f-stack/freebsd/arm/broadcom/bcm2835/bcm2835_sdhci.c

870 lines
24 KiB
C

/*-
* SPDX-License-Identifier: BSD-2-Clause-FreeBSD
*
* Copyright (c) 2012 Oleksandr Tymoshenko <gonzo@freebsd.org>
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*
*/
#include <sys/cdefs.h>
__FBSDID("$FreeBSD$");
#include <sys/param.h>
#include <sys/systm.h>
#include <sys/bus.h>
#include <sys/kernel.h>
#include <sys/lock.h>
#include <sys/malloc.h>
#include <sys/module.h>
#include <sys/mutex.h>
#include <sys/rman.h>
#include <sys/sysctl.h>
#include <sys/taskqueue.h>
#include <machine/bus.h>
#include <dev/ofw/ofw_bus.h>
#include <dev/ofw/ofw_bus_subr.h>
#include <dev/mmc/bridge.h>
#include <dev/mmc/mmcreg.h>
#include <dev/mmc/mmc_fdt_helpers.h>
#include <dev/sdhci/sdhci.h>
#include "mmcbr_if.h"
#include "sdhci_if.h"
#include "opt_mmccam.h"
#include "bcm2835_dma.h"
#include <arm/broadcom/bcm2835/bcm2835_mbox_prop.h>
#ifdef NOTYET
#include <arm/broadcom/bcm2835/bcm2835_clkman.h>
#endif
#include <arm/broadcom/bcm2835/bcm2835_vcbus.h>
#define BCM2835_DEFAULT_SDHCI_FREQ 50
#define BCM2838_DEFAULT_SDHCI_FREQ 100
#define BCM_SDHCI_BUFFER_SIZE 512
/*
* NUM_DMA_SEGS is the number of DMA segments we want to accommodate on average.
* We add in a number of segments based on how much we may need to spill into
* another segment due to crossing page boundaries. e.g. up to PAGE_SIZE, an
* extra page is needed as we can cross a page boundary exactly once.
*/
#define NUM_DMA_SEGS 1
#define NUM_DMA_SPILL_SEGS \
((((NUM_DMA_SEGS * BCM_SDHCI_BUFFER_SIZE) - 1) / PAGE_SIZE) + 1)
#define ALLOCATED_DMA_SEGS (NUM_DMA_SEGS + NUM_DMA_SPILL_SEGS)
#define BCM_DMA_MAXSIZE (NUM_DMA_SEGS * BCM_SDHCI_BUFFER_SIZE)
#define BCM_SDHCI_SLOT_LEFT(slot) \
((slot)->curcmd->data->len - (slot)->offset)
#define BCM_SDHCI_SEGSZ_LEFT(slot) \
min(BCM_DMA_MAXSIZE, \
rounddown(BCM_SDHCI_SLOT_LEFT(slot), BCM_SDHCI_BUFFER_SIZE))
#define DATA_PENDING_MASK (SDHCI_INT_DATA_AVAIL | SDHCI_INT_SPACE_AVAIL)
#define DATA_XFER_MASK (DATA_PENDING_MASK | SDHCI_INT_DATA_END)
#ifdef DEBUG
static int bcm2835_sdhci_debug = 0;
TUNABLE_INT("hw.bcm2835.sdhci.debug", &bcm2835_sdhci_debug);
SYSCTL_INT(_hw_sdhci, OID_AUTO, bcm2835_sdhci_debug, CTLFLAG_RWTUN,
&bcm2835_sdhci_debug, 0, "bcm2835 SDHCI debug level");
#define dprintf(fmt, args...) \
do { \
if (bcm2835_sdhci_debug) \
printf("%s: " fmt, __func__, ##args); \
} while (0)
#else
#define dprintf(fmt, args...)
