f-stack/dpdk/drivers/raw/ntb/ntb.c

1514 lines
36 KiB
C

/* SPDX-License-Identifier: BSD-3-Clause
* Copyright(c) 2019 Intel Corporation.
*/
#include <stdint.h>
#include <stdio.h>
#include <string.h>
#include <errno.h>
#include <rte_common.h>
#include <rte_lcore.h>
#include <rte_cycles.h>
#include <rte_eal.h>
#include <rte_log.h>
#include <rte_pci.h>
#include <rte_mbuf.h>
#include <rte_bus_pci.h>
#include <rte_memzone.h>
#include <rte_memcpy.h>
#include <rte_rawdev.h>
#include <rte_rawdev_pmd.h>
#include "ntb_hw_intel.h"
#include "rte_pmd_ntb.h"
#include "ntb.h"
int ntb_logtype;
static const struct rte_pci_id pci_id_ntb_map[] = {
{ RTE_PCI_DEVICE(NTB_INTEL_VENDOR_ID, NTB_INTEL_DEV_ID_B2B_SKX) },
{ .vendor_id = 0, /* sentinel */ },
};
/* Align with enum ntb_xstats_idx */
static struct rte_rawdev_xstats_name ntb_xstats_names[] = {
{"Tx-packets"},
{"Tx-bytes"},
{"Tx-errors"},
{"Rx-packets"},
{"Rx-bytes"},
{"Rx-missed"},
};
#define NTB_XSTATS_NUM RTE_DIM(ntb_xstats_names)
static inline void
ntb_link_cleanup(struct rte_rawdev *dev)
{
struct ntb_hw *hw = dev->dev_private;
int status, i;
if (hw->ntb_ops->spad_write == NULL ||
hw->ntb_ops->mw_set_trans == NULL) {
NTB_LOG(ERR, "Not supported to clean up link.");
return;
}
/* Clean spad registers. */
for (i = 0; i < hw->spad_cnt; i++) {
status = (*hw->ntb_ops->spad_write)(dev, i, 0, 0);
if (status)
NTB_LOG(ERR, "Failed to clean local spad.");
}
/* Clear mw so that peer cannot access local memory.*/
for (i = 0; i < hw->used_mw_num; i++) {
status = (*hw->ntb_ops->mw_set_trans)(dev, i, 0, 0);
if (status)
NTB_LOG(ERR, "Failed to clean mw.");
}
}
static inline int
ntb_handshake_work(const struct rte_rawdev *dev)
{
struct ntb_hw *hw = dev->dev_private;
uint32_t val;
int ret, i;
if (hw->ntb_ops->spad_write == NULL ||
hw->ntb_ops->mw_set_trans == NULL) {
NTB_LOG(ERR, "Scratchpad/MW setting is not supported.");
return -ENOTSUP;
}
/* Tell peer the mw info of local side. */
ret = (*hw->ntb_ops->spad_write)(dev, SPAD_NUM_MWS, 1, hw->mw_cnt);
if (ret < 0)
return ret;
for (i = 0; i < hw->mw_cnt; i++) {
NTB_LOG(INFO, "Local %u mw size: 0x%"PRIx64"", i,
hw->mw_size[i]);
val = hw->mw_size[i] >> 32;
ret = (*hw->ntb_ops->spad_write)(dev, SPAD_MW0_SZ_H + 2 * i,
1, val);
if (ret < 0)
return ret;
val = hw->mw_size[i];
ret = (*hw->ntb_ops->spad_write)(dev, SPAD_MW0_SZ_L + 2 * i,
1, val);
if (ret < 0)
return ret;
}
/* Tell peer about the queue info and map memory to the peer. */
ret = (*hw->ntb_ops->spad_write)(dev, SPAD_Q_SZ, 1, hw->queue_size);
if (ret < 0)
return ret;
ret = (*hw->ntb_ops->spad_write)(dev, SPAD_NUM_QPS, 1,
hw->queue_pairs);
if (ret < 0)
return ret;
ret = (*hw->ntb_ops->spad_write)(dev, SPAD_USED_MWS, 1,
hw->used_mw_num);
if (ret < 0)
return ret;
for (i = 0; i < hw->used_mw_num; i++) {
val = (uint64_t)(size_t)(hw->mz[i]->addr) >> 32;
ret = (*hw->ntb_ops->spad_write)(dev, SPAD_MW0_BA_H + 2 * i,
1, val);
if (ret < 0)
return ret;
val = (uint64_t)(size_t)(hw->mz[i]->addr);
ret = (*hw->ntb_ops->spad_write)(dev, SPAD_MW0_BA_L + 2 * i,
1, val);
if (ret < 0)
return ret;
}
for (i = 0; i < hw->used_mw_num; i++) {
ret = (*hw->ntb_ops->mw_set_trans)(dev, i, hw->mz[i]->iova,
hw->mz[i]->len);
if (ret < 0)
return ret;
}
/* Ring doorbell 0 to tell peer the device is ready. */
ret = (*hw->ntb_ops->peer_db_set)(dev, 0);
if (ret < 0)
return ret;
return 0;
}
static void
ntb_dev_intr_handler(void *param)
{
struct rte_rawdev *dev = (struct rte_rawdev *)param;
struct ntb_hw *hw = dev->dev_private;
uint32_t val_h, val_l;
uint64_t peer_mw_size;
uint64_t db_bits = 0;
uint8_t peer_mw_cnt;
int i = 0;
if (hw->ntb_ops->db_read == NULL ||
hw->ntb_ops->db_clear == NULL ||
hw->ntb_ops->peer_db_set == NULL) {
NTB_LOG(ERR, "Doorbell is not supported.");
return;
}
db_bits = (*hw->ntb_ops->db_read)(dev);
if (!db_bits)
NTB_LOG(ERR, "No doorbells");
/* Doorbell 0 is for peer device ready. */
if (db_bits & 1) {
NTB_LOG(INFO, "DB0: Peer device is up.");
/* Clear received doorbell. */
(*hw->ntb_ops->db_clear)(dev, 1);
/**
* Peer dev is already up. All mw settings are already done.
* Skip them.
