_time += used_time->insertion[port][i];
deletion_throughput_time += used_time->deletion[port][i];
if (insertion_latency_time < used_time->insertion[port][i])
insertion_latency_time = used_time->insertion[port][i];
if (deletion_latency_time < used_time->deletion[port][i])
deletion_latency_time = used_time->deletion[port][i];
}
insertion_latency = ((double) (mc_pool.rules_count
/ insertion_latency_time) / 1000);
deletion_latency = ((double) (mc_pool.rules_count
/ deletion_latency_time) / 1000);
insertion_throughput_time /= mc_pool.cores_count;
deletion_throughput_time /= mc_pool.cores_count;
insertion_throughput = ((double) (mc_pool.rules_count
/ insertion_throughput_time) / 1000);
deletion_throughput = ((double) (mc_pool.rules_count
/ deletion_throughput_time) / 1000);
/* Latency stats */
printf("\n%s\n:: [Latency | Insertion] All Cores :: Port %d :: ",
item, port);
printf("Total flows insertion rate -> %f K Rules/Sec\n",
insertion_latency);
printf(":: [Latency | Insertion] All Cores :: Port %d :: ", port);
printf("The time for creating %d rules is %f seconds\n",
mc_pool.rules_count, insertion_latency_time);
/* Throughput stats */
printf(":: [Throughput | Insertion] All Cores :: Port %d :: ", port);
printf("Total flows insertion rate -> %f K Rules/Sec\n",
insertion_throughput);
printf(":: [Throughput | Insertion] All Cores :: Port %d :: ", port);
printf("The average time for creating %d rules is %f seconds\n",
mc_pool.rules_count, insertion_throughput_time);
if (delete_flag) {
/* Latency stats */
printf(":: [Latency | Deletion] All Cores :: Port %d :: Total "
"deletion rate -> %f K Rules/Sec\n",
port, deletion_latency);
printf(":: [Latency | Deletion] All Cores :: Port %d :: ",
port);
printf("The time for deleting %d rules is %f seconds\n",
mc_pool.rules_count, deletion_latency_time);
/* Throughput stats */
printf(":: [Throughput | Deletion] All Cores :: Port %d :: Total "
"deletion rate -> %f K Rules/Sec\n",
port, deletion_throughput);
printf(":: [Throughput | Deletion] All Cores :: Port %d :: ",
port);
printf("The average time for deleting %d rules is %f seconds\n",
mc_pool.rules_count, deletion_throughput_time);
}
}
static void
dump_used_mem(uint16_t port)
{
uint32_t i;
int64_t last_alloc, current_alloc;
int flow_size_in_bytes;
last_alloc = mc_pool.last_alloc[0];
current_alloc = mc_pool.current_alloc[0];
i = mc_pool.cores_count;
while (i-- > 1) {
if (last_alloc > mc_pool.last_alloc[i])
last_alloc = mc_pool.last_alloc[i];
if (current_alloc < mc_pool.current_alloc[i])
current_alloc = mc_pool.current_alloc[i];
}
flow_size_in_bytes = (current_alloc - last_alloc) / mc_pool.rules_count;
printf("\n:: Port %d :: rte_flow size in DPDK layer: %d Bytes\n",
port, flow_size_in_bytes);
}
static int
run_rte_flow_handler_cores(void *data __rte_unused)
{
uint16_t port;
int lcore_counter = 0;
int lcore_id = rte_lcore_id();
int i;
RTE_LCORE_FOREACH(i) {
/* If core not needed return. */
if (lcore_id == i) {
printf(":: lcore %d mapped with index %d\n", lcore_id, lcore_counter);
if (lcore_counter >= (int) mc_pool.cores_count)
return 0;
break;
}
lcore_counter++;
}
lcore_id = lcore_counter;
if (lcore_id >= (int) mc_pool.cores_count)
return 0;
mc_pool.rules_count = rules_count;
flows_handler(lcore_id);
/* Only main core to print total results. */
if (lcore_id != 0)
return 0;
/* Make sure all cores finished insertion/deletion process. */
rte_eal_mp_wait_lcore();
RTE_ETH_FOREACH_DEV(port) {
/* If port outside portmask */
if (!((ports_mask >> port) & 0x1))
continue;
if (has_meter())