#endif
static int bcm2835_sdhci_hs = 1;
static int bcm2835_sdhci_pio_mode = 0;
struct bcm_mmc_conf {
int clock_id;
int clock_src;
int default_freq;
int quirks;
int emmc_dreq;
};
struct bcm_mmc_conf bcm2835_sdhci_conf = {
.clock_id = BCM2835_MBOX_CLOCK_ID_EMMC,
.clock_src = -1,
.default_freq = BCM2835_DEFAULT_SDHCI_FREQ,
.quirks = SDHCI_QUIRK_DATA_TIMEOUT_USES_SDCLK |
SDHCI_QUIRK_BROKEN_TIMEOUT_VAL | SDHCI_QUIRK_DONT_SET_HISPD_BIT |
SDHCI_QUIRK_MISSING_CAPS,
.emmc_dreq = BCM_DMA_DREQ_EMMC,
};
struct bcm_mmc_conf bcm2838_emmc2_conf = {
.clock_id = BCM2838_MBOX_CLOCK_ID_EMMC2,
.clock_src = -1,
.default_freq = BCM2838_DEFAULT_SDHCI_FREQ,
.quirks = 0,
.emmc_dreq = BCM_DMA_DREQ_NONE,
};
static struct ofw_compat_data compat_data[] = {
{"broadcom,bcm2835-sdhci", (uintptr_t)&bcm2835_sdhci_conf},
{"brcm,bcm2835-sdhci", (uintptr_t)&bcm2835_sdhci_conf},
{"brcm,bcm2835-mmc", (uintptr_t)&bcm2835_sdhci_conf},
{"brcm,bcm2711-emmc2", (uintptr_t)&bcm2838_emmc2_conf},
{"brcm,bcm2838-emmc2", (uintptr_t)&bcm2838_emmc2_conf},
{NULL, 0}
};
TUNABLE_INT("hw.bcm2835.sdhci.hs", &bcm2835_sdhci_hs);
TUNABLE_INT("hw.bcm2835.sdhci.pio_mode", &bcm2835_sdhci_pio_mode);
struct bcm_sdhci_softc {
device_t sc_dev;
struct resource * sc_mem_res;
struct resource * sc_irq_res;
bus_space_tag_t sc_bst;
bus_space_handle_t sc_bsh;
void * sc_intrhand;
struct mmc_request * sc_req;
struct sdhci_slot sc_slot;
struct mmc_fdt_helper sc_mmc_helper;
int sc_dma_ch;
bus_dma_tag_t sc_dma_tag;
bus_dmamap_t sc_dma_map;
vm_paddr_t sc_sdhci_buffer_phys;
bus_addr_t dmamap_seg_addrs[ALLOCATED_DMA_SEGS];
bus_size_t dmamap_seg_sizes[ALLOCATED_DMA_SEGS];
int dmamap_seg_count;
int dmamap_seg_index;
int dmamap_status;
uint32_t blksz_and_count;
uint32_t cmd_and_mode;
bool need_update_blk;
#ifdef NOTYET
device_t clkman;
#endif
struct bcm_mmc_conf * conf;
};
static int bcm_sdhci_probe(device_t);
static int bcm_sdhci_attach(device_t);
static int bcm_sdhci_detach(device_t);
static void bcm_sdhci_intr(void *);
static int bcm_sdhci_get_ro(device_t, device_t);
static void bcm_sdhci_dma_intr(int ch, void *arg);
static void bcm_sdhci_start_dma(struct sdhci_slot *slot);
static void
bcm_sdhci_dmacb(void *arg, bus_dma_segment_t *segs, int nseg, int err)
{
struct bcm_sdhci_softc *sc = arg;
int i;
/* Sanity check: we can only ever have one mapping at a time. */
KASSERT(sc->dmamap_seg_count == 0, ("leaked DMA segment"));
sc->dmamap_status = err;
sc->dmamap_seg_count = nseg;
/* Note nseg is guaranteed to be zero if err is non-zero. */
for (i = 0; i < nseg; i++) {
sc->dmamap_seg_addrs[i] = segs[i].ds_addr;
sc->dmamap_seg_sizes[i] = segs[i].ds_len;
}
}
static int
bcm_sdhci_probe(device_t dev)
{
if (!ofw_bus_status_okay(dev))
return (ENXIO);
