mirror of https://github.com/F-Stack/f-stack.git
455 lines
12 KiB
C
455 lines
12 KiB
C
/*-
|
|
* Copyright (c) 1996, by Steve Passe
|
|
* Copyright (c) 2003, by Peter Wemm
|
|
* All rights reserved.
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions
|
|
* are met:
|
|
* 1. Redistributions of source code must retain the above copyright
|
|
* notice, this list of conditions and the following disclaimer.
|
|
* 2. The name of the developer may NOT be used to endorse or promote products
|
|
* derived from this software without specific prior written permission.
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
|
|
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
|
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
|
|
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
|
|
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
|
|
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
|
|
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
|
|
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
|
|
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
|
|
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
|
|
* SUCH DAMAGE.
|
|
*/
|
|
|
|
#include <sys/cdefs.h>
|
|
__FBSDID("$FreeBSD$");
|
|
|
|
#include "opt_cpu.h"
|
|
#include "opt_ddb.h"
|
|
#include "opt_kstack_pages.h"
|
|
#include "opt_sched.h"
|
|
#include "opt_smp.h"
|
|
|
|
#include <sys/param.h>
|
|
#include <sys/systm.h>
|
|
#include <sys/bus.h>
|
|
#include <sys/cpuset.h>
|
|
#ifdef GPROF
|
|
#include <sys/gmon.h>
|
|
#endif
|
|
#include <sys/kernel.h>
|
|
#include <sys/ktr.h>
|
|
#include <sys/lock.h>
|
|
#include <sys/malloc.h>
|
|
#include <sys/memrange.h>
|
|
#include <sys/mutex.h>
|
|
#include <sys/pcpu.h>
|
|
#include <sys/proc.h>
|
|
#include <sys/sched.h>
|
|
#include <sys/smp.h>
|
|
#include <sys/sysctl.h>
|
|
|
|
#include <vm/vm.h>
|
|
#include <vm/vm_param.h>
|
|
#include <vm/pmap.h>
|
|
#include <vm/vm_kern.h>
|
|
#include <vm/vm_extern.h>
|
|
|
|
#include <x86/apicreg.h>
|
|
#include <machine/clock.h>
|
|
#include <machine/cputypes.h>
|
|
#include <machine/cpufunc.h>
|
|
#include <x86/mca.h>
|
|
#include <machine/md_var.h>
|
|
#include <machine/pcb.h>
|
|
#include <machine/psl.h>
|
|
#include <machine/smp.h>
|
|
#include <machine/specialreg.h>
|
|
#include <machine/tss.h>
|
|
#include <machine/cpu.h>
|
|
#include <x86/init.h>
|
|
|
|
#define WARMBOOT_TARGET 0
|
|
#define WARMBOOT_OFF (KERNBASE + 0x0467)
|
|
#define WARMBOOT_SEG (KERNBASE + 0x0469)
|
|
|
|
#define CMOS_REG (0x70)
|
|
#define CMOS_DATA (0x71)
|
|
#define BIOS_RESET (0x0f)
|
|
#define BIOS_WARM (0x0a)
|
|
|
|
extern struct pcpu __pcpu[];
|
|
|
|
/* Temporary variables for init_secondary() */
|
|
char *doublefault_stack;
|
|
char *nmi_stack;
|
|
|
|
extern inthand_t IDTVEC(fast_syscall), IDTVEC(fast_syscall32);
|
|
|
|
/*
|
|
* Local data and functions.
|
|
*/
|
|
|
|
static int start_ap(int apic_id);
|
|
|
|
static u_int bootMP_size;
|
|
static u_int boot_address;
|
|
|
|
/*
|
|
* Calculate usable address in base memory for AP trampoline code.
|
|
*/
|
|
u_int
|
|
mp_bootaddress(u_int basemem)
|
|
{
|
|
|
|
bootMP_size = mptramp_end - mptramp_start;
|
|
boot_address = trunc_page(basemem * 1024); /* round down to 4k boundary */
|
|
if (((basemem * 1024) - boot_address) < bootMP_size)
|
|
boot_address -= PAGE_SIZE; /* not enough, lower by 4k */
|
|
/* 3 levels of page table pages */
|
|
mptramp_pagetables = boot_address - (PAGE_SIZE * 3);
|
|
|
|
return mptramp_pagetables;
|
|
}
|
|
|
|
/*
|
|
* Initialize the IPI handlers and start up the AP's.
