f-stack/dpdk/drivers/event/cnxk/cn10k_worker.c

445 lines
12 KiB
C

/* SPDX-License-Identifier: BSD-3-Clause
* Copyright(C) 2021 Marvell.
*/
#include "cn10k_worker.h"
#include "cnxk_eventdev.h"
#include "cnxk_worker.h"
/* SSO Operations */
static __rte_always_inline uint8_t
cn10k_sso_hws_new_event(struct cn10k_sso_hws *ws, const struct rte_event *ev)
{
const uint32_t tag = (uint32_t)ev->event;
const uint8_t new_tt = ev->sched_type;
const uint64_t event_ptr = ev->u64;
const uint16_t grp = ev->queue_id;
rte_atomic_thread_fence(__ATOMIC_ACQ_REL);
if (ws->xaq_lmt <= *ws->fc_mem)
return 0;
cnxk_sso_hws_add_work(event_ptr, tag, new_tt, ws->grp_base + (grp << 12));
return 1;
}
static __rte_always_inline void
cn10k_sso_hws_fwd_swtag(struct cn10k_sso_hws *ws, const struct rte_event *ev)
{
const uint32_t tag = (uint32_t)ev->event;
const uint8_t new_tt = ev->sched_type;
const uint8_t cur_tt = CNXK_TT_FROM_TAG(ws->gw_rdata);
/* CNXK model
* cur_tt/new_tt SSO_TT_ORDERED SSO_TT_ATOMIC SSO_TT_UNTAGGED
*
* SSO_TT_ORDERED norm norm untag
* SSO_TT_ATOMIC norm norm untag
* SSO_TT_UNTAGGED norm norm NOOP
*/
if (new_tt == SSO_TT_UNTAGGED) {
if (cur_tt != SSO_TT_UNTAGGED)
cnxk_sso_hws_swtag_untag(ws->base + SSOW_LF_GWS_OP_SWTAG_UNTAG);
} else {
cnxk_sso_hws_swtag_norm(tag, new_tt, ws->base + SSOW_LF_GWS_OP_SWTAG_NORM);
}
ws->swtag_req = 1;
}
static __rte_always_inline void
cn10k_sso_hws_fwd_group(struct cn10k_sso_hws *ws, const struct rte_event *ev,
const uint16_t grp)
{
const uint32_t tag = (uint32_t)ev->event;
const uint8_t new_tt = ev->sched_type;
plt_write64(ev->u64, ws->base + SSOW_LF_GWS_OP_UPD_WQP_GRP1);
cnxk_sso_hws_swtag_desched(tag, new_tt, grp, ws->base + SSOW_LF_GWS_OP_SWTAG_DESCHED);
}
static __rte_always_inline void
cn10k_sso_hws_forward_event(struct cn10k_sso_hws *ws,
const struct rte_event *ev)
{
const uint8_t grp = ev->queue_id;
/* Group hasn't changed, Use SWTAG to forward the event */
if (CNXK_GRP_FROM_TAG(ws->gw_rdata) == grp)
cn10k_sso_hws_fwd_swtag(ws, ev);
else
/*
* Group has been changed for group based work pipelining,
* Use deschedule/add_work operation to transfer the event to
* new group/core
*/
cn10k_sso_hws_fwd_group(ws, ev, grp);
}
static inline int32_t
sso_read_xaq_space(struct cn10k_sso_hws *ws)
{
return (ws->xaq_lmt - __atomic_load_n(ws->fc_mem, __ATOMIC_RELAXED)) *
ROC_SSO_XAE_PER_XAQ;
}
static inline void
sso_lmt_aw_wait_fc(struct cn10k_sso_hws *ws, int64_t req)
{
int64_t cached, refill;
retry:
while (__atomic_load_n(ws->fc_cache_space, __ATOMIC_RELAXED) < 0)
;
cached = __atomic_fetch_sub(ws->fc_cache_space, req, __ATOMIC_ACQUIRE) - req;
/* Check if there is enough space, else update and retry. */
if (cached < 0) {
/* Check if we have space else retry. */
do {
refill = sso_read_xaq_space(ws);