if (ofw_bus_search_compatible(dev, compat_data)->ocd_data == 0)
return (ENXIO);
device_set_desc(dev, "Broadcom 2708 SDHCI controller");
return (BUS_PROBE_DEFAULT);
}
static int
bcm_sdhci_attach(device_t dev)
{
struct bcm_sdhci_softc *sc = device_get_softc(dev);
int rid, err;
phandle_t node;
pcell_t cell;
u_int default_freq;
sc->sc_dev = dev;
sc->sc_req = NULL;
sc->conf = (struct bcm_mmc_conf *)ofw_bus_search_compatible(dev,
compat_data)->ocd_data;
if (sc->conf == 0)
return (ENXIO);
err = bcm2835_mbox_set_power_state(BCM2835_MBOX_POWER_ID_EMMC, TRUE);
if (err != 0) {
if (bootverbose)
device_printf(dev, "Unable to enable the power\n");
return (err);
}
default_freq = 0;
err = bcm2835_mbox_get_clock_rate(sc->conf->clock_id, &default_freq);
if (err == 0) {
/* Convert to MHz */
default_freq /= 1000000;
}
if (default_freq == 0) {
node = ofw_bus_get_node(sc->sc_dev);
if ((OF_getencprop(node, "clock-frequency", &cell,
sizeof(cell))) > 0)
default_freq = cell / 1000000;
}
if (default_freq == 0)
default_freq = sc->conf->default_freq;
if (bootverbose)
device_printf(dev, "SDHCI frequency: %dMHz\n", default_freq);
#ifdef NOTYET
if (sc->conf->clock_src > 0) {
uint32_t f;
sc->clkman = devclass_get_device(
devclass_find("bcm2835_clkman"), 0);
if (sc->clkman == NULL) {
device_printf(dev, "cannot find Clock Manager\n");
return (ENXIO);
}
f = bcm2835_clkman_set_frequency(sc->clkman,
sc->conf->clock_src, default_freq);
if (f == 0)
return (EINVAL);
if (bootverbose)
device_printf(dev, "Clock source frequency: %dMHz\n",
f);
}
#endif
rid = 0;
sc->sc_mem_res = bus_alloc_resource_any(dev, SYS_RES_MEMORY, &rid,
RF_ACTIVE);
if (!sc->sc_mem_res) {
device_printf(dev, "cannot allocate memory window\n");
err = ENXIO;
goto fail;
}
sc->sc_bst = rman_get_bustag(sc->sc_mem_res);
sc->sc_bsh = rman_get_bushandle(sc->sc_mem_res);
rid = 0;
sc->sc_irq_res = bus_alloc_resource_any(dev, SYS_RES_IRQ, &rid,
RF_ACTIVE | RF_SHAREABLE);
if (!sc->sc_irq_res) {
device_printf(dev, "cannot allocate interrupt\n");
err = ENXIO;
goto fail;
}
if (bus_setup_intr(dev, sc->sc_irq_res, INTR_TYPE_BIO | INTR_MPSAFE,
NULL, bcm_sdhci_intr, sc, &sc->sc_intrhand)) {
device_printf(dev, "cannot setup interrupt handler\n");
err = ENXIO;
goto fail;
}
if (!bcm2835_sdhci_pio_mode)
sc->sc_slot.opt = SDHCI_PLATFORM_TRANSFER;
sc->sc_slot.caps = SDHCI_CAN_VDD_330 | SDHCI_CAN_VDD_180;
if (bcm2835_sdhci_hs)
sc->sc_slot.caps |= SDHCI_CAN_DO_HISPD;
sc->sc_slot.caps |= (default_freq << SDHCI_CLOCK_BASE_SHIFT);
sc->sc_slot.quirks = sc->conf->quirks;
sdhci_init_slot(dev, &sc->sc_slot, 0);
mmc_fdt_parse(dev, 0, &sc->sc_mmc_helper, &sc->sc_slot.host);
sc->sc_dma_ch = bcm_dma_allocate(BCM_DMA_CH_ANY);
if (sc->sc_dma_ch == BCM_DMA_CH_INVALID)
goto fail;
err = bcm_dma_setup_intr(sc->sc_dma_ch, bcm_sdhci_dma_intr, sc);