|
|
*/
|
|
void
|
|
cpu_mp_start(void)
|
|
{
|
|
int i;
|
|
|
|
/* Initialize the logical ID to APIC ID table. */
|
|
for (i = 0; i < MAXCPU; i++) {
|
|
cpu_apic_ids[i] = -1;
|
|
cpu_ipi_pending[i] = 0;
|
|
}
|
|
|
|
/* Install an inter-CPU IPI for TLB invalidation */
|
|
if (pmap_pcid_enabled) {
|
|
if (invpcid_works) {
|
|
setidt(IPI_INVLTLB, IDTVEC(invltlb_invpcid),
|
|
SDT_SYSIGT, SEL_KPL, 0);
|
|
} else {
|
|
setidt(IPI_INVLTLB, IDTVEC(invltlb_pcid), SDT_SYSIGT,
|
|
SEL_KPL, 0);
|
|
}
|
|
} else {
|
|
setidt(IPI_INVLTLB, IDTVEC(invltlb), SDT_SYSIGT, SEL_KPL, 0);
|
|
}
|
|
setidt(IPI_INVLPG, IDTVEC(invlpg), SDT_SYSIGT, SEL_KPL, 0);
|
|
setidt(IPI_INVLRNG, IDTVEC(invlrng), SDT_SYSIGT, SEL_KPL, 0);
|
|
|
|
/* Install an inter-CPU IPI for cache invalidation. */
|
|
setidt(IPI_INVLCACHE, IDTVEC(invlcache), SDT_SYSIGT, SEL_KPL, 0);
|
|
|
|
/* Install an inter-CPU IPI for all-CPU rendezvous */
|
|
setidt(IPI_RENDEZVOUS, IDTVEC(rendezvous), SDT_SYSIGT, SEL_KPL, 0);
|
|
|
|
/* Install generic inter-CPU IPI handler */
|
|
setidt(IPI_BITMAP_VECTOR, IDTVEC(ipi_intr_bitmap_handler),
|
|
SDT_SYSIGT, SEL_KPL, 0);
|
|
|
|
/* Install an inter-CPU IPI for CPU stop/restart */
|
|
setidt(IPI_STOP, IDTVEC(cpustop), SDT_SYSIGT, SEL_KPL, 0);
|
|
|
|
/* Install an inter-CPU IPI for CPU suspend/resume */
|
|
setidt(IPI_SUSPEND, IDTVEC(cpususpend), SDT_SYSIGT, SEL_KPL, 0);
|
|
|
|
/* Set boot_cpu_id if needed. */
|
|
if (boot_cpu_id == -1) {
|
|
boot_cpu_id = PCPU_GET(apic_id);
|
|
cpu_info[boot_cpu_id].cpu_bsp = 1;
|
|
} else
|
|
KASSERT(boot_cpu_id == PCPU_GET(apic_id),
|
|
("BSP's APIC ID doesn't match boot_cpu_id"));
|
|
|
|
/* Probe logical/physical core configuration. */
|
|
topo_probe();
|
|
|
|
assign_cpu_ids();
|
|
|
|
/* Start each Application Processor */
|
|
init_ops.start_all_aps();
|
|
|
|
set_interrupt_apic_ids();
|
|
}
|
|
|
|
|
|
/*
|
|
* AP CPU's call this to initialize themselves.
