mirror of https://github.com/F-Stack/f-stack.git
1461 lines
33 KiB
C
1461 lines
33 KiB
C
/*-
|
|
* Copyright (c) 2014 Andrew Turner
|
|
* All rights reserved.
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions
|
|
* are met:
|
|
* 1. Redistributions of source code must retain the above copyright
|
|
* notice, this list of conditions and the following disclaimer.
|
|
* 2. Redistributions in binary form must reproduce the above copyright
|
|
* notice, this list of conditions and the following disclaimer in the
|
|
* documentation and/or other materials provided with the distribution.
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
|
|
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
|
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
|
|
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
|
|
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
|
|
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
|
|
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
|
|
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
|
|
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
|
|
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
|
|
* SUCH DAMAGE.
|
|
*
|
|
*/
|
|
|
|
#include "opt_acpi.h"
|
|
#include "opt_platform.h"
|
|
#include "opt_ddb.h"
|
|
|
|
#include <sys/cdefs.h>
|
|
__FBSDID("$FreeBSD$");
|
|
|
|
#include <sys/param.h>
|
|
#include <sys/systm.h>
|
|
#include <sys/buf.h>
|
|
#include <sys/bus.h>
|
|
#include <sys/cons.h>
|
|
#include <sys/cpu.h>
|
|
#include <sys/csan.h>
|
|
#include <sys/devmap.h>
|
|
#include <sys/efi.h>
|
|
#include <sys/exec.h>
|
|
#include <sys/imgact.h>
|
|
#include <sys/kdb.h>
|
|
#include <sys/kernel.h>
|
|
#include <sys/ktr.h>
|
|
#include <sys/limits.h>
|
|
#include <sys/linker.h>
|
|
#include <sys/msgbuf.h>
|
|
#include <sys/pcpu.h>
|
|
#include <sys/physmem.h>
|
|
#include <sys/proc.h>
|
|
#include <sys/ptrace.h>
|
|
#include <sys/reboot.h>
|
|
#include <sys/rwlock.h>
|
|
#include <sys/sched.h>
|
|
#include <sys/signalvar.h>
|
|
#include <sys/syscallsubr.h>
|
|
#include <sys/sysent.h>
|
|
#include <sys/sysproto.h>
|
|
#include <sys/ucontext.h>
|
|
#include <sys/vdso.h>
|
|
#include <sys/vmmeter.h>
|
|
|
|
#include <vm/vm.h>
|
|
#include <vm/vm_param.h>
|
|
#include <vm/vm_kern.h>
|
|
#include <vm/vm_object.h>
|
|
#include <vm/vm_page.h>
|
|
#include <vm/vm_phys.h>
|
|
#include <vm/pmap.h>
|
|
#include <vm/vm_map.h>
|
|
#include <vm/vm_pager.h>
|
|
|
|
#include <machine/armreg.h>
|
|
#include <machine/cpu.h>
|
|
#include <machine/debug_monitor.h>
|
|
#include <machine/kdb.h>
|
|
#include <machine/machdep.h>
|
|
#include <machine/metadata.h>
|
|
#include <machine/md_var.h>
|
|
#include <machine/pcb.h>
|
|
#include <machine/reg.h>
|
|
#include <machine/undefined.h>
|
|
#include <machine/vmparam.h>
|
|
|
|
#ifdef VFP
|
|
#include <machine/vfp.h>
|
|
#endif
|
|
|
|
#ifdef DEV_ACPI
|
|
#include <contrib/dev/acpica/include/acpi.h>
|
|
#include <machine/acpica_machdep.h>
|
|
#endif
|
|
|
|
#ifdef FDT
|
|
#include <dev/fdt/fdt_common.h>
|
|
#include <dev/ofw/openfirm.h>
|
|
#endif
|
|
|
|
static void get_fpcontext(struct thread *td, mcontext_t *mcp);
|
|
static void set_fpcontext(struct thread *td, mcontext_t *mcp);
|
|
|
|
enum arm64_bus arm64_bus_method = ARM64_BUS_NONE;
|
|
|
|
struct pcpu __pcpu[MAXCPU];
|
|
|
|
static struct trapframe proc0_tf;
|
|
|
|
int early_boot = 1;
|
|
int cold = 1;
|
|
static int boot_el;
|
|
|
|
struct kva_md_info kmi;
|
|
|
|
int64_t dczva_line_size; /* The size of cache line the dc zva zeroes */
|
|
int has_pan;
|
|
|
|
/*
|
|
* Physical address of the EFI System Table. Stashed from the metadata hints
|
|
* passed into the kernel and used by the EFI code to call runtime services.
|
|
*/
|
|
vm_paddr_t efi_systbl_phys;
|
|
static struct efi_map_header *efihdr;
|
|
|
|
/* pagezero_* implementations are provided in support.S */
|
|
void pagezero_simple(void *);
|
|
void pagezero_cache(void *);
|
|
|
|
/* pagezero_simple is default pagezero */
|
|
void (*pagezero)(void *p) = pagezero_simple;
|
|
|
|
int (*apei_nmi)(void);
|
|
|
|
static void
|
|
pan_setup(void)
|
|
{
|
|
uint64_t id_aa64mfr1;
|
|
|
|
id_aa64mfr1 = READ_SPECIALREG(id_aa64mmfr1_el1);
|
|
if (ID_AA64MMFR1_PAN_VAL(id_aa64mfr1) != ID_AA64MMFR1_PAN_NONE)
|
|
has_pan = 1;
|
|
}
|
|
|
|
void
|
|
pan_enable(void)
|
|
{
|
|
|
|
/*
|
|
* The LLVM integrated assembler doesn't understand the PAN
|
|
* PSTATE field. Because of this we need to manually create
|
|
* the instruction in an asm block. This is equivalent to:
|
|
* msr pan, #1
|
|
*
|
|
* This sets the PAN bit, stopping the kernel from accessing
|
|
* memory when userspace can also access it unless the kernel
|
|
* uses the userspace load/store instructions.
