f-stack/dpdk/lib/librte_eal/common/include/rte_reciprocal.h

91 lines
2.0 KiB
C

/* SPDX-License-Identifier: BSD-3-Clause
* Copyright(c) 2017 Cavium, Inc
*/
/*
* Reciprocal divide
*
* Used with permission from original authors
* Hannes Frederic Sowa and Daniel Borkmann
*
* This algorithm is based on the paper "Division by Invariant
* Integers Using Multiplication" by Torbjörn Granlund and Peter
* L. Montgomery.
*
* The assembler implementation from Agner Fog, which this code is
* based on, can be found here:
* http://www.agner.org/optimize/asmlib.zip
*
* This optimization for A/B is helpful if the divisor B is mostly
* runtime invariant. The reciprocal of B is calculated in the
* slow-path with reciprocal_value(). The fast-path can then just use
* a much faster multiplication operation with a variable dividend A
* to calculate the division A/B.
*/
#ifndef _RTE_RECIPROCAL_H_
#define _RTE_RECIPROCAL_H_
#include <stdint.h>
struct rte_reciprocal {
uint32_t m;
uint8_t sh1, sh2;
};
struct rte_reciprocal_u64 {
uint64_t m;
uint8_t sh1, sh2;
};
static inline uint32_t rte_reciprocal_divide(uint32_t a, struct rte_reciprocal R)
{
uint32_t t = (uint32_t)(((uint64_t)a * R.m) >> 32);
return (t + ((a - t) >> R.sh1)) >> R.sh2;
}
static __rte_always_inline uint64_t
mullhi_u64(uint64_t x, uint64_t y)
{
#ifdef __SIZEOF_INT128__
__uint128_t xl = x;
__uint128_t rl = xl * y;
return (rl >> 64);
#else
uint64_t u0, u1, v0, v1, k, t;
uint64_t w1, w2;
uint64_t whi;
u1 = x >> 32; u0 = x & 0xFFFFFFFF;
v1 = y >> 32; v0 = y & 0xFFFFFFFF;
t = u0*v0;
k = t >> 32;
t = u1*v0 + k;
w1 = t & 0xFFFFFFFF;
w2 = t >> 32;
t = u0*v1 + w1;
k = t >> 32;
whi = u1*v1 + w2 + k;
return whi;
#endif
}
static __rte_always_inline uint64_t
rte_reciprocal_divide_u64(uint64_t a, const struct rte_reciprocal_u64 *R)
{
uint64_t t = mullhi_u64(a, R->m);
return (t + ((a - t) >> R->sh1)) >> R->sh2;
}
struct rte_reciprocal rte_reciprocal_value(uint32_t d);
struct rte_reciprocal_u64 rte_reciprocal_value_u64(uint64_t d);
#endif /* _RTE_RECIPROCAL_H_ */