f-stack/dpdk/drivers/crypto/octeontx/otx_cryptodev_hw_access.c

714 lines
17 KiB
C

/* SPDX-License-Identifier: BSD-3-Clause
* Copyright(c) 2018 Cavium, Inc
*/
#include <assert.h>
#include <string.h>
#include <unistd.h>
#include <rte_branch_prediction.h>
#include <rte_common.h>
#include <rte_cryptodev.h>
#include <rte_errno.h>
#include <rte_mempool.h>
#include <rte_memzone.h>
#include <rte_string_fns.h>
#include "otx_cryptodev_hw_access.h"
#include "otx_cryptodev_mbox.h"
#include "cpt_pmd_logs.h"
#include "cpt_pmd_ops_helper.h"
#include "cpt_hw_types.h"
#define METABUF_POOL_CACHE_SIZE 512
/*
* VF HAL functions
* Access its own BAR0/4 registers by passing VF number as 0.
* OS/PCI maps them accordingly.
*/
static int
otx_cpt_vf_init(struct cpt_vf *cptvf)
{
int ret = 0;
/* Check ready with PF */
/* Gets chip ID / device Id from PF if ready */
ret = otx_cpt_check_pf_ready(cptvf);
if (ret) {
CPT_LOG_ERR("%s: PF not responding to READY msg",
cptvf->dev_name);
ret = -EBUSY;
goto exit;
}
CPT_LOG_DP_DEBUG("%s: %s done", cptvf->dev_name, __func__);
exit:
return ret;
}
/*
* Read Interrupt status of the VF
*
* @param cptvf cptvf structure
*/
static uint64_t
otx_cpt_read_vf_misc_intr_status(struct cpt_vf *cptvf)
{
return CPT_READ_CSR(CPT_CSR_REG_BASE(cptvf), CPTX_VQX_MISC_INT(0, 0));
}
/*
* Clear mailbox interrupt of the VF
*
* @param cptvf cptvf structure
*/
static void
otx_cpt_clear_mbox_intr(struct cpt_vf *cptvf)
{
cptx_vqx_misc_int_t vqx_misc_int;
vqx_misc_int.u = CPT_READ_CSR(CPT_CSR_REG_BASE(cptvf),
CPTX_VQX_MISC_INT(0, 0));
/* W1C for the VF */
vqx_misc_int.s.mbox = 1;
CPT_WRITE_CSR(CPT_CSR_REG_BASE(cptvf),
CPTX_VQX_MISC_INT(0, 0), vqx_misc_int.u);
}
/*
* Clear instruction NCB read error interrupt of the VF
*
* @param cptvf cptvf structure
*/
static void
otx_cpt_clear_irde_intr(struct cpt_vf *cptvf)
{
cptx_vqx_misc_int_t vqx_misc_int;
vqx_misc_int.u = CPT_READ_CSR(CPT_CSR_REG_BASE(cptvf),
CPTX_VQX_MISC_INT(0, 0));
/* W1C for the VF */
vqx_misc_int.s.irde = 1;
CPT_WRITE_CSR(CPT_CSR_REG_BASE(cptvf),
CPTX_VQX_MISC_INT(0, 0), vqx_misc_int.u);
}
/*
* Clear NCB result write response error interrupt of the VF
*
* @param cptvf cptvf structure
*/
static void
otx_cpt_clear_nwrp_intr(struct cpt_vf *cptvf)
{
cptx_vqx_misc_int_t vqx_misc_int;
vqx_misc_int.u = CPT_READ_CSR(CPT_CSR_REG_BASE(cptvf),
CPTX_VQX_MISC_INT(0, 0));
/* W1C for the VF */
vqx_misc_int.s.nwrp = 1;
CPT_WRITE_CSR(CPT_CSR_REG_BASE(cptvf),