|
|
*/
|
|
if (has_pan) {
|
|
WRITE_SPECIALREG(sctlr_el1,
|
|
READ_SPECIALREG(sctlr_el1) & ~SCTLR_SPAN);
|
|
__asm __volatile(".inst 0xd500409f | (0x1 << 8)");
|
|
}
|
|
}
|
|
|
|
bool
|
|
has_hyp(void)
|
|
{
|
|
|
|
return (boot_el == 2);
|
|
}
|
|
|
|
static void
|
|
cpu_startup(void *dummy)
|
|
{
|
|
vm_paddr_t size;
|
|
int i;
|
|
|
|
printf("real memory = %ju (%ju MB)\n", ptoa((uintmax_t)realmem),
|
|
ptoa((uintmax_t)realmem) / 1024 / 1024);
|
|
|
|
if (bootverbose) {
|
|
printf("Physical memory chunk(s):\n");
|
|
for (i = 0; phys_avail[i + 1] != 0; i += 2) {
|
|
size = phys_avail[i + 1] - phys_avail[i];
|
|
printf("%#016jx - %#016jx, %ju bytes (%ju pages)\n",
|
|
(uintmax_t)phys_avail[i],
|
|
(uintmax_t)phys_avail[i + 1] - 1,
|
|
(uintmax_t)size, (uintmax_t)size / PAGE_SIZE);
|
|
}
|
|
}
|
|
|
|
printf("avail memory = %ju (%ju MB)\n",
|
|
ptoa((uintmax_t)vm_free_count()),
|
|
ptoa((uintmax_t)vm_free_count()) / 1024 / 1024);
|
|
|
|
undef_init();
|
|
install_cpu_errata();
|
|
|
|
vm_ksubmap_init(&kmi);
|
|
bufinit();
|
|
vm_pager_bufferinit();
|
|
}
|
|
|
|
SYSINIT(cpu, SI_SUB_CPU, SI_ORDER_FIRST, cpu_startup, NULL);
|
|
|
|
static void
|
|
late_ifunc_resolve(void *dummy __unused)
|
|
{
|
|
link_elf_late_ireloc();
|
|
}
|
|
SYSINIT(late_ifunc_resolve, SI_SUB_CPU, SI_ORDER_ANY, late_ifunc_resolve, NULL);
|
|
|
|
int
|
|
cpu_idle_wakeup(int cpu)
|
|
{
|
|
|
|
return (0);
|
|
}
|
|
|
|
int
|
|
fill_regs(struct thread *td, struct reg *regs)
|
|
{
|
|
struct trapframe *frame;
|
|
|
|
frame = td->td_frame;
|
|
regs->sp = frame->tf_sp;
|
|
regs->lr = frame->tf_lr;
|
|
regs->elr = frame->tf_elr;
|
|
regs->spsr = frame->tf_spsr;
|
|
|
|
memcpy(regs->x, frame->tf_x, sizeof(regs->x));
|
|
|
|
#ifdef COMPAT_FREEBSD32
|
|
/*
|
|
* We may be called here for a 32bits process, if we're using a
|
|
* 64bits debugger. If so, put PC and SPSR where it expects it.
|
|
*/
|
|
if (SV_PROC_FLAG(td->td_proc, SV_ILP32)) {
|
|
regs->x[15] = frame->tf_elr;
|
|
regs->x[16] = frame->tf_spsr;
|
|
}
|
|
#endif
|
|
return (0);
|
|
}
|
|
|
|
int
|
|
set_regs(struct thread *td, struct reg *regs)
|
|
{
|
|
struct trapframe *frame;
|
|
|
|
frame = td->td_frame;
|
|
frame->tf_sp = regs->sp;
|
|
frame->tf_lr = regs->lr;
|
|
frame->tf_elr = regs->elr;
|
|
frame->tf_spsr &= ~PSR_FLAGS;
|
|
frame->tf_spsr |= regs->spsr & PSR_FLAGS;
|
|
|
|
memcpy(frame->tf_x, regs->x, sizeof(frame->tf_x));
|
|
|
|
#ifdef COMPAT_FREEBSD32
|
|
if (SV_PROC_FLAG(td->td_proc, SV_ILP32)) {
|
|
/*
|
|
* We may be called for a 32bits process if we're using
|
|
* a 64bits debugger. If so, get PC and SPSR from where
|
|
* it put it.
|
|
*/
|
|
frame->tf_elr = regs->x[15];
|
|
frame->tf_spsr = regs->x[16] & PSR_FLAGS;
|
|
}
|
|
#endif
|
|
return (0);
|
|
}
|
|
|
|
int
|
|
fill_fpregs(struct thread *td, struct fpreg *regs)
|
|
{
|
|
#ifdef VFP
|
|
struct pcb *pcb;
|
|
|
|
pcb = td->td_pcb;
|
|
if ((pcb->pcb_fpflags & PCB_FP_STARTED) != 0) {
|
|
/*
|
|
* If we have just been running VFP instructions we will
|
|
* need to save the state to memcpy it below.
|
|
*/
|
|
if (td == curthread)
|
|
vfp_save_state(td, pcb);
|
|
|
|
KASSERT(pcb->pcb_fpusaved == &pcb->pcb_fpustate,
|
|
("Called fill_fpregs while the kernel is using the VFP"));
|
|
memcpy(regs->fp_q, pcb->pcb_fpustate.vfp_regs,
|
|
sizeof(regs->fp_q));
|
|
regs->fp_cr = pcb->pcb_fpustate.vfp_fpcr;
|
|
regs->fp_sr = pcb->pcb_fpustate.vfp_fpsr;
|
|
} else
|
|
#endif
|
|
memset(regs, 0, sizeof(*regs));
|
|
return (0);
|
|
}
|
|
|
|
int
|
|
set_fpregs(struct thread *td, struct fpreg *regs)
|
|
{
|
|
#ifdef VFP
|
|
struct pcb *pcb;
|
|
|
|
pcb = td->td_pcb;
|
|
KASSERT(pcb->pcb_fpusaved == &pcb->pcb_fpustate,
|
|
("Called set_fpregs while the kernel is using the VFP"));
|
|
memcpy(pcb->pcb_fpustate.vfp_regs, regs->fp_q, sizeof(regs->fp_q));
|
|
pcb->pcb_fpustate.vfp_fpcr = regs->fp_cr;
|
|
pcb->pcb_fpustate.vfp_fpsr = regs->fp_sr;
|
|
#endif
|
|
return (0);
|
|
}
|
|
|
|
int
|
|
fill_dbregs(struct thread *td, struct dbreg *regs)
|
|
{
|
|
struct debug_monitor_state *monitor;
|
|
int i;
|
|
uint8_t debug_ver, nbkpts, nwtpts;
|
|
|
|
memset(regs, 0, sizeof(*regs));
|
|
|
|
extract_user_id_field(ID_AA64DFR0_EL1, ID_AA64DFR0_DebugVer_SHIFT,
|
|
&debug_ver);
|
|
extract_user_id_field(ID_AA64DFR0_EL1, ID_AA64DFR0_BRPs_SHIFT,
|
|
&nbkpts);
|
|
extract_user_id_field(ID_AA64DFR0_EL1, ID_AA64DFR0_WRPs_SHIFT,
|
|
&nwtpts);
|
|
|
|
/*
|
|
* The BRPs field contains the number of breakpoints - 1. Armv8-A
|
|
* allows the hardware to provide 2-16 breakpoints so this won't
|
|
* overflow an 8 bit value. The same applies to the WRPs field.
|
|
*/
|
|
nbkpts++;
|
|
nwtpts++;
|
|
|
|
regs->db_debug_ver = debug_ver;
|
|
regs->db_nbkpts = nbkpts;
|
|
regs->db_nwtpts = nwtpts;
|
|
|
|
monitor = &td->td_pcb->pcb_dbg_regs;
|
|
if ((monitor->dbg_flags & DBGMON_ENABLED) != 0) {
|
|
for (i = 0; i < nbkpts; i++) {
|
|
regs->db_breakregs[i].dbr_addr = monitor->dbg_bvr[i];
|
|
regs->db_breakregs[i].dbr_ctrl = monitor->dbg_bcr[i];
|
|
}
|
|
for (i = 0; i < nwtpts; i++) {
|
|
regs->db_watchregs[i].dbw_addr = monitor->dbg_wvr[i];
|
|
regs->db_watchregs[i].dbw_ctrl = monitor->dbg_wcr[i];
|
|
}
|
|
}
|
|
|
|
return (0);
|
|
}
|
|
|
|
int
|
|
set_dbregs(struct thread *td, struct dbreg *regs)
|
|
{
|
|
struct debug_monitor_state *monitor;
|
|
uint64_t addr;
|
|
uint32_t ctrl;
|
|
int count;
|
|
int i;
|
|
|
|
monitor = &td->td_pcb->pcb_dbg_regs;
|
|
count = 0;
|
|
monitor->dbg_enable_count = 0;
|
|
|
|
for (i = 0; i < DBG_BRP_MAX; i++) {
|
|
addr = regs->db_breakregs[i].dbr_addr;
|
|
ctrl = regs->db_breakregs[i].dbr_ctrl;
|
|
|
|
/* Don't let the user set a breakpoint on a kernel address. */
|
|
if (addr >= VM_MAXUSER_ADDRESS)
|
|
return (EINVAL);
|
|
|
|
/*
|
|
* The lowest 2 bits are ignored, so record the effective
|
|
* address.