} while (refill <= 0);
__atomic_compare_exchange(ws->fc_cache_space, &cached, &refill,
0, __ATOMIC_RELEASE,
__ATOMIC_RELAXED);
goto retry;
}
}
uint16_t __rte_hot
cn10k_sso_hws_enq(void *port, const struct rte_event *ev)
{
struct cn10k_sso_hws *ws = port;
switch (ev->op) {
case RTE_EVENT_OP_NEW:
return cn10k_sso_hws_new_event(ws, ev);
case RTE_EVENT_OP_FORWARD:
cn10k_sso_hws_forward_event(ws, ev);
break;
case RTE_EVENT_OP_RELEASE:
if (ws->swtag_req) {
cnxk_sso_hws_desched(ev->u64, ws->base);
ws->swtag_req = 0;
break;
}
cnxk_sso_hws_swtag_flush(ws->base);
break;
default:
return 0;
}
return 1;
}
#define VECTOR_SIZE_BITS 0xFFFFFFFFFFF80000ULL
#define VECTOR_GET_LINE_OFFSET(line) (19 + (3 * line))
static uint64_t
vector_size_partial_mask(uint16_t off, uint16_t cnt)
{
return (VECTOR_SIZE_BITS & ~(~0x0ULL << off)) |
((uint64_t)(cnt - 1) << off);
}
static __rte_always_inline uint16_t
cn10k_sso_hws_new_event_lmtst(struct cn10k_sso_hws *ws, uint8_t queue_id,
const struct rte_event ev[], uint16_t n)
{
uint16_t lines, partial_line, burst, left;
uint64_t wdata[2], pa[2] = {0};
uintptr_t lmt_addr;
uint16_t sz0, sz1;
uint16_t lmt_id;
sz0 = sz1 = 0;
lmt_addr = ws->lmt_base;
ROC_LMT_BASE_ID_GET(lmt_addr, lmt_id);
left = n;
again:
burst = RTE_MIN(
BIT(ROC_SSO_AW_PER_LMT_LINE_LOG2 + ROC_LMT_LINES_PER_CORE_LOG2),
left);
/* Set wdata */
lines = burst >> ROC_SSO_AW_PER_LMT_LINE_LOG2;
partial_line = burst & (BIT(ROC_SSO_AW_PER_LMT_LINE_LOG2) - 1);
wdata[0] = wdata[1] = 0;
if (lines > BIT(ROC_LMT_LINES_PER_STR_LOG2)) {
wdata[0] = lmt_id;
wdata[0] |= 15ULL << 12;
wdata[0] |= VECTOR_SIZE_BITS;
pa[0] = (ws->grp_base + (queue_id << 12) +
SSO_LF_GGRP_OP_AW_LMTST) |
(0x7 << 4);
sz0 = 16 << ROC_SSO_AW_PER_LMT_LINE_LOG2;
wdata[1] = lmt_id + 16;
pa[1] = (ws->grp_base + (queue_id << 12) +
SSO_LF_GGRP_OP_AW_LMTST) |
(0x7 << 4);
lines -= 17;
wdata[1] |= partial_line ? (uint64_t)(lines + 1) << 12 :
(uint64_t)(lines << 12);
wdata[1] |= partial_line ?
vector_size_partial_mask(
VECTOR_GET_LINE_OFFSET(lines),
partial_line) :
VECTOR_SIZE_BITS;
sz1 = burst - sz0;
partial_line = 0;
} else if (lines) {
/* We need to handle two cases here:
* 1. Partial line spill over to wdata[1] i.e. lines == 16
* 2. Partial line with spill lines < 16.
*/
wdata[0] = lmt_id;
pa[0] = (ws->grp_base + (queue_id << 12) +
SSO_LF_GGRP_OP_AW_LMTST) |
(0x7 << 4);
sz0 = lines << ROC_SSO_AW_PER_LMT_LINE_LOG2;
if (lines == 16) {
wdata[0] |= 15ULL << 12;
wdata[0] |= VECTOR_SIZE_BITS;
if (partial_line) {
wdata[1] = lmt_id + 16;
pa[1] = (ws->grp_base + (queue_id << 12) +
SSO_LF_GGRP_OP_AW_LMTST) |
((partial_line - 1) << 4);
}
} else {
lines -= 1;
wdata[0] |= partial_line ? (uint64_t)(lines + 1) << 12 :
(uint64_t)(lines << 12);
wdata[0] |=
partial_line ?