|
|
*/
|
|
void
|
|
init_secondary(void)
|
|
{
|
|
struct pcpu *pc;
|
|
struct nmi_pcpu *np;
|
|
u_int64_t msr, cr0;
|
|
int cpu, gsel_tss, x;
|
|
struct region_descriptor ap_gdt;
|
|
|
|
/* Set by the startup code for us to use */
|
|
cpu = bootAP;
|
|
|
|
/* Init tss */
|
|
common_tss[cpu] = common_tss[0];
|
|
common_tss[cpu].tss_rsp0 = 0; /* not used until after switch */
|
|
common_tss[cpu].tss_iobase = sizeof(struct amd64tss) +
|
|
IOPERM_BITMAP_SIZE;
|
|
common_tss[cpu].tss_ist1 = (long)&doublefault_stack[PAGE_SIZE];
|
|
|
|
/* The NMI stack runs on IST2. */
|
|
np = ((struct nmi_pcpu *) &nmi_stack[PAGE_SIZE]) - 1;
|
|
common_tss[cpu].tss_ist2 = (long) np;
|
|
|
|
/* Prepare private GDT */
|
|
gdt_segs[GPROC0_SEL].ssd_base = (long) &common_tss[cpu];
|
|
for (x = 0; x < NGDT; x++) {
|
|
if (x != GPROC0_SEL && x != (GPROC0_SEL + 1) &&
|
|
x != GUSERLDT_SEL && x != (GUSERLDT_SEL + 1))
|
|
ssdtosd(&gdt_segs[x], &gdt[NGDT * cpu + x]);
|
|
}
|
|
ssdtosyssd(&gdt_segs[GPROC0_SEL],
|
|
(struct system_segment_descriptor *)&gdt[NGDT * cpu + GPROC0_SEL]);
|
|
ap_gdt.rd_limit = NGDT * sizeof(gdt[0]) - 1;
|
|
ap_gdt.rd_base = (long) &gdt[NGDT * cpu];
|
|
lgdt(&ap_gdt); /* does magic intra-segment return */
|
|
|
|
/* Get per-cpu data */
|
|
pc = &__pcpu[cpu];
|
|
|
|
/* prime data page for it to use */
|
|
pcpu_init(pc, cpu, sizeof(struct pcpu));
|
|
dpcpu_init(dpcpu, cpu);
|
|
pc->pc_apic_id = cpu_apic_ids[cpu];
|
|
pc->pc_prvspace = pc;
|
|
pc->pc_curthread = 0;
|
|
pc->pc_tssp = &common_tss[cpu];
|
|
pc->pc_commontssp = &common_tss[cpu];
|
|
pc->pc_rsp0 = 0;
|
|
pc->pc_tss = (struct system_segment_descriptor *)&gdt[NGDT * cpu +
|
|
GPROC0_SEL];
|
|
pc->pc_fs32p = &gdt[NGDT * cpu + GUFS32_SEL];
|
|
pc->pc_gs32p = &gdt[NGDT * cpu + GUGS32_SEL];
|
|
pc->pc_ldt = (struct system_segment_descriptor *)&gdt[NGDT * cpu +
|
|
GUSERLDT_SEL];
|
|
pc->pc_curpmap = kernel_pmap;
|
|
pc->pc_pcid_gen = 1;
|
|
pc->pc_pcid_next = PMAP_PCID_KERN + 1;
|
|
|
|
/* Save the per-cpu pointer for use by the NMI handler. */
|
|
np->np_pcpu = (register_t) pc;
|
|
|
|
wrmsr(MSR_FSBASE, 0); /* User value */
|
|
wrmsr(MSR_GSBASE, (u_int64_t)pc);
|
|
wrmsr(MSR_KGSBASE, (u_int64_t)pc); /* XXX User value while we're in the kernel */
|
|
fix_cpuid();
|
|
|
|
lidt(&r_idt);
|
|
|
|
gsel_tss = GSEL(GPROC0_SEL, SEL_KPL);
|
|
ltr(gsel_tss);
|
|
|
|
/*
|
|
* Set to a known state:
|
|
* Set by mpboot.s: CR0_PG, CR0_PE
|
|
* Set by cpu_setregs: CR0_NE, CR0_MP, CR0_TS, CR0_WP, CR0_AM
|
|
*/
|
|
cr0 = rcr0();
|
|
cr0 &= ~(CR0_CD | CR0_NW | CR0_EM);
|
|
load_cr0(cr0);
|
|
|
|
/* Set up the fast syscall stuff */
|
|
msr = rdmsr(MSR_EFER) | EFER_SCE;
|
|
wrmsr(MSR_EFER, msr);
|
|
wrmsr(MSR_LSTAR, (u_int64_t)IDTVEC(fast_syscall));
|
|
wrmsr(MSR_CSTAR, (u_int64_t)IDTVEC(fast_syscall32));
|
|
msr = ((u_int64_t)GSEL(GCODE_SEL, SEL_KPL) << 32) |
|
|
((u_int64_t)GSEL(GUCODE32_SEL, SEL_UPL) << 48);
|
|
wrmsr(MSR_STAR, msr);
|
|
wrmsr(MSR_SF_MASK, PSL_NT|PSL_T|PSL_I|PSL_C|PSL_D);
|
|
|
|
/* signal our startup to the BSP. */
|
|
mp_naps++;
|
|
|
|
/* Spin until the BSP releases the AP's. */
|
|
while (atomic_load_acq_int(&aps_ready) == 0)
|
|
ia32_pause();
|
|
|
|
init_secondary_tail();
|
|
}
|
|
|
|
/*******************************************************************
|
|
