mirror of https://github.com/F-Stack/f-stack.git
426 lines
12 KiB
C
426 lines
12 KiB
C
/*-
|
|
* SPDX-License-Identifier: BSD-2-Clause-FreeBSD
|
|
*
|
|
* Copyright (c) 2012, 2013 The FreeBSD Foundation
|
|
* All rights reserved.
|
|
*
|
|
* This software was developed by Oleksandr Rybalko under sponsorship
|
|
* from the FreeBSD Foundation.
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions
|
|
* are met:
|
|
* 1. Redistributions of source code must retain the above copyright
|
|
* notice, this list of conditions and the following disclaimer.
|
|
* 2. Redistributions in binary form must reproduce the above copyright
|
|
* notice, this list of conditions and the following disclaimer in the
|
|
* documentation and/or other materials provided with the distribution.
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
|
|
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
|
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
|
|
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
|
|
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
|
|
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
|
|
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
|
|
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
|
|
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
|
|
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
|
|
* SUCH DAMAGE.
|
|
*/
|
|
|
|
#include <sys/cdefs.h>
|
|
__FBSDID("$FreeBSD$");
|
|
|
|
#include <sys/param.h>
|
|
#include <sys/systm.h>
|
|
#include <sys/bus.h>
|
|
#include <sys/kernel.h>
|
|
#include <sys/module.h>
|
|
#include <sys/rman.h>
|
|
#include <sys/timeet.h>
|
|
#include <sys/timetc.h>
|
|
#include <machine/bus.h>
|
|
#include <machine/intr.h>
|
|
#include <machine/machdep.h> /* For arm_set_delay */
|
|
|
|
#include <dev/ofw/openfirm.h>
|
|
#include <dev/ofw/ofw_bus.h>
|
|
#include <dev/ofw/ofw_bus_subr.h>
|
|
|
|
#include <arm/freescale/imx/imx_ccmvar.h>
|
|
#include <arm/freescale/imx/imx_gptreg.h>
|
|
|
|
#define WRITE4(_sc, _r, _v) \
|
|
bus_space_write_4((_sc)->sc_iot, (_sc)->sc_ioh, (_r), (_v))
|
|
#define READ4(_sc, _r) \
|
|
bus_space_read_4((_sc)->sc_iot, (_sc)->sc_ioh, (_r))
|
|
#define SET4(_sc, _r, _m) \
|
|
WRITE4((_sc), (_r), READ4((_sc), (_r)) | (_m))
|
|
#define CLEAR4(_sc, _r, _m) \
|
|
WRITE4((_sc), (_r), READ4((_sc), (_r)) & ~(_m))
|
|
|
|
static u_int imx_gpt_get_timecount(struct timecounter *);
|
|
static int imx_gpt_timer_start(struct eventtimer *, sbintime_t,
|
|
sbintime_t);
|
|
static int imx_gpt_timer_stop(struct eventtimer *);
|
|
|
|
static void imx_gpt_do_delay(int, void *);
|
|
|
|
static int imx_gpt_intr(void *);
|
|
static int imx_gpt_probe(device_t);
|
|
static int imx_gpt_attach(device_t);
|
|
|
|
static struct timecounter imx_gpt_timecounter = {
|
|
.tc_name = "iMXGPT",
|
|
.tc_get_timecount = imx_gpt_get_timecount,
|
|
.tc_counter_mask = ~0u,
|
|
.tc_frequency = 0,
|
|
.tc_quality = 1000,
|
|
};
|
|
|
|
struct imx_gpt_softc {
|
|
device_t sc_dev;
|
|
struct resource * res[2];
|
|
bus_space_tag_t sc_iot;