vector_size_partial_mask(
VECTOR_GET_LINE_OFFSET(lines),
partial_line) :
VECTOR_SIZE_BITS;
sz0 += partial_line;
}
sz1 = burst - sz0;
partial_line = 0;
}
/* Only partial lines */
if (partial_line) {
wdata[0] = lmt_id;
pa[0] = (ws->grp_base + (queue_id << 12) +
SSO_LF_GGRP_OP_AW_LMTST) |
((partial_line - 1) << 4);
sz0 = partial_line;
sz1 = burst - sz0;
}
#if defined(RTE_ARCH_ARM64)
uint64x2_t aw_mask = {0xC0FFFFFFFFULL, ~0x0ULL};
uint64x2_t tt_mask = {0x300000000ULL, 0};
uint16_t parts;
while (burst) {
parts = burst > 7 ? 8 : plt_align32prevpow2(burst);
burst -= parts;
/* Lets try to fill at least one line per burst. */
switch (parts) {
case 8: {
uint64x2_t aw0, aw1, aw2, aw3, aw4, aw5, aw6, aw7;
aw0 = vandq_u64(vld1q_u64((const uint64_t *)&ev[0]),
aw_mask);
aw1 = vandq_u64(vld1q_u64((const uint64_t *)&ev[1]),
aw_mask);
aw2 = vandq_u64(vld1q_u64((const uint64_t *)&ev[2]),
aw_mask);
aw3 = vandq_u64(vld1q_u64((const uint64_t *)&ev[3]),
aw_mask);
aw4 = vandq_u64(vld1q_u64((const uint64_t *)&ev[4]),
aw_mask);
aw5 = vandq_u64(vld1q_u64((const uint64_t *)&ev[5]),
aw_mask);
aw6 = vandq_u64(vld1q_u64((const uint64_t *)&ev[6]),
aw_mask);
aw7 = vandq_u64(vld1q_u64((const uint64_t *)&ev[7]),
aw_mask);
aw0 = vorrq_u64(vandq_u64(vshrq_n_u64(aw0, 6), tt_mask),
aw0);
aw1 = vorrq_u64(vandq_u64(vshrq_n_u64(aw1, 6), tt_mask),
aw1);
aw2 = vorrq_u64(vandq_u64(vshrq_n_u64(aw2, 6), tt_mask),
aw2);
aw3 = vorrq_u64(vandq_u64(vshrq_n_u64(aw3, 6), tt_mask),
aw3);
aw4 = vorrq_u64(vandq_u64(vshrq_n_u64(aw4, 6), tt_mask),
aw4);
aw5 = vorrq_u64(vandq_u64(vshrq_n_u64(aw5, 6), tt_mask),
aw5);
aw6 = vorrq_u64(vandq_u64(vshrq_n_u64(aw6, 6), tt_mask),
aw6);
aw7 = vorrq_u64(vandq_u64(vshrq_n_u64(aw7, 6), tt_mask),
aw7);
vst1q_u64((void *)lmt_addr, aw0);
vst1q_u64((void *)PLT_PTR_ADD(lmt_addr, 16), aw1);
vst1q_u64((void *)PLT_PTR_ADD(lmt_addr, 32), aw2);
vst1q_u64((void *)PLT_PTR_ADD(lmt_addr, 48), aw3);
vst1q_u64((void *)PLT_PTR_ADD(lmt_addr, 64), aw4);
vst1q_u64((void *)PLT_PTR_ADD(lmt_addr, 80), aw5);
vst1q_u64((void *)PLT_PTR_ADD(lmt_addr, 96), aw6);
vst1q_u64((void *)PLT_PTR_ADD(lmt_addr, 112), aw7);
lmt_addr = (uintptr_t)PLT_PTR_ADD(lmt_addr, 128);
} break;
case 4: {
uint64x2_t aw0, aw1, aw2, aw3;
aw0 = vandq_u64(vld1q_u64((const uint64_t *)&ev[0]),
aw_mask);
aw1 = vandq_u64(vld1q_u64((const uint64_t *)&ev[1]),
aw_mask);
aw2 = vandq_u64(vld1q_u64((const uint64_t *)&ev[2]),
aw_mask);
aw3 = vandq_u64(vld1q_u64((const uint64_t *)&ev[3]),
aw_mask);
aw0 = vorrq_u64(vandq_u64(vshrq_n_u64(aw0, 6), tt_mask),
aw0);
aw1 = vorrq_u64(vandq_u64(vshrq_n_u64(aw1, 6), tt_mask),
aw1);
aw2 = vorrq_u64(vandq_u64(vshrq_n_u64(aw2, 6), tt_mask),
aw2);
aw3 = vorrq_u64(vandq_u64(vshrq_n_u64(aw3, 6), tt_mask),
