f-stack/dpdk/drivers/crypto/aesni_gcm/aesni_gcm_pmd.c

979 lines
26 KiB
C

/* SPDX-License-Identifier: BSD-3-Clause
* Copyright(c) 2016-2020 Intel Corporation
*/
#include <rte_common.h>
#include <rte_hexdump.h>
#include <rte_cryptodev.h>
#include <rte_cryptodev_pmd.h>
#include <rte_bus_vdev.h>
#include <rte_malloc.h>
#include <rte_cpuflags.h>
#include <rte_byteorder.h>
#include "aesni_gcm_pmd_private.h"
static uint8_t cryptodev_driver_id;
/* setup session handlers */
static void
set_func_ops(struct aesni_gcm_session *s, const struct aesni_gcm_ops *gcm_ops)
{
s->ops.pre = gcm_ops->pre;
s->ops.init = gcm_ops->init;
switch (s->op) {
case AESNI_GCM_OP_AUTHENTICATED_ENCRYPTION:
s->ops.cipher = gcm_ops->enc;
s->ops.update = gcm_ops->update_enc;
s->ops.finalize = gcm_ops->finalize_enc;
break;
case AESNI_GCM_OP_AUTHENTICATED_DECRYPTION:
s->ops.cipher = gcm_ops->dec;
s->ops.update = gcm_ops->update_dec;
s->ops.finalize = gcm_ops->finalize_dec;
break;
case AESNI_GMAC_OP_GENERATE:
case AESNI_GMAC_OP_VERIFY:
s->ops.finalize = gcm_ops->finalize_enc;
break;
}
}
/** Parse crypto xform chain and set private session parameters */
int
aesni_gcm_set_session_parameters(const struct aesni_gcm_ops *gcm_ops,
struct aesni_gcm_session *sess,
const struct rte_crypto_sym_xform *xform)
{
const struct rte_crypto_sym_xform *auth_xform;
const struct rte_crypto_sym_xform *aead_xform;
uint8_t key_length;
const uint8_t *key;
/* AES-GMAC */
if (xform->type == RTE_CRYPTO_SYM_XFORM_AUTH) {
auth_xform = xform;
if (auth_xform->auth.algo != RTE_CRYPTO_AUTH_AES_GMAC) {
AESNI_GCM_LOG(ERR, "Only AES GMAC is supported as an "
"authentication only algorithm");
return -ENOTSUP;
}
/* Set IV parameters */
sess->iv.offset = auth_xform->auth.iv.offset;
sess->iv.length = auth_xform->auth.iv.length;
/* Select Crypto operation */
if (auth_xform->auth.op == RTE_CRYPTO_AUTH_OP_GENERATE)
sess->op = AESNI_GMAC_OP_GENERATE;
else
sess->op = AESNI_GMAC_OP_VERIFY;
key_length = auth_xform->auth.key.length;
key = auth_xform->auth.key.data;
sess->req_digest_length = auth_xform->auth.digest_length;
/* AES-GCM */
} else if (xform->type == RTE_CRYPTO_SYM_XFORM_AEAD) {
aead_xform = xform;
if (aead_xform->aead.algo != RTE_CRYPTO_AEAD_AES_GCM) {
AESNI_GCM_LOG(ERR, "The only combined operation "
"supported is AES GCM");
return -ENOTSUP;
}
/* Set IV parameters */
sess->iv.offset = aead_xform->aead.iv.offset;
sess->iv.length = aead_xform->aead.iv.length;
/* Select Crypto operation */
if (aead_xform->aead.op == RTE_CRYPTO_AEAD_OP_ENCRYPT)
sess->op = AESNI_GCM_OP_AUTHENTICATED_ENCRYPTION;
/* op == RTE_CRYPTO_AEAD_OP_DECRYPT */
else
sess->op = AESNI_GCM_OP_AUTHENTICATED_DECRYPTION;
key_length = aead_xform->aead.key.length;
key = aead_xform->aead.key.data;
sess->aad_length = aead_xform->aead.aad_length;
sess->req_digest_length = aead_xform->aead.digest_length;
} else {
AESNI_GCM_LOG(ERR, "Wrong xform type, has to be AEAD or authentication");
return -ENOTSUP;
}
/* IV check */
if (sess->iv.length != 16 && sess->iv.length != 12 &&
sess->iv.length != 0) {
AESNI_GCM_LOG(ERR, "Wrong IV length");
return -EINVAL;
}
/* Check key length and calculate GCM pre-compute. */
switch (key_length) {
case 16:
sess->key = GCM_KEY_128;
break;
case 24:
sess->key = GCM_KEY_192;
break;
case 32:
sess->key = GCM_KEY_256;
break;
default:
AESNI_GCM_LOG(ERR, "Invalid key length");
return -EINVAL;
}
/* setup session handlers */
set_func_ops(sess, &gcm_ops[sess->key]);
/* pre-generate key */
gcm_ops[sess->key].pre(key, &sess->gdata_key);
/* Digest check */
if (sess->req_digest_length > 16) {
AESNI_GCM_LOG(ERR, "Invalid digest length");
return -EINVAL;
}
/*
* Multi-buffer lib supports digest sizes from 4 to 16 bytes
* in version 0.50 and sizes of 8, 12 and 16 bytes,
* in version 0.49.