*/
if (hw->peer_dev_up)
return;
if (hw->ntb_ops->spad_read == NULL) {
NTB_LOG(ERR, "Scratchpad read is not supported.");
return;
}
/* Check if mw setting on the peer is the same as local. */
peer_mw_cnt = (*hw->ntb_ops->spad_read)(dev, SPAD_NUM_MWS, 0);
if (peer_mw_cnt != hw->mw_cnt) {
NTB_LOG(ERR, "Both mw cnt must be the same.");
return;
}
for (i = 0; i < hw->mw_cnt; i++) {
val_h = (*hw->ntb_ops->spad_read)
(dev, SPAD_MW0_SZ_H + 2 * i, 0);
val_l = (*hw->ntb_ops->spad_read)
(dev, SPAD_MW0_SZ_L + 2 * i, 0);
peer_mw_size = ((uint64_t)val_h << 32) | val_l;
NTB_LOG(DEBUG, "Peer %u mw size: 0x%"PRIx64"", i,
peer_mw_size);
if (peer_mw_size != hw->mw_size[i]) {
NTB_LOG(ERR, "Mw config must be the same.");
return;
}
}
hw->peer_dev_up = 1;
/**
* Handshake with peer. Spad_write & mw_set_trans only works
* when both devices are up. So write spad again when db is
* received. And set db again for the later device who may miss
* the 1st db.
*/
if (ntb_handshake_work(dev) < 0) {
NTB_LOG(ERR, "Handshake work failed.");
return;
}
/* To get the link info. */
if (hw->ntb_ops->get_link_status == NULL) {
NTB_LOG(ERR, "Not supported to get link status.");
return;
}
(*hw->ntb_ops->get_link_status)(dev);
NTB_LOG(INFO, "Link is up. Link speed: %u. Link width: %u",
hw->link_speed, hw->link_width);
return;
}
if (db_bits & (1 << 1)) {
NTB_LOG(INFO, "DB1: Peer device is down.");
/* Clear received doorbell. */
(*hw->ntb_ops->db_clear)(dev, 2);
/* Peer device will be down, So clean local side too. */
ntb_link_cleanup(dev);
hw->peer_dev_up = 0;
/* Response peer's dev_stop request. */
(*hw->ntb_ops->peer_db_set)(dev, 2);
return;
}
if (db_bits & (1 << 2)) {
NTB_LOG(INFO, "DB2: Peer device agrees dev to be down.");
/* Clear received doorbell. */
(*hw->ntb_ops->db_clear)(dev, (1 << 2));
hw->peer_dev_up = 0;
return;
}
}
static void
ntb_queue_conf_get(struct rte_rawdev *dev,
uint16_t queue_id,
rte_rawdev_obj_t queue_conf)
{
struct ntb_queue_conf *q_conf = queue_conf;
struct ntb_hw *hw = dev->dev_private;
q_conf->tx_free_thresh = hw->tx_queues[queue_id]->tx_free_thresh;
q_conf->nb_desc = hw->rx_queues[queue_id]->nb_rx_desc;
q_conf->rx_mp = hw->rx_queues[queue_id]->mpool;
}
static void
ntb_rxq_release_mbufs(struct ntb_rx_queue *q)
{
int i;
if (!q || !q->sw_ring) {
NTB_LOG(ERR, "Pointer to rxq or sw_ring is NULL");
return;
}
for (i = 0; i < q->nb_rx_desc; i++) {
if (q->sw_ring[i].mbuf) {
rte_pktmbuf_free_seg(q->sw_ring[i].mbuf);
q->sw_ring[i].mbuf = NULL;
}
}
}
static void
ntb_rxq_release(struct ntb_rx_queue *rxq)
{
if (!rxq) {
NTB_LOG(ERR, "Pointer to rxq is NULL");
return;
}
ntb_rxq_release_mbufs(rxq);
rte_free(rxq->sw_ring);
rte_free(rxq);
}
static int
ntb_rxq_setup(struct rte_rawdev *dev,
uint16_t qp_id,
rte_rawdev_obj_t queue_conf)
{
struct ntb_queue_conf *rxq_conf = queue_conf;
struct ntb_hw *hw = dev->dev_private;
struct ntb_rx_queue *rxq;
/* Allocate the rx queue data structure */
rxq = rte_zmalloc_socket("ntb rx queue",
sizeof(struct ntb_rx_queue),
RTE_CACHE_LINE_SIZE,
dev->socket_id);
if (!rxq) {
NTB_LOG(ERR, "Failed to allocate memory for "
"rx queue data structure.");
return -ENOMEM;
}
if (rxq_conf->rx_mp == NULL) {
NTB_LOG(ERR, "Invalid null mempool pointer.");
return -EINVAL;
}
rxq->nb_rx_desc = rxq_conf->nb_desc;
rxq->mpool = rxq_conf->rx_mp;
rxq->port_id = dev->dev_id;
rxq->queue_id = qp_id;
rxq->hw = hw;
/* Allocate the software ring. */
rxq->sw_ring =
rte_zmalloc_socket("ntb rx sw ring",
sizeof(struct ntb_rx_entry) *
rxq->nb_rx_desc,
RTE_CACHE_LINE_SIZE,
dev->socket_id);
if (!rxq->sw_ring) {
ntb_rxq_release(rxq);
rxq = NULL;
NTB_LOG(ERR, "Failed to allocate memory for SW ring");
return -ENOMEM;
}
hw->rx_queues[qp_id] = rxq;
return 0;
}
static void
ntb_txq_release_mbufs(struct ntb_tx_queue *q)
{
int i;
if (!q || !q->sw_ring) {
NTB_LOG(ERR, "Pointer to txq or sw_ring is NULL");
return;
}
for (i = 0; i < q->nb_tx_desc; i++) {
if (q->sw_ring[i].mbuf) {
rte_pktmbuf_free_seg(q->sw_ring[i].mbuf);
q->sw_ring[i].mbuf = NULL;
}
}
}
static void
ntb_txq_release(struct ntb_tx_queue *txq)
{
if (!txq) {
NTB_LOG(ERR, "Pointer to txq is NULL");
return;
}
ntb_txq_release_mbufs(txq);
rte_free(txq->sw_ring);
rte_free(txq);
}
static int
ntb_txq_setup(struct rte_rawdev *dev,
uint16_t qp_id,
rte_rawdev_obj_t queue_conf)
{
struct ntb_queue_conf *txq_conf = queue_conf;
struct ntb_hw *hw = dev->dev_private;
struct ntb_tx_queue *txq;
uint16_t i, prev;
/* Allocate the TX queue data structure. */
txq = rte_zmalloc_socket("ntb tx queue",
sizeof(struct ntb_tx_queue),
RTE_CACHE_LINE_SIZE,
dev->socket_id);
if (!txq) {
NTB_LOG(ERR, "Failed to allocate memory for "
"tx queue structure");
return -ENOMEM;
}
txq->nb_tx_desc = txq_conf->nb_desc;
txq->port_id = dev->dev_id;
txq->queue_id = qp_id;
txq->hw = hw;
/* Allocate software ring */
txq->sw_ring =
rte_zmalloc_socket("ntb tx sw ring",
sizeof(struct ntb_tx_entry) *
txq->nb_tx_desc,
RTE_CACHE_LINE_SIZE,
dev->socket_id);
if (!txq->sw_ring) {
ntb_txq_release(txq);
txq = NULL;
NTB_LOG(ERR, "Failed to allocate memory for SW TX ring");
return -ENOMEM;
}
prev = txq->nb_tx_desc - 1;
for (i = 0; i < txq->nb_tx_desc; i++) {
txq->sw_ring[i].mbuf = NULL;
txq->sw_ring[i].last_id = i;
txq->sw_ring[prev].next_id = i;
prev = i;
}
txq->tx_free_thresh = txq_conf->tx_free_thresh ?