aw3);
vst1q_u64((void *)lmt_addr, aw0);
vst1q_u64((void *)PLT_PTR_ADD(lmt_addr, 16), aw1);
vst1q_u64((void *)PLT_PTR_ADD(lmt_addr, 32), aw2);
vst1q_u64((void *)PLT_PTR_ADD(lmt_addr, 48), aw3);
lmt_addr = (uintptr_t)PLT_PTR_ADD(lmt_addr, 64);
} break;
case 2: {
uint64x2_t aw0, aw1;
aw0 = vandq_u64(vld1q_u64((const uint64_t *)&ev[0]),
aw_mask);
aw1 = vandq_u64(vld1q_u64((const uint64_t *)&ev[1]),
aw_mask);
aw0 = vorrq_u64(vandq_u64(vshrq_n_u64(aw0, 6), tt_mask),
aw0);
aw1 = vorrq_u64(vandq_u64(vshrq_n_u64(aw1, 6), tt_mask),
aw1);
vst1q_u64((void *)lmt_addr, aw0);
vst1q_u64((void *)PLT_PTR_ADD(lmt_addr, 16), aw1);
lmt_addr = (uintptr_t)PLT_PTR_ADD(lmt_addr, 32);
} break;
case 1: {
__uint128_t aw0;
aw0 = ev[0].u64;
aw0 <<= 64;
aw0 |= ev[0].event & (BIT_ULL(32) - 1);
aw0 |= (uint64_t)ev[0].sched_type << 32;
*((__uint128_t *)lmt_addr) = aw0;
lmt_addr = (uintptr_t)PLT_PTR_ADD(lmt_addr, 16);
} break;
}
ev += parts;
}
#else
uint16_t i;
for (i = 0; i < burst; i++) {
__uint128_t aw0;
aw0 = ev[0].u64;
aw0 <<= 64;
aw0 |= ev[0].event & (BIT_ULL(32) - 1);
aw0 |= (uint64_t)ev[0].sched_type << 32;
*((__uint128_t *)lmt_addr) = aw0;
lmt_addr = (uintptr_t)PLT_PTR_ADD(lmt_addr, 16);
}
#endif
/* wdata[0] will be always valid */
sso_lmt_aw_wait_fc(ws, sz0);
roc_lmt_submit_steorl(wdata[0], pa[0]);
if (wdata[1]) {
sso_lmt_aw_wait_fc(ws, sz1);
roc_lmt_submit_steorl(wdata[1], pa[1]);
}
left -= (sz0 + sz1);
if (left)
goto again;
return n;
}
uint16_t __rte_hot
cn10k_sso_hws_enq_burst(void *port, const struct rte_event ev[],
uint16_t nb_events)
{
RTE_SET_USED(nb_events);
return cn10k_sso_hws_enq(port, ev);
}
uint16_t __rte_hot
cn10k_sso_hws_enq_new_burst(void *port, const struct rte_event ev[],
uint16_t nb_events)
{
uint16_t idx = 0, done = 0, rc = 0;
struct cn10k_sso_hws *ws = port;
uint8_t queue_id;
int32_t space;
/* Do a common back-pressure check and return */
space = sso_read_xaq_space(ws) - ROC_SSO_XAE_PER_XAQ;
if (space <= 0)
return 0;
nb_events = space < nb_events ? space : nb_events;
do {
queue_id = ev[idx].queue_id;
for (idx = idx + 1; idx < nb_events; idx++)
if (queue_id != ev[idx].queue_id)
break;
rc = cn10k_sso_hws_new_event_lmtst(ws, queue_id, &ev[done],
idx - done);
if (rc != (idx - done))
return rc + done;
done += rc;
} while (done < nb_events);
return done;
}
uint16_t __rte_hot
cn10k_sso_hws_enq_fwd_burst(void *port, const struct rte_event ev[],
uint16_t nb_events)
{
struct cn10k_sso_hws *ws = port;
RTE_SET_USED(nb_events);
cn10k_sso_hws_forward_event(ws, ev);
return 1;
}
int __rte_hot
cn10k_sso_hws_profile_switch(void *port, uint8_t profile)
{
struct cn10k_sso_hws *ws = port;
ws->gw_wdata &= ~(0xFFUL);
ws->gw_wdata |= (profile + 1);
return 0;
}