|
|
bus_space_handle_t sc_ioh;
|
|
void * sc_ih; /* interrupt handler */
|
|
uint32_t sc_period;
|
|
uint32_t sc_clksrc;
|
|
uint32_t clkfreq;
|
|
uint32_t ir_reg;
|
|
struct eventtimer et;
|
|
};
|
|
|
|
/* Try to divide down an available fast clock to this frequency. */
|
|
#define TARGET_FREQUENCY 1000000000
|
|
|
|
static struct resource_spec imx_gpt_spec[] = {
|
|
{ SYS_RES_MEMORY, 0, RF_ACTIVE },
|
|
{ SYS_RES_IRQ, 0, RF_ACTIVE },
|
|
{ -1, 0 }
|
|
};
|
|
|
|
static struct ofw_compat_data compat_data[] = {
|
|
{"fsl,imx6dl-gpt", 1},
|
|
{"fsl,imx6q-gpt", 1},
|
|
{"fsl,imx6ul-gpt", 1},
|
|
{"fsl,imx53-gpt", 1},
|
|
{"fsl,imx51-gpt", 1},
|
|
{"fsl,imx31-gpt", 1},
|
|
{"fsl,imx27-gpt", 1},
|
|
{"fsl,imx25-gpt", 1},
|
|
{NULL, 0}
|
|
};
|
|
|
|
static int
|
|
imx_gpt_probe(device_t dev)
|
|
{
|
|
|
|
if (!ofw_bus_status_okay(dev))
|
|
return (ENXIO);
|
|
|
|
/*
|
|
* We only support a single unit, because the only thing this driver
|
|
* does with the complex timer hardware is supply the system
|
|
* timecounter and eventtimer. There is nothing useful we can do with
|
|
* the additional device instances that exist in some chips.
|
|
*/
|
|
if (device_get_unit(dev) > 0)
|
|
return (ENXIO);
|
|
|
|
if (ofw_bus_search_compatible(dev, compat_data)->ocd_data != 0) {
|
|
device_set_desc(dev, "Freescale i.MX GPT timer");
|
|
return (BUS_PROBE_DEFAULT);
|
|
}
|
|
|
|
return (ENXIO);
|
|
}
|
|
|
|
static int
|
|
imx_gpt_attach(device_t dev)
|
|
{
|
|
struct imx_gpt_softc *sc;
|
|
int ctlreg, err;
|
|
uint32_t basefreq, prescale, setup_ticks, t1, t2;
|
|
|
|
sc = device_get_softc(dev);
|
|
|
|
if (bus_alloc_resources(dev, imx_gpt_spec, sc->res)) {
|
|
device_printf(dev, "could not allocate resources\n");
|
|
return (ENXIO);
|
|
}
|
|
|
|
sc->sc_dev = dev;
|
|
sc->sc_iot = rman_get_bustag(sc->res[0]);
|
|
sc->sc_ioh = rman_get_bushandle(sc->res[0]);
|
|
|
|
/*
|
|
* For now, just automatically choose a good clock for the hardware
|
|
* we're running on. Eventually we could allow selection from the fdt;
|
|
* the code in this driver will cope with any clock frequency.
|
|
*/
|
|
sc->sc_clksrc = GPT_CR_CLKSRC_IPG;
|
|
|
|
ctlreg = 0;
|
|
|
|
switch (sc->sc_clksrc) {
|
|
case GPT_CR_CLKSRC_32K:
|
|
basefreq = 32768;
|
|
break;
|
|
case GPT_CR_CLKSRC_IPG:
|
|
basefreq = imx_ccm_ipg_hz();
|
|
break;
|
|
case GPT_CR_CLKSRC_IPG_HIGH:
|
|
basefreq = imx_ccm_ipg_hz() * 2;
|
|
break;
|
|
case GPT_CR_CLKSRC_24M:
|
|
ctlreg |= GPT_CR_24MEN;
|
|
basefreq = 24000000;
|
|
break;
|
|
case GPT_CR_CLKSRC_NONE:/* Can't run without a clock. */
|
|
case GPT_CR_CLKSRC_EXT: /* No way to get the freq of an ext clock. */
|
|
default:
|
|
device_printf(dev, "Unsupported clock source '%d'\n",
|
|
sc->sc_clksrc);
|
|
return (EINVAL);
|
|
}
|
|
|
|
/*
|
|
* The following setup sequence is from the I.MX6 reference manual,
|
|
* "Selecting the clock source". First, disable the clock and
|
|
* interrupts. This also clears input and output mode bits and in
|
|
* general completes several of the early steps in the procedure.