if (err != 0) {
device_printf(dev,
"cannot setup dma interrupt handler\n");
err = ENXIO;
goto fail;
}
/* Allocate bus_dma resources. */
err = bus_dma_tag_create(bus_get_dma_tag(dev),
1, 0, bcm283x_dmabus_peripheral_lowaddr(),
BUS_SPACE_MAXADDR, NULL, NULL,
BCM_DMA_MAXSIZE, ALLOCATED_DMA_SEGS, BCM_SDHCI_BUFFER_SIZE,
BUS_DMA_ALLOCNOW, NULL, NULL,
&sc->sc_dma_tag);
if (err) {
device_printf(dev, "failed allocate DMA tag");
goto fail;
}
err = bus_dmamap_create(sc->sc_dma_tag, 0, &sc->sc_dma_map);
if (err) {
device_printf(dev, "bus_dmamap_create failed\n");
goto fail;
}
/* FIXME: Fix along with other BUS_SPACE_PHYSADDR instances */
sc->sc_sdhci_buffer_phys = rman_get_start(sc->sc_mem_res) +
SDHCI_BUFFER;
bus_generic_probe(dev);
bus_generic_attach(dev);
sdhci_start_slot(&sc->sc_slot);
/* Seed our copies. */
sc->blksz_and_count = SDHCI_READ_4(dev, &sc->sc_slot, SDHCI_BLOCK_SIZE);
sc->cmd_and_mode = SDHCI_READ_4(dev, &sc->sc_slot, SDHCI_TRANSFER_MODE);
return (0);
fail:
if (sc->sc_intrhand)
bus_teardown_intr(dev, sc->sc_irq_res, sc->sc_intrhand);
if (sc->sc_irq_res)
bus_release_resource(dev, SYS_RES_IRQ, 0, sc->sc_irq_res);
if (sc->sc_mem_res)
bus_release_resource(dev, SYS_RES_MEMORY, 0, sc->sc_mem_res);
return (err);
}
static int
bcm_sdhci_detach(device_t dev)
{
return (EBUSY);
}
static void
bcm_sdhci_intr(void *arg)
{
struct bcm_sdhci_softc *sc = arg;
sdhci_generic_intr(&sc->sc_slot);
}
static int
bcm_sdhci_update_ios(device_t bus, device_t child)
{
#ifdef EXT_RESOURCES
struct bcm_sdhci_softc *sc;
struct mmc_ios *ios;
#endif
int rv;
#ifdef EXT_RESOURCES
sc = device_get_softc(bus);
ios = &sc->sc_slot.host.ios;
if (ios->power_mode == power_up) {
if (sc->sc_mmc_helper.vmmc_supply)
regulator_enable(sc->sc_mmc_helper.vmmc_supply);
if (sc->sc_mmc_helper.vqmmc_supply)
regulator_enable(sc->sc_mmc_helper.vqmmc_supply);
}
#endif
rv = sdhci_generic_update_ios(bus, child);
if (rv != 0)
return (rv);
#ifdef EXT_RESOURCES
if (ios->power_mode == power_off) {
if (sc->sc_mmc_helper.vmmc_supply)
regulator_disable(sc->sc_mmc_helper.vmmc_supply);
if (sc->sc_mmc_helper.vqmmc_supply)
regulator_disable(sc->sc_mmc_helper.vqmmc_supply);
}
#endif
return (0);
}
static int
bcm_sdhci_get_ro(device_t bus, device_t child)
{
return (0);
}
static inline uint32_t
RD4(struct bcm_sdhci_softc *sc, bus_size_t off)
{
uint32_t val = bus_space_read_4(sc->sc_bst, sc->sc_bsh, off);
return val;
}
static inline void
WR4(struct bcm_sdhci_softc *sc, bus_size_t off, uint32_t val)
{
bus_space_write_4(sc->sc_bst, sc->sc_bsh, off, val);
/*
* The Arasan HC has a bug where it may lose the content of
* consecutive writes to registers that are within two SD-card
* clock cycles of each other (a clock domain crossing problem).