|
|
*/
|
|
addr = rounddown2(addr, 4);
|
|
|
|
/*
|
|
* Some control fields are ignored, and other bits reserved.
|
|
* Only unlinked, address-matching breakpoints are supported.
|
|
*
|
|
* XXX: fields that appear unvalidated, such as BAS, have
|
|
* constrained undefined behaviour. If the user mis-programs
|
|
* these, there is no risk to the system.
|
|
*/
|
|
ctrl &= DBG_BCR_EN | DBG_BCR_PMC | DBG_BCR_BAS;
|
|
if ((ctrl & DBG_BCR_EN) != 0) {
|
|
/* Only target EL0. */
|
|
if ((ctrl & DBG_BCR_PMC) != DBG_BCR_PMC_EL0)
|
|
return (EINVAL);
|
|
|
|
monitor->dbg_enable_count++;
|
|
}
|
|
|
|
monitor->dbg_bvr[i] = addr;
|
|
monitor->dbg_bcr[i] = ctrl;
|
|
}
|
|
|
|
for (i = 0; i < DBG_WRP_MAX; i++) {
|
|
addr = regs->db_watchregs[i].dbw_addr;
|
|
ctrl = regs->db_watchregs[i].dbw_ctrl;
|
|
|
|
/* Don't let the user set a watchpoint on a kernel address. */
|
|
if (addr >= VM_MAXUSER_ADDRESS)
|
|
return (EINVAL);
|
|
|
|
/*
|
|
* Some control fields are ignored, and other bits reserved.
|
|
* Only unlinked watchpoints are supported.
|
|
*/
|
|
ctrl &= DBG_WCR_EN | DBG_WCR_PAC | DBG_WCR_LSC | DBG_WCR_BAS |
|
|
DBG_WCR_MASK;
|
|
|
|
if ((ctrl & DBG_WCR_EN) != 0) {
|
|
/* Only target EL0. */
|
|
if ((ctrl & DBG_WCR_PAC) != DBG_WCR_PAC_EL0)
|
|
return (EINVAL);
|
|
|
|
/* Must set at least one of the load/store bits. */
|
|
if ((ctrl & DBG_WCR_LSC) == 0)
|
|
return (EINVAL);
|
|
|
|
/*
|
|
* When specifying the address range with BAS, the MASK
|
|
* field must be zero.
|
|
*/
|
|
if ((ctrl & DBG_WCR_BAS) != DBG_WCR_BAS_MASK &&
|
|
(ctrl & DBG_WCR_MASK) != 0)
|
|
return (EINVAL);
|
|
|
|
monitor->dbg_enable_count++;
|
|
}
|
|
monitor->dbg_wvr[i] = addr;
|
|
monitor->dbg_wcr[i] = ctrl;
|
|
}
|
|
|
|
if (monitor->dbg_enable_count > 0)
|
|
monitor->dbg_flags |= DBGMON_ENABLED;
|
|
|
|
return (0);
|
|
}
|
|
|
|
#ifdef COMPAT_FREEBSD32
|
|
int
|
|
fill_regs32(struct thread *td, struct reg32 *regs)
|
|
{
|
|
int i;
|
|
struct trapframe *tf;
|
|
|
|
tf = td->td_frame;
|
|
for (i = 0; i < 13; i++)
|
|
regs->r[i] = tf->tf_x[i];
|
|
/* For arm32, SP is r13 and LR is r14 */
|
|
regs->r_sp = tf->tf_x[13];
|
|
regs->r_lr = tf->tf_x[14];
|
|
regs->r_pc = tf->tf_elr;
|
|
regs->r_cpsr = tf->tf_spsr;
|
|
|
|
return (0);
|
|
}
|
|
|
|
int
|
|
set_regs32(struct thread *td, struct reg32 *regs)
|
|
{
|
|
int i;
|
|
struct trapframe *tf;
|
|
|
|
tf = td->td_frame;
|
|
for (i = 0; i < 13; i++)
|
|
tf->tf_x[i] = regs->r[i];
|
|
/* For arm 32, SP is r13 an LR is r14 */
|
|
tf->tf_x[13] = regs->r_sp;
|
|
tf->tf_x[14] = regs->r_lr;
|
|
tf->tf_elr = regs->r_pc;
|
|
tf->tf_spsr = regs->r_cpsr;
|
|
|
|
return (0);
|
|
}
|
|
|
|
/* XXX fill/set dbregs/fpregs are stubbed on 32-bit arm. */
|
|
int
|
|
fill_fpregs32(struct thread *td, struct fpreg32 *regs)
|
|
{
|
|
|
|
memset(regs, 0, sizeof(*regs));
|
|
return (0);
|
|
}
|
|
|
|
int
|
|
set_fpregs32(struct thread *td, struct fpreg32 *regs)
|
|
{
|
|
|
|
return (0);
|
|
}
|
|
|
|
int
|
|
fill_dbregs32(struct thread *td, struct dbreg32 *regs)
|
|
{
|
|
|
|
memset(regs, 0, sizeof(*regs));
|
|
return (0);
|
|
}
|
|
|
|
int
|
|
set_dbregs32(struct thread *td, struct dbreg32 *regs)
|
|
{
|
|
|
|
return (0);
|
|
}
|
|
#endif
|
|
|
|
int
|
|
ptrace_set_pc(struct thread *td, u_long addr)
|
|
{
|
|
|
|
td->td_frame->tf_elr = addr;
|
|
return (0);
|
|
}
|
|
|
|
int
|
|
ptrace_single_step(struct thread *td)
|
|
{
|
|
|
|
td->td_frame->tf_spsr |= PSR_SS;
|
|
td->td_pcb->pcb_flags |= PCB_SINGLE_STEP;
|
|
return (0);
|
|
}
|
|
|
|
int
|
|
ptrace_clear_single_step(struct thread *td)
|
|
{
|
|
|
|
td->td_frame->tf_spsr &= ~PSR_SS;
|
|
td->td_pcb->pcb_flags &= ~PCB_SINGLE_STEP;
|
|
return (0);
|
|
}
|
|
|
|
void
|
|
exec_setregs(struct thread *td, struct image_params *imgp, uintptr_t stack)
|
|
{
|
|
struct trapframe *tf = td->td_frame;
|
|
|
|
memset(tf, 0, sizeof(struct trapframe));
|
|
|
|
tf->tf_x[0] = stack;
|
|
tf->tf_sp = STACKALIGN(stack);
|
|
tf->tf_lr = imgp->entry_addr;