CPTX_VQX_MISC_INT(0, 0), vqx_misc_int.u);
}
/*
* Clear swerr interrupt of the VF
*
* @param cptvf cptvf structure
*/
static void
otx_cpt_clear_swerr_intr(struct cpt_vf *cptvf)
{
cptx_vqx_misc_int_t vqx_misc_int;
vqx_misc_int.u = CPT_READ_CSR(CPT_CSR_REG_BASE(cptvf),
CPTX_VQX_MISC_INT(0, 0));
/* W1C for the VF */
vqx_misc_int.s.swerr = 1;
CPT_WRITE_CSR(CPT_CSR_REG_BASE(cptvf),
CPTX_VQX_MISC_INT(0, 0), vqx_misc_int.u);
}
/*
* Clear hwerr interrupt of the VF
*
* @param cptvf cptvf structure
*/
static void
otx_cpt_clear_hwerr_intr(struct cpt_vf *cptvf)
{
cptx_vqx_misc_int_t vqx_misc_int;
vqx_misc_int.u = CPT_READ_CSR(CPT_CSR_REG_BASE(cptvf),
CPTX_VQX_MISC_INT(0, 0));
/* W1C for the VF */
vqx_misc_int.s.hwerr = 1;
CPT_WRITE_CSR(CPT_CSR_REG_BASE(cptvf),
CPTX_VQX_MISC_INT(0, 0), vqx_misc_int.u);
}
/*
* Clear translation fault interrupt of the VF
*
* @param cptvf cptvf structure
*/
static void
otx_cpt_clear_fault_intr(struct cpt_vf *cptvf)
{
cptx_vqx_misc_int_t vqx_misc_int;
vqx_misc_int.u = CPT_READ_CSR(CPT_CSR_REG_BASE(cptvf),
CPTX_VQX_MISC_INT(0, 0));
/* W1C for the VF */
vqx_misc_int.s.fault = 1;
CPT_WRITE_CSR(CPT_CSR_REG_BASE(cptvf),
CPTX_VQX_MISC_INT(0, 0), vqx_misc_int.u);
}
/*
* Clear doorbell overflow interrupt of the VF
*
* @param cptvf cptvf structure
*/
static void
otx_cpt_clear_dovf_intr(struct cpt_vf *cptvf)
{
cptx_vqx_misc_int_t vqx_misc_int;
vqx_misc_int.u = CPT_READ_CSR(CPT_CSR_REG_BASE(cptvf),
CPTX_VQX_MISC_INT(0, 0));
/* W1C for the VF */
vqx_misc_int.s.dovf = 1;
CPT_WRITE_CSR(CPT_CSR_REG_BASE(cptvf),
CPTX_VQX_MISC_INT(0, 0), vqx_misc_int.u);
}
/* Write to VQX_CTL register
*/
static void
otx_cpt_write_vq_ctl(struct cpt_vf *cptvf, bool val)
{
cptx_vqx_ctl_t vqx_ctl;
vqx_ctl.u = CPT_READ_CSR(CPT_CSR_REG_BASE(cptvf),
CPTX_VQX_CTL(0, 0));
vqx_ctl.s.ena = val;
CPT_WRITE_CSR(CPT_CSR_REG_BASE(cptvf),
CPTX_VQX_CTL(0, 0), vqx_ctl.u);
}
/* Write to VQX_INPROG register
*/
static void
otx_cpt_write_vq_inprog(struct cpt_vf *cptvf, uint8_t val)
{
cptx_vqx_inprog_t vqx_inprg;
vqx_inprg.u = CPT_READ_CSR(CPT_CSR_REG_BASE(cptvf),
CPTX_VQX_INPROG(0, 0));
vqx_inprg.s.inflight = val;
CPT_WRITE_CSR(CPT_CSR_REG_BASE(cptvf),
CPTX_VQX_INPROG(0, 0), vqx_inprg.u);
}
/* Write to VQX_DONE_WAIT NUMWAIT register
*/
static void
otx_cpt_write_vq_done_numwait(struct cpt_vf *cptvf, uint32_t val)
{
cptx_vqx_done_wait_t vqx_dwait;
vqx_dwait.u = CPT_READ_CSR(CPT_CSR_REG_BASE(cptvf),
CPTX_VQX_DONE_WAIT(0, 0));