txq_conf->tx_free_thresh :
NTB_DFLT_TX_FREE_THRESH;
if (txq->tx_free_thresh >= txq->nb_tx_desc - 3) {
NTB_LOG(ERR, "tx_free_thresh must be less than nb_desc - 3. "
"(tx_free_thresh=%u qp_id=%u)", txq->tx_free_thresh,
qp_id);
return -EINVAL;
}
hw->tx_queues[qp_id] = txq;
return 0;
}
static int
ntb_queue_setup(struct rte_rawdev *dev,
uint16_t queue_id,
rte_rawdev_obj_t queue_conf)
{
struct ntb_hw *hw = dev->dev_private;
int ret;
if (queue_id >= hw->queue_pairs)
return -EINVAL;
ret = ntb_txq_setup(dev, queue_id, queue_conf);
if (ret < 0)
return ret;
ret = ntb_rxq_setup(dev, queue_id, queue_conf);
return ret;
}
static int
ntb_queue_release(struct rte_rawdev *dev, uint16_t queue_id)
{
struct ntb_hw *hw = dev->dev_private;
if (queue_id >= hw->queue_pairs)
return -EINVAL;
ntb_txq_release(hw->tx_queues[queue_id]);
hw->tx_queues[queue_id] = NULL;
ntb_rxq_release(hw->rx_queues[queue_id]);
hw->rx_queues[queue_id] = NULL;
return 0;
}
static uint16_t
ntb_queue_count(struct rte_rawdev *dev)
{
struct ntb_hw *hw = dev->dev_private;
return hw->queue_pairs;
}
static int
ntb_queue_init(struct rte_rawdev *dev, uint16_t qp_id)
{
struct ntb_hw *hw = dev->dev_private;
struct ntb_rx_queue *rxq = hw->rx_queues[qp_id];
struct ntb_tx_queue *txq = hw->tx_queues[qp_id];
volatile struct ntb_header *local_hdr;
struct ntb_header *remote_hdr;
uint16_t q_size = hw->queue_size;
uint32_t hdr_offset;
void *bar_addr;
uint16_t i;
if (hw->ntb_ops->get_peer_mw_addr == NULL) {
NTB_LOG(ERR, "Getting peer mw addr is not supported.");
return -EINVAL;
}
/* Put queue info into the start of shared memory. */
hdr_offset = hw->hdr_size_per_queue * qp_id;
local_hdr = (volatile struct ntb_header *)
((size_t)hw->mz[0]->addr + hdr_offset);
bar_addr = (*hw->ntb_ops->get_peer_mw_addr)(dev, 0);
if (bar_addr == NULL)
return -EINVAL;
remote_hdr = (struct ntb_header *)
((size_t)bar_addr + hdr_offset);
/* rxq init. */
rxq->rx_desc_ring = (struct ntb_desc *)
(&remote_hdr->desc_ring);
rxq->rx_used_ring = (volatile struct ntb_used *)
(&local_hdr->desc_ring[q_size]);
rxq->avail_cnt = &remote_hdr->avail_cnt;
rxq->used_cnt = &local_hdr->used_cnt;
for (i = 0; i < rxq->nb_rx_desc - 1; i++) {
struct rte_mbuf *mbuf = rte_mbuf_raw_alloc(rxq->mpool);
if (unlikely(!mbuf)) {
NTB_LOG(ERR, "Failed to allocate mbuf for RX");
return -ENOMEM;
}
mbuf->port = dev->dev_id;
rxq->sw_ring[i].mbuf = mbuf;
rxq->rx_desc_ring[i].addr = rte_pktmbuf_mtod(mbuf, size_t);
rxq->rx_desc_ring[i].len = mbuf->buf_len - RTE_PKTMBUF_HEADROOM;
}
rte_wmb();
*rxq->avail_cnt = rxq->nb_rx_desc - 1;
rxq->last_avail = rxq->nb_rx_desc - 1;
rxq->last_used = 0;
/* txq init */
txq->tx_desc_ring = (volatile struct ntb_desc *)
(&local_hdr->desc_ring);
txq->tx_used_ring = (struct ntb_used *)
(&remote_hdr->desc_ring[q_size]);
txq->avail_cnt = &local_hdr->avail_cnt;
txq->used_cnt = &remote_hdr->used_cnt;
rte_wmb();
*txq->used_cnt = 0;
txq->last_used = 0;
txq->last_avail = 0;
txq->nb_tx_free = txq->nb_tx_desc - 1;
/* Set per queue stats. */
for (i = 0; i < NTB_XSTATS_NUM; i++) {
hw->ntb_xstats[i + NTB_XSTATS_NUM * (qp_id + 1)] = 0;
hw->ntb_xstats_off[i + NTB_XSTATS_NUM * (qp_id + 1)] = 0;
}
return 0;
}
static inline void
ntb_enqueue_cleanup(struct ntb_tx_queue *txq)
{
struct ntb_tx_entry *sw_ring = txq->sw_ring;
uint16_t tx_free = txq->last_avail;
uint16_t nb_to_clean, i;
/* avail_cnt + 1 represents where to rx next in the peer. */
nb_to_clean = (*txq->avail_cnt - txq->last_avail + 1 +
txq->nb_tx_desc) & (txq->nb_tx_desc - 1);
nb_to_clean = RTE_MIN(nb_to_clean, txq->tx_free_thresh);
for (i = 0; i < nb_to_clean; i++) {
if (sw_ring[tx_free].mbuf)
rte_pktmbuf_free_seg(sw_ring[tx_free].mbuf);
tx_free = (tx_free + 1) & (txq->nb_tx_desc - 1);
}
txq->nb_tx_free += nb_to_clean;
txq->last_avail = tx_free;
}
static int
ntb_enqueue_bufs(struct rte_rawdev *dev,
struct rte_rawdev_buf **buffers,
unsigned int count,
rte_rawdev_obj_t context)
{
struct ntb_hw *hw = dev->dev_private;
struct ntb_tx_queue *txq = hw->tx_queues[(size_t)context];
struct ntb_tx_entry *sw_ring = txq->sw_ring;
struct rte_mbuf *txm;
struct ntb_used tx_used[NTB_MAX_DESC_SIZE];
volatile struct ntb_desc *tx_item;
uint16_t tx_last, nb_segs, off, last_used, avail_cnt;
uint16_t nb_mbufs = 0;
uint16_t nb_tx = 0;
uint64_t bytes = 0;
void *buf_addr;
int i;
if (unlikely(hw->ntb_ops->ioremap == NULL)) {
NTB_LOG(ERR, "Ioremap not supported.");