|
|
tf->tf_elr = imgp->entry_addr;
|
|
}
|
|
|
|
/* Sanity check these are the same size, they will be memcpy'd to and fro */
|
|
CTASSERT(sizeof(((struct trapframe *)0)->tf_x) ==
|
|
sizeof((struct gpregs *)0)->gp_x);
|
|
CTASSERT(sizeof(((struct trapframe *)0)->tf_x) ==
|
|
sizeof((struct reg *)0)->x);
|
|
|
|
int
|
|
get_mcontext(struct thread *td, mcontext_t *mcp, int clear_ret)
|
|
{
|
|
struct trapframe *tf = td->td_frame;
|
|
|
|
if (clear_ret & GET_MC_CLEAR_RET) {
|
|
mcp->mc_gpregs.gp_x[0] = 0;
|
|
mcp->mc_gpregs.gp_spsr = tf->tf_spsr & ~PSR_C;
|
|
} else {
|
|
mcp->mc_gpregs.gp_x[0] = tf->tf_x[0];
|
|
mcp->mc_gpregs.gp_spsr = tf->tf_spsr;
|
|
}
|
|
|
|
memcpy(&mcp->mc_gpregs.gp_x[1], &tf->tf_x[1],
|
|
sizeof(mcp->mc_gpregs.gp_x[1]) * (nitems(mcp->mc_gpregs.gp_x) - 1));
|
|
|
|
mcp->mc_gpregs.gp_sp = tf->tf_sp;
|
|
mcp->mc_gpregs.gp_lr = tf->tf_lr;
|
|
mcp->mc_gpregs.gp_elr = tf->tf_elr;
|
|
get_fpcontext(td, mcp);
|
|
|
|
return (0);
|
|
}
|
|
|
|
int
|
|
set_mcontext(struct thread *td, mcontext_t *mcp)
|
|
{
|
|
struct trapframe *tf = td->td_frame;
|
|
uint32_t spsr;
|
|
|
|
spsr = mcp->mc_gpregs.gp_spsr;
|
|
if ((spsr & PSR_M_MASK) != PSR_M_EL0t ||
|
|
(spsr & PSR_AARCH32) != 0 ||
|
|
(spsr & PSR_DAIF) != (td->td_frame->tf_spsr & PSR_DAIF))
|
|
return (EINVAL);
|
|
|
|
memcpy(tf->tf_x, mcp->mc_gpregs.gp_x, sizeof(tf->tf_x));
|
|
|
|
tf->tf_sp = mcp->mc_gpregs.gp_sp;
|
|
tf->tf_lr = mcp->mc_gpregs.gp_lr;
|
|
tf->tf_elr = mcp->mc_gpregs.gp_elr;
|
|
tf->tf_spsr = mcp->mc_gpregs.gp_spsr;
|
|
set_fpcontext(td, mcp);
|
|
|
|
return (0);
|
|
}
|
|
|
|
static void
|
|
get_fpcontext(struct thread *td, mcontext_t *mcp)
|
|
{
|
|
#ifdef VFP
|
|
struct pcb *curpcb;
|
|
|
|
critical_enter();
|
|
|
|
curpcb = curthread->td_pcb;
|
|
|
|
if ((curpcb->pcb_fpflags & PCB_FP_STARTED) != 0) {
|
|
/*
|
|
* If we have just been running VFP instructions we will
|
|
* need to save the state to memcpy it below.
|
|
*/
|
|
vfp_save_state(td, curpcb);
|
|
|
|
KASSERT(curpcb->pcb_fpusaved == &curpcb->pcb_fpustate,
|
|
("Called get_fpcontext while the kernel is using the VFP"));
|
|
KASSERT((curpcb->pcb_fpflags & ~PCB_FP_USERMASK) == 0,
|
|
("Non-userspace FPU flags set in get_fpcontext"));
|
|
memcpy(mcp->mc_fpregs.fp_q, curpcb->pcb_fpustate.vfp_regs,
|
|
sizeof(mcp->mc_fpregs));
|
|
mcp->mc_fpregs.fp_cr = curpcb->pcb_fpustate.vfp_fpcr;
|
|
mcp->mc_fpregs.fp_sr = curpcb->pcb_fpustate.vfp_fpsr;
|
|
mcp->mc_fpregs.fp_flags = curpcb->pcb_fpflags;
|
|
mcp->mc_flags |= _MC_FP_VALID;
|
|
}
|
|
|
|
critical_exit();
|
|
#endif
|
|
}
|
|
|
|
static void
|
|
set_fpcontext(struct thread *td, mcontext_t *mcp)
|
|
{
|
|
#ifdef VFP
|
|
struct pcb *curpcb;
|
|
|
|
critical_enter();
|
|
|
|
if ((mcp->mc_flags & _MC_FP_VALID) != 0) {
|
|
curpcb = curthread->td_pcb;
|
|
|
|
/*
|
|
* Discard any vfp state for the current thread, we
|
|
* are about to override it.
|
|
*/
|
|
vfp_discard(td);
|
|
|
|
KASSERT(curpcb->pcb_fpusaved == &curpcb->pcb_fpustate,
|
|
("Called set_fpcontext while the kernel is using the VFP"));
|
|
memcpy(curpcb->pcb_fpustate.vfp_regs, mcp->mc_fpregs.fp_q,
|
|
sizeof(mcp->mc_fpregs));
|
|
curpcb->pcb_fpustate.vfp_fpcr = mcp->mc_fpregs.fp_cr;
|
|
curpcb->pcb_fpustate.vfp_fpsr = mcp->mc_fpregs.fp_sr;
|
|
curpcb->pcb_fpflags = mcp->mc_fpregs.fp_flags & PCB_FP_USERMASK;
|
|
}
|
|
|
|
critical_exit();
|
|
#endif
|
|
}
|
|
|
|
void
|
|
cpu_idle(int busy)
|
|
{
|
|
|
|
spinlock_enter();
|
|
if (!busy)
|
|
cpu_idleclock();
|
|
if (!sched_runnable())
|
|
__asm __volatile(
|
|
"dsb sy \n"
|
|
"wfi \n");
|
|
if (!busy)
|
|
cpu_activeclock();
|
|
spinlock_exit();
|
|
}
|
|
|
|
void
|
|
cpu_halt(void)
|
|
{
|
|
|
|
/* We should have shutdown by now, if not enter a low power sleep */
|
|
intr_disable();
|
|
while (1) {
|
|
__asm __volatile("wfi");
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Flush the D-cache for non-DMA I/O so that the I-cache can
|
|
* be made coherent later.