vqx_dwait.s.num_wait = val;
CPT_WRITE_CSR(CPT_CSR_REG_BASE(cptvf),
CPTX_VQX_DONE_WAIT(0, 0), vqx_dwait.u);
}
/* Write to VQX_DONE_WAIT NUM_WAIT register
*/
static void
otx_cpt_write_vq_done_timewait(struct cpt_vf *cptvf, uint16_t val)
{
cptx_vqx_done_wait_t vqx_dwait;
vqx_dwait.u = CPT_READ_CSR(CPT_CSR_REG_BASE(cptvf),
CPTX_VQX_DONE_WAIT(0, 0));
vqx_dwait.s.time_wait = val;
CPT_WRITE_CSR(CPT_CSR_REG_BASE(cptvf),
CPTX_VQX_DONE_WAIT(0, 0), vqx_dwait.u);
}
/* Write to VQX_SADDR register
*/
static void
otx_cpt_write_vq_saddr(struct cpt_vf *cptvf, uint64_t val)
{
cptx_vqx_saddr_t vqx_saddr;
vqx_saddr.u = val;
CPT_WRITE_CSR(CPT_CSR_REG_BASE(cptvf),
CPTX_VQX_SADDR(0, 0), vqx_saddr.u);
}
static void
otx_cpt_vfvq_init(struct cpt_vf *cptvf)
{
uint64_t base_addr = 0;
/* Disable the VQ */
otx_cpt_write_vq_ctl(cptvf, 0);
/* Reset the doorbell */
otx_cpt_write_vq_doorbell(cptvf, 0);
/* Clear inflight */
otx_cpt_write_vq_inprog(cptvf, 0);
/* Write VQ SADDR */
base_addr = (uint64_t)(cptvf->cqueue.chead[0].dma_addr);
otx_cpt_write_vq_saddr(cptvf, base_addr);
/* Configure timerhold / coalescence */
otx_cpt_write_vq_done_timewait(cptvf, CPT_TIMER_THOLD);
otx_cpt_write_vq_done_numwait(cptvf, CPT_COUNT_THOLD);
/* Enable the VQ */
otx_cpt_write_vq_ctl(cptvf, 1);
}
static int
cpt_vq_init(struct cpt_vf *cptvf, uint8_t group)
{
int err;
/* Convey VQ LEN to PF */
err = otx_cpt_send_vq_size_msg(cptvf);
if (err) {
CPT_LOG_ERR("%s: PF not responding to QLEN msg",
cptvf->dev_name);
err = -EBUSY;
goto cleanup;
}
/* CPT VF device initialization */
otx_cpt_vfvq_init(cptvf);
/* Send msg to PF to assign currnet Q to required group */
cptvf->vfgrp = group;
err = otx_cpt_send_vf_grp_msg(cptvf, group);
if (err) {
CPT_LOG_ERR("%s: PF not responding to VF_GRP msg",
cptvf->dev_name);
err = -EBUSY;
goto cleanup;
}
CPT_LOG_DP_DEBUG("%s: %s done", cptvf->dev_name, __func__);
return 0;
cleanup:
return err;
}
void
otx_cpt_poll_misc(struct cpt_vf *cptvf)
{
uint64_t intr;
intr = otx_cpt_read_vf_misc_intr_status(cptvf);
if (!intr)
return;
/* Check for MISC interrupt types */
if (likely(intr & CPT_VF_INTR_MBOX_MASK)) {
CPT_LOG_DP_DEBUG("%s: Mailbox interrupt 0x%lx on CPT VF %d",
cptvf->dev_name, (unsigned int long)intr, cptvf->vfid);
otx_cpt_handle_mbox_intr(cptvf);
otx_cpt_clear_mbox_intr(cptvf);
} else if (unlikely(intr & CPT_VF_INTR_IRDE_MASK)) {
otx_cpt_clear_irde_intr(cptvf);
CPT_LOG_DP_DEBUG("%s: Instruction NCB read error interrupt "