* local functions and data
|
|
*/
|
|
|
|
/*
|
|
* start each AP in our list
|
|
*/
|
|
int
|
|
native_start_all_aps(void)
|
|
{
|
|
vm_offset_t va = boot_address + KERNBASE;
|
|
u_int64_t *pt4, *pt3, *pt2;
|
|
u_int32_t mpbioswarmvec;
|
|
int apic_id, cpu, i;
|
|
u_char mpbiosreason;
|
|
|
|
mtx_init(&ap_boot_mtx, "ap boot", NULL, MTX_SPIN);
|
|
|
|
/* install the AP 1st level boot code */
|
|
pmap_kenter(va, boot_address);
|
|
pmap_invalidate_page(kernel_pmap, va);
|
|
bcopy(mptramp_start, (void *)va, bootMP_size);
|
|
|
|
/* Locate the page tables, they'll be below the trampoline */
|
|
pt4 = (u_int64_t *)(uintptr_t)(mptramp_pagetables + KERNBASE);
|
|
pt3 = pt4 + (PAGE_SIZE) / sizeof(u_int64_t);
|
|
pt2 = pt3 + (PAGE_SIZE) / sizeof(u_int64_t);
|
|
|
|
/* Create the initial 1GB replicated page tables */
|
|
for (i = 0; i < 512; i++) {
|
|
/* Each slot of the level 4 pages points to the same level 3 page */
|
|
pt4[i] = (u_int64_t)(uintptr_t)(mptramp_pagetables + PAGE_SIZE);
|
|
pt4[i] |= PG_V | PG_RW | PG_U;
|
|
|
|
/* Each slot of the level 3 pages points to the same level 2 page */
|
|
pt3[i] = (u_int64_t)(uintptr_t)(mptramp_pagetables + (2 * PAGE_SIZE));
|
|
pt3[i] |= PG_V | PG_RW | PG_U;
|
|
|
|
/* The level 2 page slots are mapped with 2MB pages for 1GB. */
|
|
pt2[i] = i * (2 * 1024 * 1024);
|
|
pt2[i] |= PG_V | PG_RW | PG_PS | PG_U;
|
|
}
|
|
|
|
/* save the current value of the warm-start vector */
|
|
mpbioswarmvec = *((u_int32_t *) WARMBOOT_OFF);
|
|
outb(CMOS_REG, BIOS_RESET);
|
|
mpbiosreason = inb(CMOS_DATA);
|
|
|
|
/* setup a vector to our boot code */
|
|
*((volatile u_short *) WARMBOOT_OFF) = WARMBOOT_TARGET;
|
|
*((volatile u_short *) WARMBOOT_SEG) = (boot_address >> 4);
|
|
outb(CMOS_REG, BIOS_RESET);
|
|
outb(CMOS_DATA, BIOS_WARM); /* 'warm-start' */
|
|
|
|
/* start each AP */
|
|
for (cpu = 1; cpu < mp_ncpus; cpu++) {
|
|
apic_id = cpu_apic_ids[cpu];
|
|
|
|
/* allocate and set up an idle stack data page */
|
|
bootstacks[cpu] = (void *)kmem_malloc(kernel_arena,
|
|
kstack_pages * PAGE_SIZE, M_WAITOK | M_ZERO);
|
|
doublefault_stack = (char *)kmem_malloc(kernel_arena,
|
|
PAGE_SIZE, M_WAITOK | M_ZERO);
|
|
nmi_stack = (char *)kmem_malloc(kernel_arena, PAGE_SIZE,
|
|
M_WAITOK | M_ZERO);
|
|
dpcpu = (void *)kmem_malloc(kernel_arena, DPCPU_SIZE,
|
|
M_WAITOK | M_ZERO);
|
|
|
|
bootSTK = (char *)bootstacks[cpu] + kstack_pages * PAGE_SIZE - 8;
|
|
bootAP = cpu;
|
|
|
|
/* attempt to start the Application Processor */
|
|
if (!start_ap(apic_id)) {
|
|
/* restore the warmstart vector */
|
|
*(u_int32_t *) WARMBOOT_OFF = mpbioswarmvec;
|
|
panic("AP #%d (PHY# %d) failed!", cpu, apic_id);
|
|
}
|
|
|
|
CPU_SET(cpu, &all_cpus); /* record AP in CPU map */
|
|
}
|
|
|
|
/* restore the warmstart vector */
|
|
*(u_int32_t *) WARMBOOT_OFF = mpbioswarmvec;
|
|
|
|
outb(CMOS_REG, BIOS_RESET);
|
|
outb(CMOS_DATA, mpbiosreason);
|
|
|
|
/* number of APs actually started */
|
|
return mp_naps;
|
|
}
|
|
|
|
|
|
/*
|
|
* This function starts the AP (application processor) identified
|
|
* by the APIC ID 'physicalCpu'. It does quite a "song and dance"
|
|
* to accomplish this. This is necessary because of the nuances
|
|
* of the different hardware we might encounter. It isn't pretty,
|
|
* but it seems to work.