return nb_tx;
}
if (unlikely(dev->started == 0 || hw->peer_dev_up == 0)) {
NTB_LOG(DEBUG, "Link is not up.");
return nb_tx;
}
if (txq->nb_tx_free < txq->tx_free_thresh)
ntb_enqueue_cleanup(txq);
off = NTB_XSTATS_NUM * ((size_t)context + 1);
last_used = txq->last_used;
avail_cnt = *txq->avail_cnt;/* Where to alloc next. */
for (nb_tx = 0; nb_tx < count; nb_tx++) {
txm = (struct rte_mbuf *)(buffers[nb_tx]->buf_addr);
if (txm == NULL || txq->nb_tx_free < txm->nb_segs)
break;
tx_last = (txq->last_used + txm->nb_segs - 1) &
(txq->nb_tx_desc - 1);
nb_segs = txm->nb_segs;
for (i = 0; i < nb_segs; i++) {
/* Not enough ring space for tx. */
if (txq->last_used == avail_cnt)
goto end_of_tx;
sw_ring[txq->last_used].mbuf = txm;
tx_item = txq->tx_desc_ring + txq->last_used;
if (!tx_item->len) {
(hw->ntb_xstats[NTB_TX_ERRS_ID + off])++;
goto end_of_tx;
}
if (txm->data_len > tx_item->len) {
NTB_LOG(ERR, "Data length exceeds buf length."
" Only %u data would be transmitted.",
tx_item->len);
txm->data_len = tx_item->len;
}
/* translate remote virtual addr to bar virtual addr */
buf_addr = (*hw->ntb_ops->ioremap)(dev, tx_item->addr);
if (buf_addr == NULL) {
(hw->ntb_xstats[NTB_TX_ERRS_ID + off])++;
NTB_LOG(ERR, "Null remap addr.");
goto end_of_tx;
}
rte_memcpy(buf_addr, rte_pktmbuf_mtod(txm, void *),
txm->data_len);
tx_used[nb_mbufs].len = txm->data_len;
tx_used[nb_mbufs++].flags = (txq->last_used ==
tx_last) ?
NTB_FLAG_EOP : 0;
/* update stats */
bytes += txm->data_len;
txm = txm->next;
sw_ring[txq->last_used].next_id = (txq->last_used + 1) &
(txq->nb_tx_desc - 1);
sw_ring[txq->last_used].last_id = tx_last;
txq->last_used = (txq->last_used + 1) &
(txq->nb_tx_desc - 1);
}
txq->nb_tx_free -= nb_segs;
}
end_of_tx:
if (nb_tx) {
uint16_t nb1, nb2;
if (nb_mbufs > txq->nb_tx_desc - last_used) {
nb1 = txq->nb_tx_desc - last_used;
nb2 = nb_mbufs - txq->nb_tx_desc + last_used;
} else {
nb1 = nb_mbufs;
nb2 = 0;
}
rte_memcpy(txq->tx_used_ring + last_used, tx_used,
sizeof(struct ntb_used) * nb1);
rte_memcpy(txq->tx_used_ring, tx_used + nb1,
sizeof(struct ntb_used) * nb2);
rte_wmb();
*txq->used_cnt = txq->last_used;
/* update queue stats */
hw->ntb_xstats[NTB_TX_BYTES_ID + off] += bytes;
hw->ntb_xstats[NTB_TX_PKTS_ID + off] += nb_tx;
}
return nb_tx;
}
static int
ntb_dequeue_bufs(struct rte_rawdev *dev,
struct rte_rawdev_buf **buffers,
unsigned int count,
rte_rawdev_obj_t context)
{
struct ntb_hw *hw = dev->dev_private;
struct ntb_rx_queue *rxq = hw->rx_queues[(size_t)context];
struct ntb_rx_entry *sw_ring = rxq->sw_ring;
struct ntb_desc rx_desc[NTB_MAX_DESC_SIZE];
struct rte_mbuf *first, *rxm_t;
struct rte_mbuf *prev = NULL;
volatile struct ntb_used *rx_item;
uint16_t nb_mbufs = 0;
uint16_t nb_rx = 0;
uint64_t bytes = 0;
uint16_t off, last_avail, used_cnt, used_nb;
int i;
if (unlikely(dev->started == 0 || hw->peer_dev_up == 0)) {
NTB_LOG(DEBUG, "Link is not up");
return nb_rx;
}
used_cnt = *rxq->used_cnt;
if (rxq->last_used == used_cnt)
return nb_rx;
last_avail = rxq->last_avail;
used_nb = (used_cnt - rxq->last_used) & (rxq->nb_rx_desc - 1);
count = RTE_MIN(count, used_nb);
for (nb_rx = 0; nb_rx < count; nb_rx++) {
i = 0;
while (true) {
rx_item = rxq->rx_used_ring + rxq->last_used;
rxm_t = sw_ring[rxq->last_used].mbuf;
rxm_t->data_len = rx_item->len;
rxm_t->data_off = RTE_PKTMBUF_HEADROOM;
rxm_t->port = rxq->port_id;
if (!i) {
rxm_t->nb_segs = 1;
first = rxm_t;
first->pkt_len = 0;
buffers[nb_rx]->buf_addr = rxm_t;
} else {
prev->next = rxm_t;
first->nb_segs++;
}
prev = rxm_t;
first->pkt_len += prev->data_len;
rxq->last_used = (rxq->last_used + 1) &
(rxq->nb_rx_desc - 1);
/* alloc new mbuf */
rxm_t = rte_mbuf_raw_alloc(rxq->mpool);
if (unlikely(rxm_t == NULL)) {
NTB_LOG(ERR, "recv alloc mbuf failed.");
goto end_of_rx;
}
rxm_t->port = rxq->port_id;
sw_ring[rxq->last_avail].mbuf = rxm_t;
i++;
/* fill new desc */
rx_desc[nb_mbufs].addr =
rte_pktmbuf_mtod(rxm_t, size_t);
rx_desc[nb_mbufs++].len = rxm_t->buf_len -
RTE_PKTMBUF_HEADROOM;
rxq->last_avail = (rxq->last_avail + 1) &
(rxq->nb_rx_desc - 1);
if (rx_item->flags & NTB_FLAG_EOP)
break;
}
/* update stats */
bytes += first->pkt_len;
}
end_of_rx:
if (nb_rx) {
uint16_t nb1, nb2;
if (nb_mbufs > rxq->nb_rx_desc - last_avail) {
nb1 = rxq->nb_rx_desc - last_avail;
nb2 = nb_mbufs - rxq->nb_rx_desc + last_avail;
} else {
nb1 = nb_mbufs;
nb2 = 0;
}