"0x%lx on CPT VF %d", cptvf->dev_name,
(unsigned int long)intr, cptvf->vfid);
} else if (unlikely(intr & CPT_VF_INTR_NWRP_MASK)) {
otx_cpt_clear_nwrp_intr(cptvf);
CPT_LOG_DP_DEBUG("%s: NCB response write error interrupt 0x%lx"
" on CPT VF %d", cptvf->dev_name,
(unsigned int long)intr, cptvf->vfid);
} else if (unlikely(intr & CPT_VF_INTR_SWERR_MASK)) {
otx_cpt_clear_swerr_intr(cptvf);
CPT_LOG_DP_DEBUG("%s: Software error interrupt 0x%lx on CPT VF "
"%d", cptvf->dev_name, (unsigned int long)intr,
cptvf->vfid);
} else if (unlikely(intr & CPT_VF_INTR_HWERR_MASK)) {
otx_cpt_clear_hwerr_intr(cptvf);
CPT_LOG_DP_DEBUG("%s: Hardware error interrupt 0x%lx on CPT VF "
"%d", cptvf->dev_name, (unsigned int long)intr,
cptvf->vfid);
} else if (unlikely(intr & CPT_VF_INTR_FAULT_MASK)) {
otx_cpt_clear_fault_intr(cptvf);
CPT_LOG_DP_DEBUG("%s: Translation fault interrupt 0x%lx on CPT VF "
"%d", cptvf->dev_name, (unsigned int long)intr,
cptvf->vfid);
} else if (unlikely(intr & CPT_VF_INTR_DOVF_MASK)) {
otx_cpt_clear_dovf_intr(cptvf);
CPT_LOG_DP_DEBUG("%s: Doorbell overflow interrupt 0x%lx on CPT VF "
"%d", cptvf->dev_name, (unsigned int long)intr,
cptvf->vfid);
} else
CPT_LOG_DP_ERR("%s: Unhandled interrupt 0x%lx in CPT VF %d",
cptvf->dev_name, (unsigned int long)intr,
cptvf->vfid);
}
int
otx_cpt_hw_init(struct cpt_vf *cptvf, void *pdev, void *reg_base, char *name)
{
memset(cptvf, 0, sizeof(struct cpt_vf));
/* Bar0 base address */
cptvf->reg_base = reg_base;
/* Save device name */
strlcpy(cptvf->dev_name, name, (sizeof(cptvf->dev_name)));
cptvf->pdev = pdev;
/* To clear if there are any pending mbox msgs */
otx_cpt_poll_misc(cptvf);
if (otx_cpt_vf_init(cptvf)) {
CPT_LOG_ERR("Failed to initialize CPT VF device");
return -1;
}
/* Gets device type */
if (otx_cpt_get_dev_type(cptvf)) {
CPT_LOG_ERR("Failed to get device type");
return -1;
}
return 0;
}
int
otx_cpt_deinit_device(void *dev)
{
struct cpt_vf *cptvf = (struct cpt_vf *)dev;
/* Do misc work one last time */
otx_cpt_poll_misc(cptvf);
return 0;
}
static int
otx_cpt_metabuf_mempool_create(const struct rte_cryptodev *dev,
struct cpt_instance *instance, uint8_t qp_id,
int nb_elements)
{
char mempool_name[RTE_MEMPOOL_NAMESIZE];
struct cpt_qp_meta_info *meta_info;
struct rte_mempool *pool;
int max_mlen = 0;
int sg_mlen = 0;
int lb_mlen = 0;
int ret;
/*
* Calculate metabuf length required. The 'crypto_octeontx' device
* would be either SYMMETRIC or ASYMMETRIC.