|
|
*/
|
|
WRITE4(sc, IMX_GPT_CR, 0);
|
|
WRITE4(sc, IMX_GPT_IR, 0);
|
|
|
|
/* Choose the clock and the power-saving behaviors. */
|
|
ctlreg |=
|
|
sc->sc_clksrc | /* Use selected clock */
|
|
GPT_CR_FRR | /* Just count (FreeRunner mode) */
|
|
GPT_CR_STOPEN | /* Run in STOP mode */
|
|
GPT_CR_DOZEEN | /* Run in DOZE mode */
|
|
GPT_CR_WAITEN | /* Run in WAIT mode */
|
|
GPT_CR_DBGEN; /* Run in DEBUG mode */
|
|
WRITE4(sc, IMX_GPT_CR, ctlreg);
|
|
|
|
/*
|
|
* The datasheet says to do the software reset after choosing the clock
|
|
* source. It says nothing about needing to wait for the reset to
|
|
* complete, but the register description does document the fact that
|
|
* the reset isn't complete until the SWR bit reads 0, so let's be safe.
|
|
* The reset also clears all registers except for a few of the bits in
|
|
* CR, but we'll rewrite all the CR bits when we start the counter.
|
|
*/
|
|
WRITE4(sc, IMX_GPT_CR, ctlreg | GPT_CR_SWR);
|
|
while (READ4(sc, IMX_GPT_CR) & GPT_CR_SWR)
|
|
continue;
|
|
|
|
/* Set a prescaler value that gets us near the target frequency. */
|
|
if (basefreq < TARGET_FREQUENCY) {
|
|
prescale = 0;
|
|
sc->clkfreq = basefreq;
|
|
} else {
|
|
prescale = basefreq / TARGET_FREQUENCY;
|
|
sc->clkfreq = basefreq / prescale;
|
|
prescale -= 1; /* 1..n range is 0..n-1 in hardware. */
|
|
}
|
|
WRITE4(sc, IMX_GPT_PR, prescale);
|
|
|
|
/* Clear the status register. */
|
|
WRITE4(sc, IMX_GPT_SR, GPT_IR_ALL);
|
|
|
|
/* Start the counter. */
|
|
WRITE4(sc, IMX_GPT_CR, ctlreg | GPT_CR_EN);
|
|
|
|
if (bootverbose)
|
|
device_printf(dev, "Running on %dKHz clock, base freq %uHz CR=0x%08x, PR=0x%08x\n",
|
|
sc->clkfreq / 1000, basefreq, READ4(sc, IMX_GPT_CR), READ4(sc, IMX_GPT_PR));
|
|
|
|
/* Setup the timer interrupt. */
|
|
err = bus_setup_intr(dev, sc->res[1], INTR_TYPE_CLK, imx_gpt_intr,
|
|
NULL, sc, &sc->sc_ih);
|
|
if (err != 0) {
|
|
bus_release_resources(dev, imx_gpt_spec, sc->res);
|
|
device_printf(dev, "Unable to setup the clock irq handler, "
|
|
"err = %d\n", err);
|
|
return (ENXIO);
|
|
}
|
|
|
|
/*
|
|
* Measure how many clock ticks it takes to setup a one-shot event (it's
|
|
* longer than you might think, due to wait states in accessing gpt
|
|
* registers). Scale up the result by a factor of 1.5 to be safe,
|
|
* and use that to set the minimum eventtimer period we can schedule. In
|
|
* the real world, the value works out to about 750ns on imx5 hardware.