|
|
*/
|
|
void
|
|
cpu_flush_dcache(void *ptr, size_t len)
|
|
{
|
|
|
|
/* ARM64TODO TBD */
|
|
}
|
|
|
|
/* Get current clock frequency for the given CPU ID. */
|
|
int
|
|
cpu_est_clockrate(int cpu_id, uint64_t *rate)
|
|
{
|
|
struct pcpu *pc;
|
|
|
|
pc = pcpu_find(cpu_id);
|
|
if (pc == NULL || rate == NULL)
|
|
return (EINVAL);
|
|
|
|
if (pc->pc_clock == 0)
|
|
return (EOPNOTSUPP);
|
|
|
|
*rate = pc->pc_clock;
|
|
return (0);
|
|
}
|
|
|
|
void
|
|
cpu_pcpu_init(struct pcpu *pcpu, int cpuid, size_t size)
|
|
{
|
|
|
|
pcpu->pc_acpi_id = 0xffffffff;
|
|
pcpu->pc_mpidr = 0xffffffff;
|
|
}
|
|
|
|
void
|
|
spinlock_enter(void)
|
|
{
|
|
struct thread *td;
|
|
register_t daif;
|
|
|
|
td = curthread;
|
|
if (td->td_md.md_spinlock_count == 0) {
|
|
daif = intr_disable();
|
|
td->td_md.md_spinlock_count = 1;
|
|
td->td_md.md_saved_daif = daif;
|
|
critical_enter();
|
|
} else
|
|
td->td_md.md_spinlock_count++;
|
|
}
|
|
|
|
void
|
|
spinlock_exit(void)
|
|
{
|
|
struct thread *td;
|
|
register_t daif;
|
|
|
|
td = curthread;
|
|
daif = td->td_md.md_saved_daif;
|
|
td->td_md.md_spinlock_count--;
|
|
if (td->td_md.md_spinlock_count == 0) {
|
|
critical_exit();
|
|
intr_restore(daif);
|
|
}
|
|
}
|
|
|
|
#ifndef _SYS_SYSPROTO_H_
|
|
struct sigreturn_args {
|
|
ucontext_t *ucp;
|
|
};
|
|
#endif
|
|
|
|
int
|
|
sys_sigreturn(struct thread *td, struct sigreturn_args *uap)
|
|
{
|
|
ucontext_t uc;
|
|
int error;
|
|
|
|
if (copyin(uap->sigcntxp, &uc, sizeof(uc)))
|
|
return (EFAULT);
|
|
|
|
error = set_mcontext(td, &uc.uc_mcontext);
|
|
if (error != 0)
|
|
return (error);
|
|
|
|
/* Restore signal mask. */
|
|
kern_sigprocmask(td, SIG_SETMASK, &uc.uc_sigmask, NULL, 0);
|
|
|
|
return (EJUSTRETURN);
|
|
}
|
|
|
|
/*
|
|
* Construct a PCB from a trapframe. This is called from kdb_trap() where
|
|
* we want to start a backtrace from the function that caused us to enter
|
|
* the debugger. We have the context in the trapframe, but base the trace
|
|
* on the PCB. The PCB doesn't have to be perfect, as long as it contains
|
|
* enough for a backtrace.
|
|
*/
|
|
void
|
|
makectx(struct trapframe *tf, struct pcb *pcb)
|
|
{
|
|
int i;
|
|
|
|
for (i = 0; i < nitems(pcb->pcb_x); i++)
|
|
pcb->pcb_x[i] = tf->tf_x[i];
|
|
|
|
/* NB: pcb_lr is the PC, see PC_REGS() in db_machdep.h */
|
|
pcb->pcb_lr = tf->tf_elr;
|
|
pcb->pcb_sp = tf->tf_sp;
|
|
}
|
|
|
|
void
|
|
sendsig(sig_t catcher, ksiginfo_t *ksi, sigset_t *mask)
|
|
{
|
|
struct thread *td;
|
|
struct proc *p;
|
|
struct trapframe *tf;
|
|
struct sigframe *fp, frame;
|
|
struct sigacts *psp;
|
|
struct sysentvec *sysent;
|
|
int onstack, sig;
|
|
|
|
td = curthread;
|
|
p = td->td_proc;
|
|
PROC_LOCK_ASSERT(p, MA_OWNED);
|
|
|
|
sig = ksi->ksi_signo;
|
|
psp = p->p_sigacts;
|
|
mtx_assert(&psp->ps_mtx, MA_OWNED);
|
|
|
|
tf = td->td_frame;
|
|
onstack = sigonstack(tf->tf_sp);
|
|
|
|
CTR4(KTR_SIG, "sendsig: td=%p (%s) catcher=%p sig=%d", td, p->p_comm,
|
|
catcher, sig);
|
|
|
|
/* Allocate and validate space for the signal handler context. */
|
|
if ((td->td_pflags & TDP_ALTSTACK) != 0 && !onstack &&
|
|
SIGISMEMBER(psp->ps_sigonstack, sig)) {
|
|
fp = (struct sigframe *)((uintptr_t)td->td_sigstk.ss_sp +
|
|
td->td_sigstk.ss_size);
|
|
#if defined(COMPAT_43)
|
|
td->td_sigstk.ss_flags |= SS_ONSTACK;
|
|
#endif
|
|
} else {
|
|
fp = (struct sigframe *)td->td_frame->tf_sp;
|
|
}
|
|
|
|
/* Make room, keeping the stack aligned */
|
|
fp--;
|
|
fp = (struct sigframe *)STACKALIGN(fp);
|
|
|
|
/* Fill in the frame to copy out */
|
|
bzero(&frame, sizeof(frame));
|
|
get_mcontext(td, &frame.sf_uc.uc_mcontext, 0);
|
|
frame.sf_si = ksi->ksi_info;
|
|
frame.sf_uc.uc_sigmask = *mask;
|
|
frame.sf_uc.uc_stack = td->td_sigstk;
|
|
frame.sf_uc.uc_stack.ss_flags = (td->td_pflags & TDP_ALTSTACK) != 0 ?
|
|
(onstack ? SS_ONSTACK : 0) : SS_DISABLE;
|
|
mtx_unlock(&psp->ps_mtx);
|
|
PROC_UNLOCK(td->td_proc);
|
|
|
|
/* Copy the sigframe out to the user's stack. */
|
|
if (copyout(&frame, fp, sizeof(*fp)) != 0) {
|
|
/* Process has trashed its stack. Kill it. */
|
|
CTR2(KTR_SIG, "sendsig: sigexit td=%p fp=%p", td, fp);
|
|
PROC_LOCK(p);
|
|
sigexit(td, SIGILL);
|
|
}
|
|
|
|
tf->tf_x[0]= sig;
|
|
tf->tf_x[1] = (register_t)&fp->sf_si;
|
|
tf->tf_x[2] = (register_t)&fp->sf_uc;
|
|
|
|
tf->tf_elr = (register_t)catcher;
|
|
tf->tf_sp = (register_t)fp;
|
|
sysent = p->p_sysent;
|
|
if (sysent->sv_sigcode_base != 0)
|
|
tf->tf_lr = (register_t)sysent->sv_sigcode_base;
|
|
else
|
|
tf->tf_lr = (register_t)(sysent->sv_psstrings -
|
|
*(sysent->sv_szsigcode));
|
|
|
|
CTR3(KTR_SIG, "sendsig: return td=%p pc=%#x sp=%#x", td, tf->tf_elr,
|
|
tf->tf_sp);
|
|
|
|
PROC_LOCK(p);
|
|
mtx_lock(&psp->ps_mtx);
|
|
}
|
|
|
|
static void
|
|
init_proc0(vm_offset_t kstack)
|
|
{
|
|
struct pcpu *pcpup = &__pcpu[0];
|
|
|
|
proc_linkup0(&proc0, &thread0);
|
|
thread0.td_kstack = kstack;
|
|
thread0.td_kstack_pages = KSTACK_PAGES;
|
|
thread0.td_pcb = (struct pcb *)(thread0.td_kstack +
|
|
thread0.td_kstack_pages * PAGE_SIZE) - 1;
|
|
thread0.td_pcb->pcb_fpflags = 0;
|
|
thread0.td_pcb->pcb_fpusaved = &thread0.td_pcb->pcb_fpustate;
|
|
thread0.td_pcb->pcb_vfpcpu = UINT_MAX;
|
|
thread0.td_frame = &proc0_tf;
|
|
pcpup->pc_curpcb = thread0.td_pcb;
|
|
}
|
|
|
|
typedef struct {
|
|
uint32_t type;
|
|
uint64_t phys_start;
|
|
uint64_t virt_start;
|
|
uint64_t num_pages;
|
|
uint64_t attr;
|
|
} EFI_MEMORY_DESCRIPTOR;
|
|
|
|
typedef void (*efi_map_entry_cb)(struct efi_md *);
|
|
|
|
static void
|
|
foreach_efi_map_entry(struct efi_map_header *efihdr, efi_map_entry_cb cb)
|
|
{
|
|
struct efi_md *map, *p;
|
|
size_t efisz;
|
|
int ndesc, i;
|
|
|
|
/*
|
|
* Memory map data provided by UEFI via the GetMemoryMap
|
|
* Boot Services API.