dump_used_cpu_time("Meters:",
port, &mc_pool.meters_record);
dump_used_cpu_time("Flows:",
port, &mc_pool.flows_record);
dump_used_mem(port);
}
return 0;
}
static void
signal_handler(int signum)
{
if (signum == SIGINT || signum == SIGTERM) {
printf("\n\nSignal %d received, preparing to exit...\n",
signum);
printf("Error: Stats are wrong due to sudden signal!\n\n");
force_quit = true;
}
}
static inline uint16_t
do_rx(struct lcore_info *li, uint16_t rx_port, uint16_t rx_queue)
{
uint16_t cnt = 0;
cnt = rte_eth_rx_burst(rx_port, rx_queue, li->pkts, MAX_PKT_BURST);
li->rx_pkts += cnt;
return cnt;
}
static inline void
do_tx(struct lcore_info *li, uint16_t cnt, uint16_t tx_port,
uint16_t tx_queue)
{
uint16_t nr_tx = 0;
uint16_t i;
nr_tx = rte_eth_tx_burst(tx_port, tx_queue, li->pkts, cnt);
li->tx_pkts += nr_tx;
li->tx_drops += cnt - nr_tx;
for (i = nr_tx; i < cnt; i++)
rte_pktmbuf_free(li->pkts[i]);
}
static void
packet_per_second_stats(void)
{
struct lcore_info *old;
struct lcore_info *li, *oli;
int nr_lines = 0;
int i;
old = rte_zmalloc("old",
sizeof(struct lcore_info) * RTE_MAX_LCORE, 0);
if (old == NULL)
rte_exit(EXIT_FAILURE, "No Memory available!\n");
memcpy(old, lcore_infos,
sizeof(struct lcore_info) * RTE_MAX_LCORE);
while (!force_quit) {
uint64_t total_tx_pkts = 0;
uint64_t total_rx_pkts = 0;
uint64_t total_tx_drops = 0;
uint64_t tx_delta, rx_delta, drops_delta;
int nr_valid_core = 0;
sleep(1);
if (nr_lines) {
char go_up_nr_lines[16];
sprintf(go_up_nr_lines, "%c[%dA\r", 27, nr_lines);
printf("%s\r", go_up_nr_lines);
}
printf("\n%6s %16s %16s %16s\n", "core", "tx", "tx drops", "rx");
printf("%6s %16s %16s %16s\n", "------", "----------------",
"----------------", "----------------");
nr_lines = 3;
for (i = 0; i < RTE_MAX_LCORE; i++) {
li = &lcore_infos[i];
oli = &old[i];
if (li->mode != LCORE_MODE_PKT)
continue;
tx_delta = li->tx_pkts - oli->tx_pkts;
rx_delta = li->rx_pkts - oli->rx_pkts;
drops_delta = li->tx_drops - oli->tx_drops;
printf("%6d %'16"PRId64" %'16"PRId64" %'16"PRId64"\n",
i, tx_delta, drops_delta, rx_delta);
total_tx_pkts += tx_delta;
total_rx_pkts += rx_delta;
total_tx_drops += drops_delta;
nr_valid_core++;
nr_lines += 1;
}
if (nr_valid_core > 1) {
printf("%6s %'16"PRId64" %'16"PRId64" %'16"PRId64"\n",
"total", total_tx_pkts, total_tx_drops,
total_rx_pkts);
nr_lines += 1;
}
memcpy(old, lcore_infos,
sizeof(struct lcore_info) * RTE_MAX_LCORE);
}
}
static int
start_forwarding(void *data __rte_unused)
{
int lcore = rte_lcore_id();
int stream_id;
uint16_t cnt;
struct lcore_info *li = &lcore_infos[lcore];
if (!li->mode)
return 0;
if (li->mode == LCORE_MODE_STATS) {
printf(":: started stats on lcore %u\n", lcore);
packet_per_second_stats();
return 0;
}
while (!force_quit)
for (stream_id = 0; stream_id < MAX_STREAMS; stream_id++) {
if (li->streams[stream_id].rx_port == -1)
continue;
cnt = do_rx(li,
li->streams[stream_id].rx_port,
li->streams[stream_id].rx_queue);
if (cnt)
do_tx(li, cnt,
li->streams[stream_id].tx_port,
li->streams[stream_id].tx_queue);
}
return 0;
}
static void
init_lcore_info(void)
{
int i, j;
unsigned int lcore;
uint16_t nr_port;
uint16_t queue;
int port;
int stream_id = 0;
int streams_per_core;
int unassigned_streams;
int nb_fwd_streams;
nr_port = rte_eth_dev_count_avail();
/* First logical core is reserved for stats printing */
lcore = rte_get_next_lcore(-1, 0, 0);
lcore_infos[lcore].mode = LCORE_MODE_STATS;
/*
* Initialize all cores
* All cores at first must have -1 value in all streams
* This means that this stream is not used, or not set
* yet.