|
|
*/
|
|
t1 = READ4(sc, IMX_GPT_CNT);
|
|
WRITE4(sc, IMX_GPT_OCR3, 0);
|
|
t2 = READ4(sc, IMX_GPT_CNT);
|
|
setup_ticks = ((t2 - t1 + 1) * 3) / 2;
|
|
|
|
/* Register as an eventtimer. */
|
|
sc->et.et_name = "iMXGPT";
|
|
sc->et.et_flags = ET_FLAGS_ONESHOT | ET_FLAGS_PERIODIC;
|
|
sc->et.et_quality = 800;
|
|
sc->et.et_frequency = sc->clkfreq;
|
|
sc->et.et_min_period = ((uint64_t)setup_ticks << 32) / sc->clkfreq;
|
|
sc->et.et_max_period = ((uint64_t)0xfffffffe << 32) / sc->clkfreq;
|
|
sc->et.et_start = imx_gpt_timer_start;
|
|
sc->et.et_stop = imx_gpt_timer_stop;
|
|
sc->et.et_priv = sc;
|
|
et_register(&sc->et);
|
|
|
|
/* Register as a timecounter. */
|
|
imx_gpt_timecounter.tc_frequency = sc->clkfreq;
|
|
imx_gpt_timecounter.tc_priv = sc;
|
|
tc_init(&imx_gpt_timecounter);
|
|
|
|
/* If this is the first unit, store the softc for use in DELAY. */
|
|
if (device_get_unit(dev) == 0) {
|
|
arm_set_delay(imx_gpt_do_delay, sc);
|
|
}
|
|
|
|
return (0);
|
|
}
|
|
|
|
static int
|
|
imx_gpt_timer_start(struct eventtimer *et, sbintime_t first, sbintime_t period)
|
|
{
|
|
struct imx_gpt_softc *sc;
|
|
uint32_t ticks;
|
|
|
|
sc = (struct imx_gpt_softc *)et->et_priv;
|
|
|
|
if (period != 0) {
|
|
sc->sc_period = ((uint32_t)et->et_frequency * period) >> 32;
|
|
/* Set expected value */
|
|
WRITE4(sc, IMX_GPT_OCR2, READ4(sc, IMX_GPT_CNT) + sc->sc_period);
|
|
/* Enable compare register 2 Interrupt */
|
|
sc->ir_reg |= GPT_IR_OF2;
|
|
WRITE4(sc, IMX_GPT_IR, sc->ir_reg);
|
|
return (0);
|
|
} else if (first != 0) {
|
|
/* Enable compare register 3 interrupt if not already on. */
|
|
if ((sc->ir_reg & GPT_IR_OF3) == 0) {
|
|
sc->ir_reg |= GPT_IR_OF3;
|
|
WRITE4(sc, IMX_GPT_IR, sc->ir_reg);
|
|
}
|
|
ticks = ((uint32_t)et->et_frequency * first) >> 32;
|
|
/* Do not disturb, otherwise event will be lost */
|
|
spinlock_enter();
|
|
/* Set expected value */
|
|
WRITE4(sc, IMX_GPT_OCR3, READ4(sc, IMX_GPT_CNT) + ticks);
|
|
/* Now everybody can relax */
|
|
spinlock_exit();
|
|
return (0);
|
|
}
|
|
|
|
return (EINVAL);
|
|
}
|
|
|
|
static int
|
|
imx_gpt_timer_stop(struct eventtimer *et)
|
|
{
|
|
struct imx_gpt_softc *sc;
|
|
|
|
sc = (struct imx_gpt_softc *)et->et_priv;
|
|
|
|
/* Disable interrupts and clear any pending status. */
|
|
sc->ir_reg &= ~(GPT_IR_OF2 | GPT_IR_OF3);
|
|
WRITE4(sc, IMX_GPT_IR, sc->ir_reg);
|
|
WRITE4(sc, IMX_GPT_SR, GPT_IR_OF2 | GPT_IR_OF3);
|
|
sc->sc_period = 0;
|
|
|
|
return (0);
|
|
}
|
|
|
|
static int
|
|
imx_gpt_intr(void *arg)
|
|
{
|
|
struct imx_gpt_softc *sc;
|
|
uint32_t status;
|
|
|
|
sc = (struct imx_gpt_softc *)arg;
|
|
|
|
status = READ4(sc, IMX_GPT_SR);
|
|
|
|
/*
|
|
* Clear interrupt status before invoking event callbacks. The callback
|
|
* often sets up a new one-shot timer event and if the interval is short
|
|
* enough it can fire before we get out of this function. If we cleared
|
|
* at the bottom we'd miss the interrupt and hang until the clock wraps.