*/
if (sc->sc_slot.clock > 0)
DELAY(((2 * 1000000) / sc->sc_slot.clock) + 1);
}
static uint8_t
bcm_sdhci_read_1(device_t dev, struct sdhci_slot *slot, bus_size_t off)
{
struct bcm_sdhci_softc *sc = device_get_softc(dev);
uint32_t val = RD4(sc, off & ~3);
return ((val >> (off & 3)*8) & 0xff);
}
static uint16_t
bcm_sdhci_read_2(device_t dev, struct sdhci_slot *slot, bus_size_t off)
{
struct bcm_sdhci_softc *sc = device_get_softc(dev);
uint32_t val32;
/*
* Standard 32-bit handling of command and transfer mode, as
* well as block size and count.
*/
if ((off == SDHCI_BLOCK_SIZE || off == SDHCI_BLOCK_COUNT) &&
sc->need_update_blk)
val32 = sc->blksz_and_count;
else if (off == SDHCI_TRANSFER_MODE || off == SDHCI_COMMAND_FLAGS)
val32 = sc->cmd_and_mode;
else
val32 = RD4(sc, off & ~3);
return ((val32 >> (off & 3)*8) & 0xffff);
}
static uint32_t
bcm_sdhci_read_4(device_t dev, struct sdhci_slot *slot, bus_size_t off)
{
struct bcm_sdhci_softc *sc = device_get_softc(dev);
return RD4(sc, off);
}
static void
bcm_sdhci_read_multi_4(device_t dev, struct sdhci_slot *slot, bus_size_t off,
uint32_t *data, bus_size_t count)
{
struct bcm_sdhci_softc *sc = device_get_softc(dev);
bus_space_read_multi_4(sc->sc_bst, sc->sc_bsh, off, data, count);
}
static void
bcm_sdhci_write_1(device_t dev, struct sdhci_slot *slot, bus_size_t off,
uint8_t val)
{
struct bcm_sdhci_softc *sc = device_get_softc(dev);
uint32_t val32 = RD4(sc, off & ~3);
val32 &= ~(0xff << (off & 3)*8);
val32 |= (val << (off & 3)*8);
WR4(sc, off & ~3, val32);
}
static void
bcm_sdhci_write_2(device_t dev, struct sdhci_slot *slot, bus_size_t off,
uint16_t val)
{
struct bcm_sdhci_softc *sc = device_get_softc(dev);
uint32_t val32;
/*
* If we have a queued up 16bit value for blk size or count, use and
* update the saved value rather than doing any real register access.
* If we did not touch either since the last write, then read from
* register as at least block count can change.
* Similarly, if we are about to issue a command, always use the saved
* value for transfer mode as we can never write that without issuing
* a command.
*/
if ((off == SDHCI_BLOCK_SIZE || off == SDHCI_BLOCK_COUNT) &&
sc->need_update_blk)
val32 = sc->blksz_and_count;
else if (off == SDHCI_COMMAND_FLAGS)
val32 = sc->cmd_and_mode;
else
val32 = RD4(sc, off & ~3);
val32 &= ~(0xffff << (off & 3)*8);
val32 |= (val << (off & 3)*8);
if (off == SDHCI_TRANSFER_MODE)
sc->cmd_and_mode = val32;
else if (off == SDHCI_BLOCK_SIZE || off == SDHCI_BLOCK_COUNT) {
sc->blksz_and_count = val32;
sc->need_update_blk = true;
} else {
if (off == SDHCI_COMMAND_FLAGS) {
/* If we saved blk writes, do them now before cmd. */
if (sc->need_update_blk) {
WR4(sc, SDHCI_BLOCK_SIZE, sc->blksz_and_count);
sc->need_update_blk = false;
}
/* Always save cmd and mode registers. */
sc->cmd_and_mode = val32;
}
WR4(sc, off & ~3, val32);
}
}
static void
bcm_sdhci_write_4(device_t dev, struct sdhci_slot *slot, bus_size_t off,
uint32_t val)
{
struct bcm_sdhci_softc *sc = device_get_softc(dev);
WR4(sc, off, val);
}
static void