*/
for (i = 0; i < RTE_MAX_LCORE; i++)
for (j = 0; j < MAX_STREAMS; j++) {
lcore_infos[i].streams[j].tx_port = -1;
lcore_infos[i].streams[j].rx_port = -1;
lcore_infos[i].streams[j].tx_queue = -1;
lcore_infos[i].streams[j].rx_queue = -1;
lcore_infos[i].streams_nb = 0;
}
/*
* Calculate the total streams count.
* Also distribute those streams count between the available
* logical cores except first core, since it's reserved for
* stats prints.
*/
nb_fwd_streams = nr_port * rx_queues_count;
if ((int)(nb_lcores - 1) >= nb_fwd_streams)
for (i = 0; i < (int)(nb_lcores - 1); i++) {
lcore = rte_get_next_lcore(lcore, 0, 0);
lcore_infos[lcore].streams_nb = 1;
}
else {
streams_per_core = nb_fwd_streams / (nb_lcores - 1);
unassigned_streams = nb_fwd_streams % (nb_lcores - 1);
for (i = 0; i < (int)(nb_lcores - 1); i++) {
lcore = rte_get_next_lcore(lcore, 0, 0);
lcore_infos[lcore].streams_nb = streams_per_core;
if (unassigned_streams) {
lcore_infos[lcore].streams_nb++;
unassigned_streams--;
}
}
}
/*
* Set the streams for the cores according to each logical
* core stream count.
* The streams is built on the design of what received should
* forward as well, this means that if you received packets on
* port 0 queue 0 then the same queue should forward the
* packets, using the same logical core.
*/
lcore = rte_get_next_lcore(-1, 0, 0);
for (port = 0; port < nr_port; port++) {
/* Create FWD stream */
for (queue = 0; queue < rx_queues_count; queue++) {
if (!lcore_infos[lcore].streams_nb ||
!(stream_id % lcore_infos[lcore].streams_nb)) {
lcore = rte_get_next_lcore(lcore, 0, 0);
lcore_infos[lcore].mode = LCORE_MODE_PKT;
stream_id = 0;
}
lcore_infos[lcore].streams[stream_id].rx_queue = queue;
lcore_infos[lcore].streams[stream_id].tx_queue = queue;
lcore_infos[lcore].streams[stream_id].rx_port = port;
lcore_infos[lcore].streams[stream_id].tx_port = port;
stream_id++;
}
}
/* Print all streams */
printf(":: Stream -> core id[N]: (rx_port, rx_queue)->(tx_port, tx_queue)\n");
for (i = 0; i < RTE_MAX_LCORE; i++)
for (j = 0; j < MAX_STREAMS; j++) {
/* No streams for this core */
if (lcore_infos[i].streams[j].tx_port == -1)
break;
printf("Stream -> core id[%d]: (%d,%d)->(%d,%d)\n",
i,
lcore_infos[i].streams[j].rx_port,
lcore_infos[i].streams[j].rx_queue,
lcore_infos[i].streams[j].tx_port,
lcore_infos[i].streams[j].tx_queue);
}
}
static void
init_port(void)
{
int ret;
uint16_t std_queue;
uint16_t hairpin_queue;
uint16_t port_id;
uint16_t nr_ports;
uint16_t nr_queues;
struct rte_eth_hairpin_conf hairpin_conf = {
.peer_count = 1,
};
struct rte_eth_conf port_conf = {
.rx_adv_conf = {