|
|
*/
|
|
efisz = (sizeof(struct efi_map_header) + 0xf) & ~0xf;
|
|
map = (struct efi_md *)((uint8_t *)efihdr + efisz);
|
|
|
|
if (efihdr->descriptor_size == 0)
|
|
return;
|
|
ndesc = efihdr->memory_size / efihdr->descriptor_size;
|
|
|
|
for (i = 0, p = map; i < ndesc; i++,
|
|
p = efi_next_descriptor(p, efihdr->descriptor_size)) {
|
|
cb(p);
|
|
}
|
|
}
|
|
|
|
static void
|
|
exclude_efi_map_entry(struct efi_md *p)
|
|
{
|
|
|
|
switch (p->md_type) {
|
|
case EFI_MD_TYPE_CODE:
|
|
case EFI_MD_TYPE_DATA:
|
|
case EFI_MD_TYPE_BS_CODE:
|
|
case EFI_MD_TYPE_BS_DATA:
|
|
case EFI_MD_TYPE_FREE:
|
|
/*
|
|
* We're allowed to use any entry with these types.
|
|
*/
|
|
break;
|
|
default:
|
|
physmem_exclude_region(p->md_phys, p->md_pages * PAGE_SIZE,
|
|
EXFLAG_NOALLOC);
|
|
}
|
|
}
|
|
|
|
static void
|
|
exclude_efi_map_entries(struct efi_map_header *efihdr)
|
|
{
|
|
|
|
foreach_efi_map_entry(efihdr, exclude_efi_map_entry);
|
|
}
|
|
|
|
static void
|
|
add_efi_map_entry(struct efi_md *p)
|
|
{
|
|
|
|
switch (p->md_type) {
|
|
case EFI_MD_TYPE_RT_DATA:
|
|
/*
|
|
* Runtime data will be excluded after the DMAP
|
|
* region is created to stop it from being added
|
|
* to phys_avail.
|
|
*/
|
|
case EFI_MD_TYPE_CODE:
|
|
case EFI_MD_TYPE_DATA:
|
|
case EFI_MD_TYPE_BS_CODE:
|
|
case EFI_MD_TYPE_BS_DATA:
|
|
case EFI_MD_TYPE_FREE:
|
|
/*
|
|
* We're allowed to use any entry with these types.
|
|
*/
|
|
physmem_hardware_region(p->md_phys,
|
|
p->md_pages * PAGE_SIZE);
|
|
break;
|
|
}
|
|
}
|
|
|
|
static void
|
|
add_efi_map_entries(struct efi_map_header *efihdr)
|
|
{
|
|
|
|
foreach_efi_map_entry(efihdr, add_efi_map_entry);
|
|
}
|
|
|
|
static void
|
|
print_efi_map_entry(struct efi_md *p)
|
|
{
|
|
const char *type;
|
|
static const char *types[] = {
|
|
"Reserved",
|
|
"LoaderCode",
|
|
"LoaderData",
|
|
"BootServicesCode",
|
|
"BootServicesData",
|
|
"RuntimeServicesCode",
|
|
"RuntimeServicesData",
|
|
"ConventionalMemory",
|
|
"UnusableMemory",
|
|
"ACPIReclaimMemory",
|
|
"ACPIMemoryNVS",
|
|
"MemoryMappedIO",
|
|
"MemoryMappedIOPortSpace",
|
|
"PalCode",
|
|
"PersistentMemory"
|
|
};
|
|
|
|
if (p->md_type < nitems(types))
|
|
type = types[p->md_type];
|
|
else
|
|
type = "<INVALID>";
|
|
printf("%23s %012lx %12p %08lx ", type, p->md_phys,
|
|
p->md_virt, p->md_pages);
|
|
if (p->md_attr & EFI_MD_ATTR_UC)
|
|
printf("UC ");
|
|
if (p->md_attr & EFI_MD_ATTR_WC)
|
|
printf("WC ");
|
|
if (p->md_attr & EFI_MD_ATTR_WT)
|
|
printf("WT ");
|
|
if (p->md_attr & EFI_MD_ATTR_WB)
|
|
printf("WB ");
|
|
if (p->md_attr & EFI_MD_ATTR_UCE)
|
|
printf("UCE ");
|
|
if (p->md_attr & EFI_MD_ATTR_WP)
|
|
printf("WP ");
|
|
if (p->md_attr & EFI_MD_ATTR_RP)
|
|
printf("RP ");
|
|
if (p->md_attr & EFI_MD_ATTR_XP)
|
|
printf("XP ");
|
|
if (p->md_attr & EFI_MD_ATTR_NV)
|
|
printf("NV ");
|
|
if (p->md_attr & EFI_MD_ATTR_MORE_RELIABLE)
|
|
printf("MORE_RELIABLE ");
|
|
if (p->md_attr & EFI_MD_ATTR_RO)
|
|
printf("RO ");
|
|
if (p->md_attr & EFI_MD_ATTR_RT)
|
|
printf("RUNTIME");
|
|
printf("\n");
|
|
}
|
|
|
|
static void
|
|
print_efi_map_entries(struct efi_map_header *efihdr)
|
|
{
|
|
|
|
printf("%23s %12s %12s %8s %4s\n",
|
|
"Type", "Physical", "Virtual", "#Pages", "Attr");
|
|
foreach_efi_map_entry(efihdr, print_efi_map_entry);
|
|
}
|
|
|
|
#ifdef FDT
|
|
static void
|
|
try_load_dtb(caddr_t kmdp)
|
|
{
|
|
vm_offset_t dtbp;
|
|
|
|
dtbp = MD_FETCH(kmdp, MODINFOMD_DTBP, vm_offset_t);
|
|
#if defined(FDT_DTB_STATIC)
|
|
/*
|
|
* In case the device tree blob was not retrieved (from metadata) try
|
|
* to use the statically embedded one.