*/
if (dev->feature_flags & RTE_CRYPTODEV_FF_SYMMETRIC_CRYPTO) {
/* Get meta len for scatter gather mode */
sg_mlen = cpt_pmd_ops_helper_get_mlen_sg_mode();
/* Extra 32B saved for future considerations */
sg_mlen += 4 * sizeof(uint64_t);
/* Get meta len for linear buffer (direct) mode */
lb_mlen = cpt_pmd_ops_helper_get_mlen_direct_mode();
/* Extra 32B saved for future considerations */
lb_mlen += 4 * sizeof(uint64_t);
/* Check max requirement for meta buffer */
max_mlen = RTE_MAX(lb_mlen, sg_mlen);
} else {
/* Asymmetric device */
/* Get meta len for asymmetric operations */
max_mlen = cpt_pmd_ops_helper_asym_get_mlen();
}
/* Allocate mempool */
snprintf(mempool_name, RTE_MEMPOOL_NAMESIZE, "otx_cpt_mb_%u:%u",
dev->data->dev_id, qp_id);
pool = rte_mempool_create_empty(mempool_name, nb_elements, max_mlen,
METABUF_POOL_CACHE_SIZE, 0,
rte_socket_id(), 0);
if (pool == NULL) {
CPT_LOG_ERR("Could not create mempool for metabuf");
return rte_errno;
}
ret = rte_mempool_set_ops_byname(pool, RTE_MBUF_DEFAULT_MEMPOOL_OPS,
NULL);
if (ret) {
CPT_LOG_ERR("Could not set mempool ops");
goto mempool_free;
}
ret = rte_mempool_populate_default(pool);
if (ret <= 0) {
CPT_LOG_ERR("Could not populate metabuf pool");
goto mempool_free;
}
meta_info = &instance->meta_info;
meta_info->pool = pool;
meta_info->lb_mlen = lb_mlen;
meta_info->sg_mlen = sg_mlen;
return 0;
mempool_free:
rte_mempool_free(pool);
return ret;
}
static void
otx_cpt_metabuf_mempool_destroy(struct cpt_instance *instance)
{
struct cpt_qp_meta_info *meta_info = &instance->meta_info;
rte_mempool_free(meta_info->pool);
meta_info->pool = NULL;
meta_info->lb_mlen = 0;
meta_info->sg_mlen = 0;
}
int
otx_cpt_get_resource(const struct rte_cryptodev *dev, uint8_t group,
struct cpt_instance **instance, uint16_t qp_id)
{
int ret = -ENOENT, len, qlen, i;
int chunk_len, chunks, chunk_size;
struct cpt_vf *cptvf = dev->data->dev_private;
struct cpt_instance *cpt_instance;
struct command_chunk *chunk_head = NULL, *chunk_prev = NULL;
struct command_chunk *chunk = NULL;
uint8_t *mem;
const struct rte_memzone *rz;
uint64_t dma_addr = 0, alloc_len, used_len;
uint64_t *next_ptr;
uint64_t pg_sz = sysconf(_SC_PAGESIZE);
CPT_LOG_DP_DEBUG("Initializing cpt resource %s", cptvf->dev_name);
cpt_instance = &cptvf->instance;
memset(&cptvf->cqueue, 0, sizeof(cptvf->cqueue));
memset(&cptvf->pqueue, 0, sizeof(cptvf->pqueue));
/* Chunks are of fixed size buffers */
chunks = DEFAULT_CMD_QCHUNKS;
chunk_len = DEFAULT_CMD_QCHUNK_SIZE;
qlen = chunks * chunk_len;
/* Chunk size includes 8 bytes of next chunk ptr */
chunk_size = chunk_len * CPT_INST_SIZE + CPT_NEXT_CHUNK_PTR_SIZE;
/* For command chunk structures */
len = chunks * RTE_ALIGN(sizeof(struct command_chunk), 8);
/* For pending queue */
len += qlen * sizeof(uintptr_t);
/* So that instruction queues start as pg size aligned */
len = RTE_ALIGN(len, pg_sz);
/* For Instruction queues */
len += chunks * RTE_ALIGN(chunk_size, 128);
/* Wastage after instruction queues */
len = RTE_ALIGN(len, pg_sz);
rz = rte_memzone_reserve_aligned(cptvf->dev_name, len, cptvf->node,
RTE_MEMZONE_SIZE_HINT_ONLY |
RTE_MEMZONE_256MB,
RTE_CACHE_LINE_SIZE);
if (!rz) {
ret = rte_errno;