.rss_conf.rss_hf =
GET_RSS_HF(),
}
};
struct rte_eth_txconf txq_conf;
struct rte_eth_rxconf rxq_conf;
struct rte_eth_dev_info dev_info;
nr_queues = rx_queues_count;
if (hairpin_queues_num != 0)
nr_queues = rx_queues_count + hairpin_queues_num;
nr_ports = rte_eth_dev_count_avail();
if (nr_ports == 0)
rte_exit(EXIT_FAILURE, "Error: no port detected\n");
mbuf_mp = rte_pktmbuf_pool_create("mbuf_pool",
total_mbuf_num, mbuf_cache_size,
0, mbuf_size,
rte_socket_id());
if (mbuf_mp == NULL)
rte_exit(EXIT_FAILURE, "Error: can't init mbuf pool\n");
for (port_id = 0; port_id < nr_ports; port_id++) {
uint64_t rx_metadata = 0;
rx_metadata |= RTE_ETH_RX_METADATA_USER_FLAG;
rx_metadata |= RTE_ETH_RX_METADATA_USER_MARK;
ret = rte_eth_rx_metadata_negotiate(port_id, &rx_metadata);
if (ret == 0) {
if (!(rx_metadata & RTE_ETH_RX_METADATA_USER_FLAG)) {
printf(":: flow action FLAG will not affect Rx mbufs on port=%u\n",
port_id);
}
if (!(rx_metadata & RTE_ETH_RX_METADATA_USER_MARK)) {
printf(":: flow action MARK will not affect Rx mbufs on port=%u\n",
port_id);
}
} else if (ret != -ENOTSUP) {
rte_exit(EXIT_FAILURE, "Error when negotiating Rx meta features on port=%u: %s\n",
port_id, rte_strerror(-ret));
}
ret = rte_eth_dev_info_get(port_id, &dev_info);
if (ret != 0)
rte_exit(EXIT_FAILURE,
"Error during getting device"
" (port %u) info: %s\n",
port_id, strerror(-ret));
port_conf.txmode.offloads &= dev_info.tx_offload_capa;
port_conf.rxmode.offloads &= dev_info.rx_offload_capa;
printf(":: initializing port: %d\n", port_id);
ret = rte_eth_dev_configure(port_id, nr_queues,
nr_queues, &port_conf);
if (ret < 0)
rte_exit(EXIT_FAILURE,
":: cannot configure device: err=%d, port=%u\n",
ret, port_id);
rxq_conf = dev_info.default_rxconf;
for (std_queue = 0; std_queue < rx_queues_count; std_queue++) {
ret = rte_eth_rx_queue_setup(port_id, std_queue, rxd_count,
rte_eth_dev_socket_id(port_id),
&rxq_conf,
mbuf_mp);
if (ret < 0)
rte_exit(EXIT_FAILURE,
":: Rx queue setup failed: err=%d, port=%u\n",
ret, port_id);
}
txq_conf = dev_info.default_txconf;
for (std_queue = 0; std_queue < tx_queues_count; std_queue++) {
ret = rte_eth_tx_queue_setup(port_id, std_queue, txd_count,
rte_eth_dev_socket_id(port_id),
&txq_conf);
if (ret < 0)
rte_exit(EXIT_FAILURE,
":: Tx queue setup failed: err=%d, port=%u\n",
ret, port_id);
}
/* Catch all packets from traffic generator. */
ret = rte_eth_promiscuous_enable(port_id);
if (ret != 0)
rte_exit(EXIT_FAILURE,
":: promiscuous mode enable failed: err=%s, port=%u\n",
rte_strerror(-ret), port_id);
if (hairpin_queues_num != 0) {
/*
* Configure peer which represents hairpin Tx.