* If size requested is different, generate the full digest
* (16 bytes) in a temporary location and then memcpy
* the requested number of bytes.
*/
#if IMB_VERSION_NUM >= IMB_VERSION(0, 50, 0)
if (sess->req_digest_length < 4)
#else
if (sess->req_digest_length != 16 &&
sess->req_digest_length != 12 &&
sess->req_digest_length != 8)
#endif
sess->gen_digest_length = 16;
else
sess->gen_digest_length = sess->req_digest_length;
return 0;
}
/** Get gcm session */
static struct aesni_gcm_session *
aesni_gcm_get_session(struct aesni_gcm_qp *qp, struct rte_crypto_op *op)
{
struct aesni_gcm_session *sess = NULL;
struct rte_crypto_sym_op *sym_op = op->sym;
if (op->sess_type == RTE_CRYPTO_OP_WITH_SESSION) {
if (likely(sym_op->session != NULL))
sess = (struct aesni_gcm_session *)
get_sym_session_private_data(
sym_op->session,
cryptodev_driver_id);
} else {
void *_sess;
void *_sess_private_data = NULL;
if (rte_mempool_get(qp->sess_mp, (void **)&_sess))
return NULL;
if (rte_mempool_get(qp->sess_mp_priv,
(void **)&_sess_private_data))
return NULL;
sess = (struct aesni_gcm_session *)_sess_private_data;
if (unlikely(aesni_gcm_set_session_parameters(qp->ops,
sess, sym_op->xform) != 0)) {
rte_mempool_put(qp->sess_mp, _sess);
rte_mempool_put(qp->sess_mp_priv, _sess_private_data);
sess = NULL;
}
sym_op->session = (struct rte_cryptodev_sym_session *)_sess;
set_sym_session_private_data(sym_op->session,
cryptodev_driver_id, _sess_private_data);
}
if (unlikely(sess == NULL))
op->status = RTE_CRYPTO_OP_STATUS_INVALID_SESSION;
return sess;
}
/**
* Process a crypto operation, calling
* the GCM API from the multi buffer library.
*
* @param qp queue pair
* @param op symmetric crypto operation
* @param session GCM session
*
* @return
*
*/
static int
process_gcm_crypto_op(struct aesni_gcm_qp *qp, struct rte_crypto_op *op,
struct aesni_gcm_session *session)
{
uint8_t *src, *dst;
uint8_t *iv_ptr;
struct rte_crypto_sym_op *sym_op = op->sym;
struct rte_mbuf *m_src = sym_op->m_src;
uint32_t offset, data_offset, data_length;
uint32_t part_len, total_len, data_len;
uint8_t *tag;
unsigned int oop = 0;
if (session->op == AESNI_GCM_OP_AUTHENTICATED_ENCRYPTION ||
session->op == AESNI_GCM_OP_AUTHENTICATED_DECRYPTION) {
offset = sym_op->aead.data.offset;
data_offset = offset;
data_length = sym_op->aead.data.length;
} else {
offset = sym_op->auth.data.offset;
data_offset = offset;
data_length = sym_op->auth.data.length;
}
RTE_ASSERT(m_src != NULL);
while (offset >= m_src->data_len && data_length != 0) {
offset -= m_src->data_len;
m_src = m_src->next;
RTE_ASSERT(m_src != NULL);
}
src = rte_pktmbuf_mtod_offset(m_src, uint8_t *, offset);
data_len = m_src->data_len - offset;
part_len = (data_len < data_length) ? data_len :
data_length;
RTE_ASSERT((sym_op->m_dst == NULL) ||
((sym_op->m_dst != NULL) &&
rte_pktmbuf_is_contiguous(sym_op->m_dst)));
/* In-place */
if (sym_op->m_dst == NULL || (sym_op->m_dst == sym_op->m_src))
dst = src;
/* Out-of-place */
else {
oop = 1;
/* Segmented destination buffer is not supported if operation is
* Out-of-place */
RTE_ASSERT(rte_pktmbuf_is_contiguous(sym_op->m_dst));
dst = rte_pktmbuf_mtod_offset(sym_op->m_dst, uint8_t *,
data_offset);
}
iv_ptr = rte_crypto_op_ctod_offset(op, uint8_t *,
session->iv.offset);
if (session->op == AESNI_GCM_OP_AUTHENTICATED_ENCRYPTION) {
qp->ops[session->key].init(&session->gdata_key,
&qp->gdata_ctx,
iv_ptr,
sym_op->aead.aad.data,
(uint64_t)session->aad_length);
qp->ops[session->key].update_enc(&session->gdata_key,
&qp->gdata_ctx, dst, src,
(uint64_t)part_len);
total_len = data_length - part_len;
while (total_len) {
m_src = m_src->next;
RTE_ASSERT(m_src != NULL);
src = rte_pktmbuf_mtod(m_src, uint8_t *);
if (oop)
dst += part_len;
else
dst = src;
part_len = (m_src->data_len < total_len) ?