|
|
*/
|
|
if (dtbp == 0)
|
|
dtbp = (vm_offset_t)&fdt_static_dtb;
|
|
#endif
|
|
|
|
if (dtbp == (vm_offset_t)NULL) {
|
|
printf("ERROR loading DTB\n");
|
|
return;
|
|
}
|
|
|
|
if (OF_install(OFW_FDT, 0) == FALSE)
|
|
panic("Cannot install FDT");
|
|
|
|
if (OF_init((void *)dtbp) != 0)
|
|
panic("OF_init failed with the found device tree");
|
|
|
|
parse_fdt_bootargs();
|
|
}
|
|
#endif
|
|
|
|
static bool
|
|
bus_probe(void)
|
|
{
|
|
bool has_acpi, has_fdt;
|
|
char *order, *env;
|
|
|
|
has_acpi = has_fdt = false;
|
|
|
|
#ifdef FDT
|
|
has_fdt = (OF_peer(0) != 0);
|
|
#endif
|
|
#ifdef DEV_ACPI
|
|
has_acpi = (AcpiOsGetRootPointer() != 0);
|
|
#endif
|
|
|
|
env = kern_getenv("kern.cfg.order");
|
|
if (env != NULL) {
|
|
order = env;
|
|
while (order != NULL) {
|
|
if (has_acpi &&
|
|
strncmp(order, "acpi", 4) == 0 &&
|
|
(order[4] == ',' || order[4] == '\0')) {
|
|
arm64_bus_method = ARM64_BUS_ACPI;
|
|
break;
|
|
}
|
|
if (has_fdt &&
|
|
strncmp(order, "fdt", 3) == 0 &&
|
|
(order[3] == ',' || order[3] == '\0')) {
|
|
arm64_bus_method = ARM64_BUS_FDT;
|
|
break;
|
|
}
|
|
order = strchr(order, ',');
|
|
}
|
|
freeenv(env);
|
|
|
|
/* If we set the bus method it is valid */
|
|
if (arm64_bus_method != ARM64_BUS_NONE)
|
|
return (true);
|
|
}
|
|
/* If no order or an invalid order was set use the default */
|
|
if (arm64_bus_method == ARM64_BUS_NONE) {
|
|
if (has_fdt)
|
|
arm64_bus_method = ARM64_BUS_FDT;
|
|
else if (has_acpi)
|
|
arm64_bus_method = ARM64_BUS_ACPI;
|
|
}
|
|
|
|
/*
|
|
* If no option was set the default is valid, otherwise we are
|
|
* setting one to get cninit() working, then calling panic to tell
|
|
* the user about the invalid bus setup.
|
|
*/
|
|
return (env == NULL);
|
|
}
|
|
|
|
static void
|
|
cache_setup(void)
|
|
{
|
|
int dczva_line_shift;
|
|
uint32_t dczid_el0;
|
|
|
|
identify_cache(READ_SPECIALREG(ctr_el0));
|
|
|
|
dczid_el0 = READ_SPECIALREG(dczid_el0);
|
|
|
|
/* Check if dc zva is not prohibited */
|
|
if (dczid_el0 & DCZID_DZP)
|
|
dczva_line_size = 0;
|
|
else {
|
|
/* Same as with above calculations */
|
|
dczva_line_shift = DCZID_BS_SIZE(dczid_el0);
|
|
dczva_line_size = sizeof(int) << dczva_line_shift;
|
|
|
|
/* Change pagezero function */
|
|
pagezero = pagezero_cache;
|
|
}
|
|
}
|
|
|
|
int
|
|
memory_mapping_mode(vm_paddr_t pa)
|
|
{
|
|
struct efi_md *map, *p;
|
|
size_t efisz;
|
|
int ndesc, i;
|
|
|
|
if (efihdr == NULL)
|
|
return (VM_MEMATTR_WRITE_BACK);
|
|
|
|
/*
|
|
* Memory map data provided by UEFI via the GetMemoryMap
|
|
* Boot Services API.
|
|
*/
|
|
efisz = (sizeof(struct efi_map_header) + 0xf) & ~0xf;
|
|
map = (struct efi_md *)((uint8_t *)efihdr + efisz);
|
|
|
|
if (efihdr->descriptor_size == 0)
|
|
return (VM_MEMATTR_WRITE_BACK);
|
|
ndesc = efihdr->memory_size / efihdr->descriptor_size;
|
|
|
|
for (i = 0, p = map; i < ndesc; i++,
|
|
p = efi_next_descriptor(p, efihdr->descriptor_size)) {
|
|
if (pa < p->md_phys ||
|
|
pa >= p->md_phys + p->md_pages * EFI_PAGE_SIZE)
|
|
continue;
|
|
if (p->md_type == EFI_MD_TYPE_IOMEM ||
|
|
p->md_type == EFI_MD_TYPE_IOPORT)
|
|
return (VM_MEMATTR_DEVICE);
|
|
else if ((p->md_attr & EFI_MD_ATTR_WB) != 0 ||
|
|
p->md_type == EFI_MD_TYPE_RECLAIM)
|
|
return (VM_MEMATTR_WRITE_BACK);
|
|
else if ((p->md_attr & EFI_MD_ATTR_WT) != 0)
|
|
return (VM_MEMATTR_WRITE_THROUGH);
|
|
else if ((p->md_attr & EFI_MD_ATTR_WC) != 0)
|
|
return (VM_MEMATTR_WRITE_COMBINING);
|
|
break;
|
|
}
|
|
|
|
return (VM_MEMATTR_DEVICE);
|
|
}
|
|
|
|
void
|
|
initarm(struct arm64_bootparams *abp)
|
|
{
|
|
struct efi_fb *efifb;
|
|
struct pcpu *pcpup;
|
|
char *env;
|
|
#ifdef FDT
|
|
struct mem_region mem_regions[FDT_MEM_REGIONS];
|
|
int mem_regions_sz;
|
|
#endif
|
|
vm_offset_t lastaddr;
|
|
caddr_t kmdp;
|
|
bool valid;
|
|
|
|
boot_el = abp->boot_el;
|
|
|
|
/* Parse loader or FDT boot parametes. Determine last used address. */
|
|
lastaddr = parse_boot_param(abp);
|
|
|
|
/* Find the kernel address */
|
|
kmdp = preload_search_by_type("elf kernel");
|
|
if (kmdp == NULL)
|
|
kmdp = preload_search_by_type("elf64 kernel");
|
|
|
|
identify_cpu(0);
|
|
update_special_regs(0);
|
|
|
|
link_elf_ireloc(kmdp);
|
|
try_load_dtb(kmdp);
|
|
|
|
efi_systbl_phys = MD_FETCH(kmdp, MODINFOMD_FW_HANDLE, vm_paddr_t);
|
|
|
|
/* Load the physical memory ranges */
|
|
efihdr = (struct efi_map_header *)preload_search_info(kmdp,
|
|
MODINFO_METADATA | MODINFOMD_EFI_MAP);
|
|
if (efihdr != NULL)
|
|
add_efi_map_entries(efihdr);
|
|
#ifdef FDT
|
|
else {
|
|
/* Grab physical memory regions information from device tree. */
|
|
if (fdt_get_mem_regions(mem_regions, &mem_regions_sz,
|
|
NULL) != 0)
|
|
panic("Cannot get physical memory regions");
|
|
physmem_hardware_regions(mem_regions, mem_regions_sz);
|
|
}
|
|
if (fdt_get_reserved_mem(mem_regions, &mem_regions_sz) == 0)
|
|
physmem_exclude_regions(mem_regions, mem_regions_sz,
|
|
EXFLAG_NODUMP | EXFLAG_NOALLOC);
|
|
#endif
|
|
|
|
/* Exclude the EFI framebuffer from our view of physical memory. */
|
|
efifb = (struct efi_fb *)preload_search_info(kmdp,
|
|
MODINFO_METADATA | MODINFOMD_EFI_FB);
|
|
if (efifb != NULL)
|
|
physmem_exclude_region(efifb->fb_addr, efifb->fb_size,
|
|
EXFLAG_NOALLOC);
|
|
|
|
/* Set the pcpu data, this is needed by pmap_bootstrap */
|
|
pcpup = &__pcpu[0];
|
|
pcpu_init(pcpup, 0, sizeof(struct pcpu));
|
|
|
|
/*
|
|
* Set the pcpu pointer with a backup in tpidr_el1 to be
|
|
* loaded when entering the kernel from userland.