|
|
*/
|
|
WRITE4(sc, IMX_GPT_SR, status);
|
|
|
|
/* Handle one-shot timer events. */
|
|
if (status & GPT_IR_OF3) {
|
|
if (sc->et.et_active) {
|
|
sc->et.et_event_cb(&sc->et, sc->et.et_arg);
|
|
}
|
|
}
|
|
|
|
/* Handle periodic timer events. */
|
|
if (status & GPT_IR_OF2) {
|
|
if (sc->et.et_active)
|
|
sc->et.et_event_cb(&sc->et, sc->et.et_arg);
|
|
if (sc->sc_period != 0)
|
|
WRITE4(sc, IMX_GPT_OCR2, READ4(sc, IMX_GPT_CNT) +
|
|
sc->sc_period);
|
|
}
|
|
|
|
return (FILTER_HANDLED);
|
|
}
|
|
|
|
static u_int
|
|
imx_gpt_get_timecount(struct timecounter *tc)
|
|
{
|
|
struct imx_gpt_softc *sc;
|
|
|
|
sc = tc->tc_priv;
|
|
return (READ4(sc, IMX_GPT_CNT));
|
|
}
|
|
|
|
static device_method_t imx_gpt_methods[] = {
|
|
DEVMETHOD(device_probe, imx_gpt_probe),
|
|
DEVMETHOD(device_attach, imx_gpt_attach),
|
|
|
|
DEVMETHOD_END
|
|
};
|
|
|
|
static driver_t imx_gpt_driver = {
|
|
"imx_gpt",
|
|
imx_gpt_methods,
|
|
sizeof(struct imx_gpt_softc),
|
|
};
|
|
|
|
static devclass_t imx_gpt_devclass;
|
|
|
|
EARLY_DRIVER_MODULE(imx_gpt, simplebus, imx_gpt_driver, imx_gpt_devclass, 0,
|
|
0, BUS_PASS_TIMER);
|
|
|
|
static void
|
|
imx_gpt_do_delay(int usec, void *arg)
|
|
{
|
|
struct imx_gpt_softc *sc = arg;
|
|
uint64_t curcnt, endcnt, startcnt, ticks;
|
|
|
|
/*
|
|
* Calculate the tick count with 64-bit values so that it works for any
|
|
* clock frequency. Loop until the hardware count reaches start+ticks.
|
|
* If the 32-bit hardware count rolls over while we're looping, just
|
|
* manually do a carry into the high bits after each read; don't worry
|
|
* that doing this on each loop iteration is inefficient -- we're trying
|
|
* to waste time here.
|
|
*/
|
|
ticks = 1 + ((uint64_t)usec * sc->clkfreq) / 1000000;
|
|
curcnt = startcnt = READ4(sc, IMX_GPT_CNT);
|
|
endcnt = startcnt + ticks;
|
|
while (curcnt < endcnt) {
|
|
curcnt = READ4(sc, IMX_GPT_CNT);
|
|
if (curcnt < startcnt)
|
|
curcnt += 1ULL << 32;
|
|
}
|
|
}
|