rte_memcpy(rxq->rx_desc_ring + last_avail, rx_desc,
sizeof(struct ntb_desc) * nb1);
rte_memcpy(rxq->rx_desc_ring, rx_desc + nb1,
sizeof(struct ntb_desc) * nb2);
rte_wmb();
*rxq->avail_cnt = rxq->last_avail;
/* update queue stats */
off = NTB_XSTATS_NUM * ((size_t)context + 1);
hw->ntb_xstats[NTB_RX_BYTES_ID + off] += bytes;
hw->ntb_xstats[NTB_RX_PKTS_ID + off] += nb_rx;
hw->ntb_xstats[NTB_RX_MISS_ID + off] += (count - nb_rx);
}
return nb_rx;
}
static void
ntb_dev_info_get(struct rte_rawdev *dev, rte_rawdev_obj_t dev_info)
{
struct ntb_hw *hw = dev->dev_private;
struct ntb_dev_info *info = dev_info;
info->mw_cnt = hw->mw_cnt;
info->mw_size = hw->mw_size;
/**
* Intel hardware requires that mapped memory base address should be
* aligned with EMBARSZ and needs continuous memzone.
*/
info->mw_size_align = (uint8_t)(hw->pci_dev->id.vendor_id ==
NTB_INTEL_VENDOR_ID);
if (!hw->queue_size || !hw->queue_pairs) {
NTB_LOG(ERR, "No queue size and queue num assigned.");
return;
}
hw->hdr_size_per_queue = RTE_ALIGN(sizeof(struct ntb_header) +
hw->queue_size * sizeof(struct ntb_desc) +
hw->queue_size * sizeof(struct ntb_used),
RTE_CACHE_LINE_SIZE);
info->ntb_hdr_size = hw->hdr_size_per_queue * hw->queue_pairs;
}
static int
ntb_dev_configure(const struct rte_rawdev *dev, rte_rawdev_obj_t config)
{
struct ntb_dev_config *conf = config;
struct ntb_hw *hw = dev->dev_private;
uint32_t xstats_num;
int ret;
hw->queue_pairs = conf->num_queues;
hw->queue_size = conf->queue_size;
hw->used_mw_num = conf->mz_num;
hw->mz = conf->mz_list;
hw->rx_queues = rte_zmalloc("ntb_rx_queues",
sizeof(struct ntb_rx_queue *) * hw->queue_pairs, 0);
hw->tx_queues = rte_zmalloc("ntb_tx_queues",
sizeof(struct ntb_tx_queue *) * hw->queue_pairs, 0);
/* First total stats, then per queue stats. */
xstats_num = (hw->queue_pairs + 1) * NTB_XSTATS_NUM;
hw->ntb_xstats = rte_zmalloc("ntb_xstats", xstats_num *
sizeof(uint64_t), 0);
hw->ntb_xstats_off = rte_zmalloc("ntb_xstats_off", xstats_num *
sizeof(uint64_t), 0);
/* Start handshake with the peer. */
ret = ntb_handshake_work(dev);
if (ret < 0) {
rte_free(hw->rx_queues);
rte_free(hw->tx_queues);
hw->rx_queues = NULL;
hw->tx_queues = NULL;
return ret;
}
return 0;
}
static int
ntb_dev_start(struct rte_rawdev *dev)
{
struct ntb_hw *hw = dev->dev_private;
uint32_t peer_base_l, peer_val;
uint64_t peer_base_h;
uint32_t i;
int ret;
if (!hw->link_status || !hw->peer_dev_up)
return -EINVAL;
/* Set total stats. */
for (i = 0; i < NTB_XSTATS_NUM; i++) {
hw->ntb_xstats[i] = 0;
hw->ntb_xstats_off[i] = 0;
}
for (i = 0; i < hw->queue_pairs; i++) {
ret = ntb_queue_init(dev, i);
if (ret) {
NTB_LOG(ERR, "Failed to init queue.");
goto err_q_init;
}
}
hw->peer_mw_base = rte_zmalloc("ntb_peer_mw_base", hw->mw_cnt *
sizeof(uint64_t), 0);
if (hw->ntb_ops->spad_read == NULL) {
ret = -ENOTSUP;
goto err_up;
}
peer_val = (*hw->ntb_ops->spad_read)(dev, SPAD_Q_SZ, 0);
if (peer_val != hw->queue_size) {
NTB_LOG(ERR, "Inconsistent queue size! (local: %u peer: %u)",
hw->queue_size, peer_val);
ret = -EINVAL;
goto err_up;
}
peer_val = (*hw->ntb_ops->spad_read)(dev, SPAD_NUM_QPS, 0);
if (peer_val != hw->queue_pairs) {
NTB_LOG(ERR, "Inconsistent number of queues! (local: %u peer:"
" %u)", hw->queue_pairs, peer_val);
ret = -EINVAL;
goto err_up;
}
hw->peer_used_mws = (*hw->ntb_ops->spad_read)(dev, SPAD_USED_MWS, 0);
for (i = 0; i < hw->peer_used_mws; i++) {
peer_base_h = (*hw->ntb_ops->spad_read)(dev,
SPAD_MW0_BA_H + 2 * i, 0);
peer_base_l = (*hw->ntb_ops->spad_read)(dev,
SPAD_MW0_BA_L + 2 * i, 0);
hw->peer_mw_base[i] = (peer_base_h << 32) + peer_base_l;
}
dev->started = 1;
return 0;
err_up:
rte_free(hw->peer_mw_base);
err_q_init:
for (i = 0; i < hw->queue_pairs; i++) {
ntb_rxq_release_mbufs(hw->rx_queues[i]);
ntb_txq_release_mbufs(hw->tx_queues[i]);
}
return ret;
}
static void
ntb_dev_stop(struct rte_rawdev *dev)
{
struct ntb_hw *hw = dev->dev_private;
uint32_t time_out;
int status, i;
if (!hw->peer_dev_up)
goto clean;
ntb_link_cleanup(dev);
/* Notify the peer that device will be down. */
if (hw->ntb_ops->peer_db_set == NULL) {
NTB_LOG(ERR, "Peer doorbell setting is not supported.");
return;
}
status = (*hw->ntb_ops->peer_db_set)(dev, 1);
if (status) {
NTB_LOG(ERR, "Failed to tell peer device is down.");
return;
}
/*
* Set time out as 1s in case that the peer is stopped accidently
* without any notification.