|
|
*/
|
|
static int
|
|
start_ap(int apic_id)
|
|
{
|
|
int vector, ms;
|
|
int cpus;
|
|
|
|
/* calculate the vector */
|
|
vector = (boot_address >> 12) & 0xff;
|
|
|
|
/* used as a watchpoint to signal AP startup */
|
|
cpus = mp_naps;
|
|
|
|
ipi_startup(apic_id, vector);
|
|
|
|
/* Wait up to 5 seconds for it to start. */
|
|
for (ms = 0; ms < 5000; ms++) {
|
|
if (mp_naps > cpus)
|
|
return 1; /* return SUCCESS */
|
|
DELAY(1000);
|
|
}
|
|
return 0; /* return FAILURE */
|
|
}
|
|
|
|
void
|
|
invltlb_invpcid_handler(void)
|
|
{
|
|
struct invpcid_descr d;
|
|
|
|
#ifdef COUNT_XINVLTLB_HITS
|
|
xhits_gbl[PCPU_GET(cpuid)]++;
|
|
#endif /* COUNT_XINVLTLB_HITS */
|
|
#ifdef COUNT_IPIS
|
|
(*ipi_invltlb_counts[PCPU_GET(cpuid)])++;
|
|
#endif /* COUNT_IPIS */
|
|
|
|
d.pcid = smp_tlb_pmap->pm_pcids[PCPU_GET(cpuid)].pm_pcid;
|
|
d.pad = 0;
|
|
d.addr = 0;
|
|
invpcid(&d, smp_tlb_pmap == kernel_pmap ? INVPCID_CTXGLOB :
|
|
INVPCID_CTX);
|
|
atomic_add_int(&smp_tlb_wait, 1);
|
|
}
|
|
|
|
void
|
|
invltlb_pcid_handler(void)
|
|
{
|
|
#ifdef COUNT_XINVLTLB_HITS
|
|
xhits_gbl[PCPU_GET(cpuid)]++;
|
|
#endif /* COUNT_XINVLTLB_HITS */
|
|
#ifdef COUNT_IPIS
|
|
(*ipi_invltlb_counts[PCPU_GET(cpuid)])++;
|
|
#endif /* COUNT_IPIS */
|
|
|
|
if (smp_tlb_pmap == kernel_pmap) {
|
|
invltlb_glob();
|
|
} else {
|
|
/*
|
|
* The current pmap might not be equal to
|
|
* smp_tlb_pmap. The clearing of the pm_gen in
|
|
* pmap_invalidate_all() takes care of TLB
|
|
* invalidation when switching to the pmap on this
|
|
* CPU.
|
|
*/
|
|
if (PCPU_GET(curpmap) == smp_tlb_pmap) {
|
|
load_cr3(smp_tlb_pmap->pm_cr3 |
|
|
smp_tlb_pmap->pm_pcids[PCPU_GET(cpuid)].pm_pcid);
|
|
}
|
|
}
|
|
atomic_add_int(&smp_tlb_wait, 1);
|
|
}
|