|
|
*/
|
|
__asm __volatile(
|
|
"mov x18, %0 \n"
|
|
"msr tpidr_el1, %0" :: "r"(pcpup));
|
|
|
|
PCPU_SET(curthread, &thread0);
|
|
PCPU_SET(midr, get_midr());
|
|
|
|
/* Do basic tuning, hz etc */
|
|
init_param1();
|
|
|
|
cache_setup();
|
|
pan_setup();
|
|
|
|
/* Bootstrap enough of pmap to enter the kernel proper */
|
|
pmap_bootstrap(abp->kern_l0pt, abp->kern_l1pt,
|
|
KERNBASE - abp->kern_delta, lastaddr - KERNBASE);
|
|
/* Exclude entries neexed in teh DMAP region, but not phys_avail */
|
|
if (efihdr != NULL)
|
|
exclude_efi_map_entries(efihdr);
|
|
physmem_init_kernel_globals();
|
|
|
|
devmap_bootstrap(0, NULL);
|
|
|
|
valid = bus_probe();
|
|
|
|
cninit();
|
|
set_ttbr0(abp->kern_ttbr0);
|
|
cpu_tlb_flushID();
|
|
|
|
if (!valid)
|
|
panic("Invalid bus configuration: %s",
|
|
kern_getenv("kern.cfg.order"));
|
|
|
|
/*
|
|
* Dump the boot metadata. We have to wait for cninit() since console
|
|
* output is required. If it's grossly incorrect the kernel will never
|
|
* make it this far.
|
|
*/
|
|
if (getenv_is_true("debug.dump_modinfo_at_boot"))
|
|
preload_dump();
|
|
|
|
init_proc0(abp->kern_stack);
|
|
msgbufinit(msgbufp, msgbufsize);
|
|
mutex_init();
|
|
init_param2(physmem);
|
|
|
|
dbg_init();
|
|
kdb_init();
|
|
pan_enable();
|
|
|
|
kcsan_cpu_init(0);
|
|
|
|
env = kern_getenv("kernelname");
|
|
if (env != NULL)
|
|
strlcpy(kernelname, env, sizeof(kernelname));
|
|
|
|
if (boothowto & RB_VERBOSE) {
|
|
if (efihdr != NULL)
|
|
print_efi_map_entries(efihdr);
|
|
physmem_print_tables();
|
|
}
|
|
|
|
early_boot = 0;
|
|
}
|
|
|
|
void
|
|
dbg_init(void)
|
|
{
|
|
|
|
/* Clear OS lock */
|
|
WRITE_SPECIALREG(oslar_el1, 0);
|
|
|
|
/* This permits DDB to use debug registers for watchpoints. */
|
|
dbg_monitor_init();
|
|
|
|
/* TODO: Eventually will need to initialize debug registers here. */
|
|
}
|
|
|
|
#ifdef DDB
|
|
#include <ddb/ddb.h>
|
|
|
|
DB_SHOW_COMMAND(specialregs, db_show_spregs)
|
|
{
|
|
#define PRINT_REG(reg) \
|
|
db_printf(__STRING(reg) " = %#016lx\n", READ_SPECIALREG(reg))
|
|
|
|
PRINT_REG(actlr_el1);
|
|
PRINT_REG(afsr0_el1);
|
|
PRINT_REG(afsr1_el1);
|
|
PRINT_REG(aidr_el1);
|
|
PRINT_REG(amair_el1);
|
|
PRINT_REG(ccsidr_el1);
|
|
PRINT_REG(clidr_el1);
|
|
PRINT_REG(contextidr_el1);
|
|
PRINT_REG(cpacr_el1);
|
|
PRINT_REG(csselr_el1);
|
|
PRINT_REG(ctr_el0);
|
|
PRINT_REG(currentel);
|
|
PRINT_REG(daif);
|
|
PRINT_REG(dczid_el0);
|
|
PRINT_REG(elr_el1);
|
|
PRINT_REG(esr_el1);
|
|
PRINT_REG(far_el1);
|
|
#if 0
|
|
/* ARM64TODO: Enable VFP before reading floating-point registers */
|
|
PRINT_REG(fpcr);
|
|
PRINT_REG(fpsr);
|
|
#endif
|
|
PRINT_REG(id_aa64afr0_el1);
|
|
PRINT_REG(id_aa64afr1_el1);
|
|
PRINT_REG(id_aa64dfr0_el1);
|
|
PRINT_REG(id_aa64dfr1_el1);
|
|
PRINT_REG(id_aa64isar0_el1);
|
|
PRINT_REG(id_aa64isar1_el1);
|
|
PRINT_REG(id_aa64pfr0_el1);
|
|
PRINT_REG(id_aa64pfr1_el1);
|
|
PRINT_REG(id_afr0_el1);
|
|
PRINT_REG(id_dfr0_el1);
|
|
PRINT_REG(id_isar0_el1);
|
|
PRINT_REG(id_isar1_el1);
|
|
PRINT_REG(id_isar2_el1);
|
|
PRINT_REG(id_isar3_el1);
|
|
PRINT_REG(id_isar4_el1);
|
|
PRINT_REG(id_isar5_el1);
|
|
PRINT_REG(id_mmfr0_el1);
|
|
PRINT_REG(id_mmfr1_el1);
|
|
PRINT_REG(id_mmfr2_el1);
|
|
PRINT_REG(id_mmfr3_el1);
|
|
#if 0
|
|
/* Missing from llvm */
|
|
PRINT_REG(id_mmfr4_el1);
|
|
#endif
|
|
PRINT_REG(id_pfr0_el1);
|
|
PRINT_REG(id_pfr1_el1);
|
|
PRINT_REG(isr_el1);
|
|
PRINT_REG(mair_el1);
|
|
PRINT_REG(midr_el1);
|
|
PRINT_REG(mpidr_el1);
|
|
PRINT_REG(mvfr0_el1);
|
|
PRINT_REG(mvfr1_el1);
|
|
PRINT_REG(mvfr2_el1);
|
|
PRINT_REG(revidr_el1);
|
|
PRINT_REG(sctlr_el1);
|
|
PRINT_REG(sp_el0);
|
|
PRINT_REG(spsel);
|
|
PRINT_REG(spsr_el1);
|
|
PRINT_REG(tcr_el1);
|
|
PRINT_REG(tpidr_el0);
|
|
PRINT_REG(tpidr_el1);
|
|
PRINT_REG(tpidrro_el0);
|
|
PRINT_REG(ttbr0_el1);
|
|
PRINT_REG(ttbr1_el1);
|
|
PRINT_REG(vbar_el1);
|
|
#undef PRINT_REG
|
|
}
|
|
|
|
DB_SHOW_COMMAND(vtop, db_show_vtop)
|
|
{
|
|
uint64_t phys;
|
|
|
|
if (have_addr) {
|
|
phys = arm64_address_translate_s1e1r(addr);
|
|
db_printf("EL1 physical address reg (read): 0x%016lx\n", phys);
|
|
phys = arm64_address_translate_s1e1w(addr);
|
|
db_printf("EL1 physical address reg (write): 0x%016lx\n", phys);
|
|
phys = arm64_address_translate_s1e0r(addr);
|
|
db_printf("EL0 physical address reg (read): 0x%016lx\n", phys);
|
|
phys = arm64_address_translate_s1e0w(addr);
|
|
db_printf("EL0 physical address reg (write): 0x%016lx\n", phys);
|
|
} else
|
|
db_printf("show vtop <virt_addr>\n");
|
|
}
|
|
#endif
|