*/
time_out = 1000000;
/* Wait for cleanup work down before db mask clear. */
while (hw->peer_dev_up && time_out) {
time_out -= 10;
rte_delay_us(10);
}
clean:
/* Clear doorbells mask. */
if (hw->ntb_ops->db_set_mask == NULL) {
NTB_LOG(ERR, "Doorbell mask setting is not supported.");
return;
}
status = (*hw->ntb_ops->db_set_mask)(dev,
(((uint64_t)1 << hw->db_cnt) - 1));
if (status)
NTB_LOG(ERR, "Failed to clear doorbells.");
for (i = 0; i < hw->queue_pairs; i++) {
ntb_rxq_release_mbufs(hw->rx_queues[i]);
ntb_txq_release_mbufs(hw->tx_queues[i]);
}
dev->started = 0;
}
static int
ntb_dev_close(struct rte_rawdev *dev)
{
struct ntb_hw *hw = dev->dev_private;
struct rte_intr_handle *intr_handle;
int i;
if (dev->started)
ntb_dev_stop(dev);
/* free queues */
for (i = 0; i < hw->queue_pairs; i++)
ntb_queue_release(dev, i);
hw->queue_pairs = 0;
intr_handle = &hw->pci_dev->intr_handle;
/* Clean datapath event and vec mapping */
rte_intr_efd_disable(intr_handle);
if (intr_handle->intr_vec) {
rte_free(intr_handle->intr_vec);
intr_handle->intr_vec = NULL;
}
/* Disable uio intr before callback unregister */
rte_intr_disable(intr_handle);
/* Unregister callback func to eal lib */
rte_intr_callback_unregister(intr_handle,
ntb_dev_intr_handler, dev);
return 0;
}
static int
ntb_dev_reset(struct rte_rawdev *rawdev __rte_unused)
{
return 0;
}
static int
ntb_attr_set(struct rte_rawdev *dev, const char *attr_name,
uint64_t attr_value)
{
struct ntb_hw *hw;
int index;
if (dev == NULL || attr_name == NULL) {
NTB_LOG(ERR, "Invalid arguments for setting attributes");
return -EINVAL;
}
hw = dev->dev_private;
if (!strncmp(attr_name, NTB_SPAD_USER, NTB_SPAD_USER_LEN)) {
if (hw->ntb_ops->spad_write == NULL)
return -ENOTSUP;
index = atoi(&attr_name[NTB_SPAD_USER_LEN]);
(*hw->ntb_ops->spad_write)(dev, hw->spad_user_list[index],
1, attr_value);
NTB_LOG(DEBUG, "Set attribute (%s) Value (%" PRIu64 ")",
attr_name, attr_value);
return 0;
}
if (!strncmp(attr_name, NTB_QUEUE_SZ_NAME, NTB_ATTR_NAME_LEN)) {
hw->queue_size = attr_value;
NTB_LOG(DEBUG, "Set attribute (%s) Value (%" PRIu64 ")",
attr_name, attr_value);
return 0;
}
if (!strncmp(attr_name, NTB_QUEUE_NUM_NAME, NTB_ATTR_NAME_LEN)) {
hw->queue_pairs = attr_value;
NTB_LOG(DEBUG, "Set attribute (%s) Value (%" PRIu64 ")",
attr_name, attr_value);
return 0;
}
/* Attribute not found. */
NTB_LOG(ERR, "Attribute not found.");
return -EINVAL;
}
static int
ntb_attr_get(struct rte_rawdev *dev, const char *attr_name,
uint64_t *attr_value)
{
struct ntb_hw *hw;
int index;
if (dev == NULL || attr_name == NULL || attr_value == NULL) {
NTB_LOG(ERR, "Invalid arguments for getting attributes");
return -EINVAL;
}
hw = dev->dev_private;
if (!strncmp(attr_name, NTB_TOPO_NAME, NTB_ATTR_NAME_LEN)) {
*attr_value = hw->topo;
NTB_LOG(DEBUG, "Attribute (%s) Value (%" PRIu64 ")",
attr_name, *attr_value);
return 0;
}
if (!strncmp(attr_name, NTB_LINK_STATUS_NAME, NTB_ATTR_NAME_LEN)) {
/* hw->link_status only indicates hw link status. */
*attr_value = hw->link_status && hw->peer_dev_up;
NTB_LOG(DEBUG, "Attribute (%s) Value (%" PRIu64 ")",
attr_name, *attr_value);
return 0;
}
if (!strncmp(attr_name, NTB_SPEED_NAME, NTB_ATTR_NAME_LEN)) {
*attr_value = hw->link_speed;
NTB_LOG(DEBUG, "Attribute (%s) Value (%" PRIu64 ")",
attr_name, *attr_value);
return 0;
}
if (!strncmp(attr_name, NTB_WIDTH_NAME, NTB_ATTR_NAME_LEN)) {
*attr_value = hw->link_width;
NTB_LOG(DEBUG, "Attribute (%s) Value (%" PRIu64 ")",
attr_name, *attr_value);
return 0;
}
if (!strncmp(attr_name, NTB_MW_CNT_NAME, NTB_ATTR_NAME_LEN)) {
*attr_value = hw->mw_cnt;
NTB_LOG(DEBUG, "Attribute (%s) Value (%" PRIu64 ")",
attr_name, *attr_value);
return 0;
}
if (!strncmp(attr_name, NTB_DB_CNT_NAME, NTB_ATTR_NAME_LEN)) {
*attr_value = hw->db_cnt;
NTB_LOG(DEBUG, "Attribute (%s) Value (%" PRIu64 ")",
attr_name, *attr_value);
return 0;
}
if (!strncmp(attr_name, NTB_SPAD_CNT_NAME, NTB_ATTR_NAME_LEN)) {
*attr_value = hw->spad_cnt;
NTB_LOG(DEBUG, "Attribute (%s) Value (%" PRIu64 ")",
attr_name, *attr_value);
return 0;
}
if (!strncmp(attr_name, NTB_SPAD_USER, NTB_SPAD_USER_LEN)) {
if (hw->ntb_ops->spad_read == NULL)