* Hairpin queue numbers start after standard queues
* (rx_queues_count and tx_queues_count).
*/
for (hairpin_queue = rx_queues_count, std_queue = 0;
hairpin_queue < nr_queues;
hairpin_queue++, std_queue++) {
hairpin_conf.peers[0].port = port_id;
hairpin_conf.peers[0].queue =
std_queue + tx_queues_count;
ret = rte_eth_rx_hairpin_queue_setup(
port_id, hairpin_queue,
rxd_count, &hairpin_conf);
if (ret != 0)
rte_exit(EXIT_FAILURE,
":: Hairpin rx queue setup failed: err=%d, port=%u\n",
ret, port_id);
}
for (hairpin_queue = tx_queues_count, std_queue = 0;
hairpin_queue < nr_queues;
hairpin_queue++, std_queue++) {
hairpin_conf.peers[0].port = port_id;
hairpin_conf.peers[0].queue =
std_queue + rx_queues_count;
ret = rte_eth_tx_hairpin_queue_setup(
port_id, hairpin_queue,
txd_count, &hairpin_conf);
if (ret != 0)
rte_exit(EXIT_FAILURE,
":: Hairpin tx queue setup failed: err=%d, port=%u\n",
ret, port_id);
}
}
ret = rte_eth_dev_start(port_id);
if (ret < 0)
rte_exit(EXIT_FAILURE,
"rte_eth_dev_start:err=%d, port=%u\n",
ret, port_id);
printf(":: initializing port: %d done\n", port_id);
}
}
int
main(int argc, char **argv)
{
int ret;
uint16_t port;
struct rte_flow_error error;
ret = rte_eal_init(argc, argv);
if (ret < 0)
rte_exit(EXIT_FAILURE, "EAL init failed\n");
force_quit = false;
dump_iterations = false;
rules_count = DEFAULT_RULES_COUNT;
rules_batch = DEFAULT_RULES_BATCH;
delete_flag = false;
dump_socket_mem_flag = false;
flow_group = DEFAULT_GROUP;
unique_data = false;
rx_queues_count = (uint8_t) RXQ_NUM;
tx_queues_count = (uint8_t) TXQ_NUM;
rxd_count = (uint8_t) NR_RXD;
txd_count = (uint8_t) NR_TXD;
mbuf_size = (uint32_t) MBUF_SIZE;
mbuf_cache_size = (uint32_t) MBUF_CACHE_SIZE;
total_mbuf_num = (uint32_t) TOTAL_MBUF_NUM;
signal(SIGINT, signal_handler);
signal(SIGTERM, signal_handler);
argc -= ret;
argv += ret;
if (argc > 1)
args_parse(argc, argv);
/* For more fancy, localised integer formatting. */
setlocale(LC_NUMERIC, "");
init_port();
nb_lcores = rte_lcore_count();
if (nb_lcores <= 1)
rte_exit(EXIT_FAILURE, "This app needs at least two cores\n");
printf(":: Flows Count per port: %d\n\n", rules_count);
rte_srand(rand_seed);
if (has_meter()) {
create_meter_profile();
if (policy_mtr)
create_meter_policy();
}
rte_eal_mp_remote_launch(run_rte_flow_handler_cores, NULL, CALL_MAIN);
if (enable_fwd) {
init_lcore_info();
rte_eal_mp_remote_launch(start_forwarding, NULL, CALL_MAIN);
}
if (has_meter() && delete_flag) {
destroy_meter_profile();
if (policy_mtr)
destroy_meter_policy();
}
RTE_ETH_FOREACH_DEV(port) {
rte_flow_flush(port, &error);
if (rte_eth_dev_stop(port) != 0)
printf("Failed to stop device on port %u\n", port);
rte_eth_dev_close(port);
}
printf("\nBye ...\n");
return 0;
}