bcm_sdhci_write_multi_4(device_t dev, struct sdhci_slot *slot, bus_size_t off,
uint32_t *data, bus_size_t count)
{
struct bcm_sdhci_softc *sc = device_get_softc(dev);
bus_space_write_multi_4(sc->sc_bst, sc->sc_bsh, off, data, count);
}
static void
bcm_sdhci_start_dma_seg(struct bcm_sdhci_softc *sc)
{
struct sdhci_slot *slot;
vm_paddr_t pdst, psrc;
int err, idx, len, sync_op, width;
slot = &sc->sc_slot;
mtx_assert(&slot->mtx, MA_OWNED);
idx = sc->dmamap_seg_index++;
len = sc->dmamap_seg_sizes[idx];
slot->offset += len;
width = (len & 0xf ? BCM_DMA_32BIT : BCM_DMA_128BIT);
if (slot->curcmd->data->flags & MMC_DATA_READ) {
/*
* Peripherals on the AXI bus do not need DREQ pacing for reads
* from the ARM core, so we can safely set this to NONE.
*/
bcm_dma_setup_src(sc->sc_dma_ch, BCM_DMA_DREQ_NONE,
BCM_DMA_SAME_ADDR, BCM_DMA_32BIT);
bcm_dma_setup_dst(sc->sc_dma_ch, BCM_DMA_DREQ_NONE,
BCM_DMA_INC_ADDR, width);
psrc = sc->sc_sdhci_buffer_phys;
pdst = sc->dmamap_seg_addrs[idx];
sync_op = BUS_DMASYNC_PREREAD;
} else {
/*
* The ordering here is important, because the last write to
* dst/src in the dma control block writes the real dreq value.
*/
bcm_dma_setup_src(sc->sc_dma_ch, BCM_DMA_DREQ_NONE,
BCM_DMA_INC_ADDR, width);
bcm_dma_setup_dst(sc->sc_dma_ch, sc->conf->emmc_dreq,
BCM_DMA_SAME_ADDR, BCM_DMA_32BIT);
psrc = sc->dmamap_seg_addrs[idx];
pdst = sc->sc_sdhci_buffer_phys;
sync_op = BUS_DMASYNC_PREWRITE;
}
/*
* When starting a new DMA operation do the busdma sync operation, and
* disable SDCHI data interrrupts because we'll be driven by DMA
* interrupts (or SDHCI error interrupts) until the IO is done.
*/
if (idx == 0) {
bus_dmamap_sync(sc->sc_dma_tag, sc->sc_dma_map, sync_op);
slot->intmask &= ~DATA_XFER_MASK;
bcm_sdhci_write_4(sc->sc_dev, slot, SDHCI_SIGNAL_ENABLE,
slot->intmask);
}
/*
* Start the DMA transfer. Only programming errors (like failing to
* allocate a channel) cause a non-zero return from bcm_dma_start().
*/
err = bcm_dma_start(sc->sc_dma_ch, psrc, pdst, len);
KASSERT((err == 0), ("bcm2835_sdhci: failed DMA start"));
}
static void
bcm_sdhci_dma_exit(struct bcm_sdhci_softc *sc)
{
struct sdhci_slot *slot = &sc->sc_slot;
mtx_assert(&slot->mtx, MA_OWNED);
/* Re-enable interrupts */
slot->intmask |= DATA_XFER_MASK;
bcm_sdhci_write_4(slot->bus, slot, SDHCI_SIGNAL_ENABLE,
slot->intmask);
}
static void
bcm_sdhci_dma_unload(struct bcm_sdhci_softc *sc)
{
struct sdhci_slot *slot = &sc->sc_slot;
if (sc->dmamap_seg_count == 0)
return;
if ((slot->curcmd->data->flags & MMC_DATA_READ) != 0)
bus_dmamap_sync(sc->sc_dma_tag, sc->sc_dma_map,
BUS_DMASYNC_POSTREAD);
else
bus_dmamap_sync(sc->sc_dma_tag, sc->sc_dma_map,
BUS_DMASYNC_POSTWRITE);
bus_dmamap_unload(sc->sc_dma_tag, sc->sc_dma_map);
sc->dmamap_seg_count = 0;
sc->dmamap_seg_index = 0;
}
static void
bcm_sdhci_dma_intr(int ch, void *arg)
{
struct bcm_sdhci_softc *sc = (struct bcm_sdhci_softc *)arg;
struct sdhci_slot *slot = &sc->sc_slot;
uint32_t reg;
mtx_lock(&slot->mtx);
if (slot->curcmd == NULL)
goto out;
/*
* If there are more segments for the current dma, start the next one.