return -ENOTSUP;
index = atoi(&attr_name[NTB_SPAD_USER_LEN]);
*attr_value = (*hw->ntb_ops->spad_read)(dev,
hw->spad_user_list[index], 0);
NTB_LOG(DEBUG, "Attribute (%s) Value (%" PRIu64 ")",
attr_name, *attr_value);
return 0;
}
/* Attribute not found. */
NTB_LOG(ERR, "Attribute not found.");
return -EINVAL;
}
static inline uint64_t
ntb_stats_update(uint64_t offset, uint64_t stat)
{
if (stat >= offset)
return (stat - offset);
else
return (uint64_t)(((uint64_t)-1) - offset + stat + 1);
}
static int
ntb_xstats_get(const struct rte_rawdev *dev,
const unsigned int ids[],
uint64_t values[],
unsigned int n)
{
struct ntb_hw *hw = dev->dev_private;
uint32_t i, j, off, xstats_num;
/* Calculate total stats of all queues. */
for (i = 0; i < NTB_XSTATS_NUM; i++) {
hw->ntb_xstats[i] = 0;
for (j = 0; j < hw->queue_pairs; j++) {
off = NTB_XSTATS_NUM * (j + 1) + i;
hw->ntb_xstats[i] +=
ntb_stats_update(hw->ntb_xstats_off[off],
hw->ntb_xstats[off]);
}
}
xstats_num = NTB_XSTATS_NUM * (hw->queue_pairs + 1);
for (i = 0; i < n && ids[i] < xstats_num; i++) {
if (ids[i] < NTB_XSTATS_NUM)
values[i] = hw->ntb_xstats[ids[i]];
else
values[i] =
ntb_stats_update(hw->ntb_xstats_off[ids[i]],
hw->ntb_xstats[ids[i]]);
}
return i;
}
static int
ntb_xstats_get_names(const struct rte_rawdev *dev,
struct rte_rawdev_xstats_name *xstats_names,
unsigned int size)
{
struct ntb_hw *hw = dev->dev_private;
uint32_t xstats_num, i, j, off;
xstats_num = NTB_XSTATS_NUM * (hw->queue_pairs + 1);
if (xstats_names == NULL || size < xstats_num)
return xstats_num;
/* Total stats names */
memcpy(xstats_names, ntb_xstats_names, sizeof(ntb_xstats_names));
/* Queue stats names */
for (i = 0; i < hw->queue_pairs; i++) {
for (j = 0; j < NTB_XSTATS_NUM; j++) {
off = j + (i + 1) * NTB_XSTATS_NUM;
snprintf(xstats_names[off].name,
sizeof(xstats_names[0].name),
"%s_q%u", ntb_xstats_names[j].name, i);
}
}
return xstats_num;
}
static uint64_t
ntb_xstats_get_by_name(const struct rte_rawdev *dev,
const char *name, unsigned int *id)
{
struct rte_rawdev_xstats_name *xstats_names;
struct ntb_hw *hw = dev->dev_private;
uint32_t xstats_num, i, j, off;
if (name == NULL)
return -EINVAL;
xstats_num = NTB_XSTATS_NUM * (hw->queue_pairs + 1);
xstats_names = rte_zmalloc("ntb_stats_name",
sizeof(struct rte_rawdev_xstats_name) *
xstats_num, 0);
ntb_xstats_get_names(dev, xstats_names, xstats_num);
/* Calculate total stats of all queues. */
for (i = 0; i < NTB_XSTATS_NUM; i++) {
for (j = 0; j < hw->queue_pairs; j++) {
off = NTB_XSTATS_NUM * (j + 1) + i;
hw->ntb_xstats[i] +=
ntb_stats_update(hw->ntb_xstats_off[off],
hw->ntb_xstats[off]);
}
}
for (i = 0; i < xstats_num; i++) {
if (!strncmp(name, xstats_names[i].name,
RTE_RAW_DEV_XSTATS_NAME_SIZE)) {
*id = i;
rte_free(xstats_names);
if (i < NTB_XSTATS_NUM)
return hw->ntb_xstats[i];
else
return ntb_stats_update(hw->ntb_xstats_off[i],
hw->ntb_xstats[i]);
}
}
NTB_LOG(ERR, "Cannot find the xstats name.");
return -EINVAL;
}
static int
ntb_xstats_reset(struct rte_rawdev *dev,
const uint32_t ids[],
uint32_t nb_ids)
{
struct ntb_hw *hw = dev->dev_private;
uint32_t i, j, off, xstats_num;
xstats_num = NTB_XSTATS_NUM * (hw->queue_pairs + 1);
for (i = 0; i < nb_ids && ids[i] < xstats_num; i++) {
if (ids[i] < NTB_XSTATS_NUM) {
for (j = 0; j < hw->queue_pairs; j++) {
off = NTB_XSTATS_NUM * (j + 1) + ids[i];
hw->ntb_xstats_off[off] = hw->ntb_xstats[off];
}
} else {
hw->ntb_xstats_off[ids[i]] = hw->ntb_xstats[ids[i]];
}
}
return i;
}
static const struct rte_rawdev_ops ntb_ops = {
.dev_info_get = ntb_dev_info_get,
.dev_configure = ntb_dev_configure,
.dev_start = ntb_dev_start,
.dev_stop = ntb_dev_stop,
.dev_close = ntb_dev_close,
.dev_reset = ntb_dev_reset,
.queue_def_conf = ntb_queue_conf_get,
.queue_setup = ntb_queue_setup,
.queue_release = ntb_queue_release,
.queue_count = ntb_queue_count,
.enqueue_bufs = ntb_enqueue_bufs,
.dequeue_bufs = ntb_dequeue_bufs,
.attr_get = ntb_attr_get,
.attr_set = ntb_attr_set,
.xstats_get = ntb_xstats_get,
.xstats_get_names = ntb_xstats_get_names,
.xstats_get_by_name = ntb_xstats_get_by_name,
.xstats_reset = ntb_xstats_reset,
};
static int
ntb_init_hw(struct rte_rawdev *dev, struct rte_pci_device *pci_dev)