goto exit;
}
mem = rz->addr;
dma_addr = rz->iova;
alloc_len = len;
memset(mem, 0, len);
cpt_instance->rsvd = (uintptr_t)rz;
ret = otx_cpt_metabuf_mempool_create(dev, cpt_instance, qp_id, qlen);
if (ret) {
CPT_LOG_ERR("Could not create mempool for metabuf");
goto memzone_free;
}
/* Pending queue setup */
cptvf->pqueue.req_queue = (uintptr_t *)mem;
cptvf->pqueue.enq_tail = 0;
cptvf->pqueue.deq_head = 0;
cptvf->pqueue.pending_count = 0;
mem += qlen * sizeof(uintptr_t);
len -= qlen * sizeof(uintptr_t);
dma_addr += qlen * sizeof(uintptr_t);
/* Alignment wastage */
used_len = alloc_len - len;
mem += RTE_ALIGN(used_len, pg_sz) - used_len;
len -= RTE_ALIGN(used_len, pg_sz) - used_len;
dma_addr += RTE_ALIGN(used_len, pg_sz) - used_len;
/* Init instruction queues */
chunk_head = &cptvf->cqueue.chead[0];
i = qlen;
chunk_prev = NULL;
for (i = 0; i < DEFAULT_CMD_QCHUNKS; i++) {
int csize;
chunk = &cptvf->cqueue.chead[i];
chunk->head = mem;
chunk->dma_addr = dma_addr;
csize = RTE_ALIGN(chunk_size, 128);
mem += csize;
dma_addr += csize;
len -= csize;
if (chunk_prev) {
next_ptr = (uint64_t *)(chunk_prev->head +
chunk_size - 8);
*next_ptr = (uint64_t)chunk->dma_addr;
}
chunk_prev = chunk;
}
/* Circular loop */
next_ptr = (uint64_t *)(chunk_prev->head + chunk_size - 8);
*next_ptr = (uint64_t)chunk_head->dma_addr;
assert(!len);
/* This is used for CPT(0)_PF_Q(0..15)_CTL.size config */
cptvf->qsize = chunk_size / 8;
cptvf->cqueue.qhead = chunk_head->head;
cptvf->cqueue.idx = 0;
cptvf->cqueue.cchunk = 0;
if (cpt_vq_init(cptvf, group)) {
CPT_LOG_ERR("Failed to initialize CPT VQ of device %s",
cptvf->dev_name);
ret = -EBUSY;
goto mempool_destroy;
}
*instance = cpt_instance;
CPT_LOG_DP_DEBUG("Crypto device (%s) initialized", cptvf->dev_name);
return 0;
mempool_destroy:
otx_cpt_metabuf_mempool_destroy(cpt_instance);
memzone_free:
rte_memzone_free(rz);
exit:
*instance = NULL;
return ret;
}
int
otx_cpt_put_resource(struct cpt_instance *instance)
{
struct cpt_vf *cptvf = (struct cpt_vf *)instance;
struct rte_memzone *rz;
if (!cptvf) {
CPT_LOG_ERR("Invalid CPTVF handle");
return -EINVAL;
}
CPT_LOG_DP_DEBUG("Releasing cpt device %s", cptvf->dev_name);
otx_cpt_metabuf_mempool_destroy(instance);
rz = (struct rte_memzone *)instance->rsvd;
rte_memzone_free(rz);
return 0;
}
int
otx_cpt_start_device(void *dev)
{
int rc;
struct cpt_vf *cptvf = (struct cpt_vf *)dev;
rc = otx_cpt_send_vf_up(cptvf);
if (rc) {
CPT_LOG_ERR("Failed to mark CPT VF device %s UP, rc = %d",
cptvf->dev_name, rc);
return -EFAULT;
}
return 0;
}
void
otx_cpt_stop_device(void *dev)
{
int rc;
uint32_t pending, retries = 5;
struct cpt_vf *cptvf = (struct cpt_vf *)dev;
/* Wait for pending entries to complete */
pending = otx_cpt_read_vq_doorbell(cptvf);
while (pending) {
CPT_LOG_DP_DEBUG("%s: Waiting for pending %u cmds to complete",
cptvf->dev_name, pending);
sleep(1);
pending = otx_cpt_read_vq_doorbell(cptvf);
retries--;
if (!retries)
break;
}
if (!retries && pending) {
CPT_LOG_ERR("%s: Timeout waiting for commands(%u)",
cptvf->dev_name, pending);
return;
}
rc = otx_cpt_send_vf_down(cptvf);
if (rc) {
CPT_LOG_ERR("Failed to bring down vf %s, rc %d",
cptvf->dev_name, rc);
return;
}
}