* Otherwise unload the dma map and decide what to do next based on the
* status of the sdhci controller and whether there's more data left.
*/
if (sc->dmamap_seg_index < sc->dmamap_seg_count) {
bcm_sdhci_start_dma_seg(sc);
goto out;
}
bcm_sdhci_dma_unload(sc);
/*
* If we had no further segments pending, we need to determine how to
* proceed next. If the 'data/space pending' bit is already set and we
* can continue via DMA, do so. Otherwise, re-enable interrupts and
* return.
*/
reg = bcm_sdhci_read_4(slot->bus, slot, SDHCI_INT_STATUS) &
DATA_XFER_MASK;
if ((reg & DATA_PENDING_MASK) != 0 &&
BCM_SDHCI_SEGSZ_LEFT(slot) >= BCM_SDHCI_BUFFER_SIZE) {
/* ACK any pending interrupts */
bcm_sdhci_write_4(slot->bus, slot, SDHCI_INT_STATUS,
DATA_PENDING_MASK);
bcm_sdhci_start_dma(slot);
if (slot->curcmd->error != 0) {
/* We won't recover from this error for this command. */
bcm_sdhci_dma_unload(sc);
bcm_sdhci_dma_exit(sc);
sdhci_finish_data(slot);
}
} else if ((reg & SDHCI_INT_DATA_END) != 0) {
bcm_sdhci_dma_exit(sc);
bcm_sdhci_write_4(slot->bus, slot, SDHCI_INT_STATUS,
reg);
slot->flags &= ~PLATFORM_DATA_STARTED;
sdhci_finish_data(slot);
} else {
bcm_sdhci_dma_exit(sc);
}
out:
mtx_unlock(&slot->mtx);
}
static void
bcm_sdhci_start_dma(struct sdhci_slot *slot)
{
struct bcm_sdhci_softc *sc = device_get_softc(slot->bus);
uint8_t *buf;
size_t left;
mtx_assert(&slot->mtx, MA_OWNED);
left = BCM_SDHCI_SEGSZ_LEFT(slot);
buf = (uint8_t *)slot->curcmd->data->data + slot->offset;
KASSERT(left != 0,
("%s: DMA handling incorrectly indicated", __func__));
/*
* No need to check segment count here; if we've not yet unloaded
* previous segments, we'll catch that in bcm_sdhci_dmacb.
*/
if (bus_dmamap_load(sc->sc_dma_tag, sc->sc_dma_map, buf, left,
bcm_sdhci_dmacb, sc, BUS_DMA_NOWAIT) != 0 ||
sc->dmamap_status != 0) {
slot->curcmd->error = MMC_ERR_NO_MEMORY;
return;
}
/* DMA start */
bcm_sdhci_start_dma_seg(sc);
}
static int
bcm_sdhci_will_handle_transfer(device_t dev, struct sdhci_slot *slot)
{
#ifdef INVARIANTS
struct bcm_sdhci_softc *sc = device_get_softc(slot->bus);
#endif
/*
* This indicates that we somehow let a data interrupt slip by into the
* SDHCI framework, when it should not have. This really needs to be
* caught and fixed ASAP, as it really shouldn't happen.