{
struct ntb_hw *hw = dev->dev_private;
struct rte_intr_handle *intr_handle;
int ret, i;
hw->pci_dev = pci_dev;
hw->peer_dev_up = 0;
hw->link_status = NTB_LINK_DOWN;
hw->link_speed = NTB_SPEED_NONE;
hw->link_width = NTB_WIDTH_NONE;
switch (pci_dev->id.device_id) {
case NTB_INTEL_DEV_ID_B2B_SKX:
hw->ntb_ops = &intel_ntb_ops;
break;
default:
NTB_LOG(ERR, "Not supported device.");
return -EINVAL;
}
if (hw->ntb_ops->ntb_dev_init == NULL)
return -ENOTSUP;
ret = (*hw->ntb_ops->ntb_dev_init)(dev);
if (ret) {
NTB_LOG(ERR, "Unable to init ntb dev.");
return ret;
}
if (hw->ntb_ops->set_link == NULL)
return -ENOTSUP;
ret = (*hw->ntb_ops->set_link)(dev, 1);
if (ret)
return ret;
/* Init doorbell. */
hw->db_valid_mask = RTE_LEN2MASK(hw->db_cnt, uint64_t);
intr_handle = &pci_dev->intr_handle;
/* Register callback func to eal lib */
rte_intr_callback_register(intr_handle,
ntb_dev_intr_handler, dev);
ret = rte_intr_efd_enable(intr_handle, hw->db_cnt);
if (ret)
return ret;
/* To clarify, the interrupt for each doorbell is already mapped
* by default for intel gen3. They are mapped to msix vec 1-32,
* and hardware intr is mapped to 0. Map all to 0 for uio.
*/
if (!rte_intr_cap_multiple(intr_handle)) {
for (i = 0; i < hw->db_cnt; i++) {
if (hw->ntb_ops->vector_bind == NULL)
return -ENOTSUP;
ret = (*hw->ntb_ops->vector_bind)(dev, i, 0);
if (ret)
return ret;
}
}
if (hw->ntb_ops->db_set_mask == NULL ||
hw->ntb_ops->peer_db_set == NULL) {
NTB_LOG(ERR, "Doorbell is not supported.");
return -ENOTSUP;
}
hw->db_mask = 0;
ret = (*hw->ntb_ops->db_set_mask)(dev, hw->db_mask);
if (ret) {
NTB_LOG(ERR, "Unable to enable intr for all dbs.");
return ret;
}
/* enable uio intr after callback register */
rte_intr_enable(intr_handle);
return ret;
}
static int
ntb_create(struct rte_pci_device *pci_dev, int socket_id)
{
char name[RTE_RAWDEV_NAME_MAX_LEN];
struct rte_rawdev *rawdev = NULL;
int ret;
if (pci_dev == NULL) {
NTB_LOG(ERR, "Invalid pci_dev.");
return -EINVAL;
}
memset(name, 0, sizeof(name));
snprintf(name, RTE_RAWDEV_NAME_MAX_LEN, "NTB:%x:%02x.%x",
pci_dev->addr.bus, pci_dev->addr.devid,
pci_dev->addr.function);
NTB_LOG(INFO, "Init %s on NUMA node %d", name, socket_id);
/* Allocate device structure. */
rawdev = rte_rawdev_pmd_allocate(name, sizeof(struct ntb_hw),
socket_id);
if (rawdev == NULL) {
NTB_LOG(ERR, "Unable to allocate rawdev.");
return -EINVAL;
}
rawdev->dev_ops = &ntb_ops;
rawdev->device = &pci_dev->device;
rawdev->driver_name = pci_dev->driver->driver.name;
ret = ntb_init_hw(rawdev, pci_dev);
if (ret < 0) {
NTB_LOG(ERR, "Unable to init ntb hw.");
goto fail;
}
return ret;
fail:
if (rawdev != NULL)
rte_rawdev_pmd_release(rawdev);
return ret;
}
static int
ntb_destroy(struct rte_pci_device *pci_dev)
{
char name[RTE_RAWDEV_NAME_MAX_LEN];
struct rte_rawdev *rawdev;
int ret;
if (pci_dev == NULL) {
NTB_LOG(ERR, "Invalid pci_dev.");
ret = -EINVAL;
return ret;
}
memset(name, 0, sizeof(name));
snprintf(name, RTE_RAWDEV_NAME_MAX_LEN, "NTB:%x:%02x.%x",
pci_dev->addr.bus, pci_dev->addr.devid,
pci_dev->addr.function);
NTB_LOG(INFO, "Closing %s on NUMA node %d", name, rte_socket_id());
rawdev = rte_rawdev_pmd_get_named_dev(name);
if (rawdev == NULL) {
NTB_LOG(ERR, "Invalid device name (%s)", name);
ret = -EINVAL;
return ret;
}
ret = rte_rawdev_pmd_release(rawdev);
if (ret)
NTB_LOG(ERR, "Failed to destroy ntb rawdev.");
return ret;
}
static int
ntb_probe(struct rte_pci_driver *pci_drv __rte_unused,
struct rte_pci_device *pci_dev)
{
return ntb_create(pci_dev, rte_socket_id());
}
static int
ntb_remove(struct rte_pci_device *pci_dev)
{
return ntb_destroy(pci_dev);
}
static struct rte_pci_driver rte_ntb_pmd = {
.id_table = pci_id_ntb_map,
.drv_flags = RTE_PCI_DRV_NEED_MAPPING | RTE_PCI_DRV_WC_ACTIVATE,
.probe = ntb_probe,
.remove = ntb_remove,
};
RTE_PMD_REGISTER_PCI(raw_ntb, rte_ntb_pmd);
RTE_PMD_REGISTER_PCI_TABLE(raw_ntb, pci_id_ntb_map);
RTE_PMD_REGISTER_KMOD_DEP(raw_ntb, "* igb_uio | uio_pci_generic | vfio-pci");
RTE_INIT(ntb_init_log)
{
ntb_logtype = rte_log_register("pmd.raw.ntb");
if (ntb_logtype >= 0)
rte_log_set_level(ntb_logtype, RTE_LOG_INFO);
}