*/
KASSERT(sc->dmamap_seg_count == 0,
("data pending interrupt pushed through SDHCI framework"));
/*
* Do not use DMA for transfers less than our block size. Checking
* alignment serves little benefit, as we round transfer sizes down to
* a multiple of the block size and push the transfer back to
* SDHCI-driven PIO once we're below the block size.
*/
if (BCM_SDHCI_SEGSZ_LEFT(slot) < BCM_DMA_BLOCK_SIZE)
return (0);
return (1);
}
static void
bcm_sdhci_start_transfer(device_t dev, struct sdhci_slot *slot,
uint32_t *intmask)
{
/* DMA transfer FIFO 1KB */
bcm_sdhci_start_dma(slot);
}
static void
bcm_sdhci_finish_transfer(device_t dev, struct sdhci_slot *slot)
{
struct bcm_sdhci_softc *sc = device_get_softc(slot->bus);
/*
* Clean up. Interrupts are clearly enabled, because we received an
* SDHCI_INT_DATA_END to get this far -- just make sure we don't leave
* anything laying around.
*/
if (sc->dmamap_seg_count != 0) {
/*
* Our segment math should have worked out such that we would
* never finish the transfer without having used up all of the
* segments. If we haven't, that means we must have erroneously
* regressed to SDHCI-driven PIO to finish the operation and
* this is certainly caused by developer-error.
*/
bcm_sdhci_dma_unload(sc);
}
sdhci_finish_data(slot);
}
static device_method_t bcm_sdhci_methods[] = {
/* Device interface */
DEVMETHOD(device_probe, bcm_sdhci_probe),
DEVMETHOD(device_attach, bcm_sdhci_attach),
DEVMETHOD(device_detach, bcm_sdhci_detach),
/* Bus interface */
DEVMETHOD(bus_read_ivar, sdhci_generic_read_ivar),
DEVMETHOD(bus_write_ivar, sdhci_generic_write_ivar),
DEVMETHOD(bus_add_child, bus_generic_add_child),
/* MMC bridge interface */
DEVMETHOD(mmcbr_update_ios, bcm_sdhci_update_ios),
DEVMETHOD(mmcbr_request, sdhci_generic_request),
DEVMETHOD(mmcbr_get_ro, bcm_sdhci_get_ro),
DEVMETHOD(mmcbr_acquire_host, sdhci_generic_acquire_host),
DEVMETHOD(mmcbr_release_host, sdhci_generic_release_host),
/* Platform transfer methods */
DEVMETHOD(sdhci_platform_will_handle, bcm_sdhci_will_handle_transfer),
DEVMETHOD(sdhci_platform_start_transfer, bcm_sdhci_start_transfer),
DEVMETHOD(sdhci_platform_finish_transfer, bcm_sdhci_finish_transfer),
/* SDHCI registers accessors */
DEVMETHOD(sdhci_read_1, bcm_sdhci_read_1),
DEVMETHOD(sdhci_read_2, bcm_sdhci_read_2),
DEVMETHOD(sdhci_read_4, bcm_sdhci_read_4),
DEVMETHOD(sdhci_read_multi_4, bcm_sdhci_read_multi_4),
DEVMETHOD(sdhci_write_1, bcm_sdhci_write_1),
DEVMETHOD(sdhci_write_2, bcm_sdhci_write_2),
DEVMETHOD(sdhci_write_4, bcm_sdhci_write_4),
DEVMETHOD(sdhci_write_multi_4, bcm_sdhci_write_multi_4),
DEVMETHOD_END
};
static devclass_t bcm_sdhci_devclass;
static driver_t bcm_sdhci_driver = {
"sdhci_bcm",
bcm_sdhci_methods,
sizeof(struct bcm_sdhci_softc),
};
DRIVER_MODULE(sdhci_bcm, simplebus, bcm_sdhci_driver, bcm_sdhci_devclass,
NULL, NULL);
#ifdef NOTYET
MODULE_DEPEND(sdhci_bcm, bcm2835_clkman, 1, 1, 1);
#endif
SDHCI_DEPEND(sdhci_bcm);
#ifndef MMCCAM
MMC_DECLARE_BRIDGE(sdhci_bcm);
#endif