m_src->data_len : total_len;
qp->ops[session->key].update_enc(&session->gdata_key,
&qp->gdata_ctx, dst, src,
(uint64_t)part_len);
total_len -= part_len;
}
if (session->req_digest_length != session->gen_digest_length)
tag = qp->temp_digest;
else
tag = sym_op->aead.digest.data;
qp->ops[session->key].finalize_enc(&session->gdata_key,
&qp->gdata_ctx,
tag,
session->gen_digest_length);
} else if (session->op == AESNI_GCM_OP_AUTHENTICATED_DECRYPTION) {
qp->ops[session->key].init(&session->gdata_key,
&qp->gdata_ctx,
iv_ptr,
sym_op->aead.aad.data,
(uint64_t)session->aad_length);
qp->ops[session->key].update_dec(&session->gdata_key,
&qp->gdata_ctx, dst, src,
(uint64_t)part_len);
total_len = data_length - part_len;
while (total_len) {
m_src = m_src->next;
RTE_ASSERT(m_src != NULL);
src = rte_pktmbuf_mtod(m_src, uint8_t *);
if (oop)
dst += part_len;
else
dst = src;
part_len = (m_src->data_len < total_len) ?
m_src->data_len : total_len;
qp->ops[session->key].update_dec(&session->gdata_key,
&qp->gdata_ctx,
dst, src,
(uint64_t)part_len);
total_len -= part_len;
}
tag = qp->temp_digest;
qp->ops[session->key].finalize_dec(&session->gdata_key,
&qp->gdata_ctx,
tag,
session->gen_digest_length);
#if IMB_VERSION(0, 54, 0) < IMB_VERSION_NUM
} else if (session->op == AESNI_GMAC_OP_GENERATE) {
qp->ops[session->key].gmac_init(&session->gdata_key,
&qp->gdata_ctx,
iv_ptr,
session->iv.length);
qp->ops[session->key].gmac_update(&session->gdata_key,
&qp->gdata_ctx, src,
(uint64_t)part_len);
total_len = data_length - part_len;
while (total_len) {
m_src = m_src->next;
RTE_ASSERT(m_src != NULL);
src = rte_pktmbuf_mtod(m_src, uint8_t *);
part_len = (m_src->data_len < total_len) ?
m_src->data_len : total_len;
qp->ops[session->key].gmac_update(&session->gdata_key,
&qp->gdata_ctx, src,
(uint64_t)part_len);
total_len -= part_len;
}
if (session->req_digest_length != session->gen_digest_length)
tag = qp->temp_digest;
else
tag = sym_op->auth.digest.data;
qp->ops[session->key].gmac_finalize(&session->gdata_key,
&qp->gdata_ctx,
tag,
session->gen_digest_length);
} else { /* AESNI_GMAC_OP_VERIFY */
qp->ops[session->key].gmac_init(&session->gdata_key,
&qp->gdata_ctx,
iv_ptr,
session->iv.length);
qp->ops[session->key].gmac_update(&session->gdata_key,
&qp->gdata_ctx, src,
(uint64_t)part_len);
total_len = data_length - part_len;
while (total_len) {
m_src = m_src->next;
RTE_ASSERT(m_src != NULL);
src = rte_pktmbuf_mtod(m_src, uint8_t *);
part_len = (m_src->data_len < total_len) ?
m_src->data_len : total_len;
qp->ops[session->key].gmac_update(&session->gdata_key,
&qp->gdata_ctx, src,
(uint64_t)part_len);
total_len -= part_len;
}
tag = qp->temp_digest;
qp->ops[session->key].gmac_finalize(&session->gdata_key,
&qp->gdata_ctx,
tag,
session->gen_digest_length);
}
#else
} else if (session->op == AESNI_GMAC_OP_GENERATE) {
qp->ops[session->key].init(&session->gdata_key,
&qp->gdata_ctx,
iv_ptr,
src,
(uint64_t)data_length);
if (session->req_digest_length != session->gen_digest_length)
tag = qp->temp_digest;
else
tag = sym_op->auth.digest.data;
qp->ops[session->key].finalize_enc(&session->gdata_key,
&qp->gdata_ctx,
tag,
session->gen_digest_length);
} else { /* AESNI_GMAC_OP_VERIFY */
qp->ops[session->key].init(&session->gdata_key,
&qp->gdata_ctx,
iv_ptr,
src,
(uint64_t)data_length);
/*
* Generate always 16 bytes and later compare only
* the bytes passed.
*/
tag = qp->temp_digest;
qp->ops[session->key].finalize_enc(&session->gdata_key,
&qp->gdata_ctx,
tag,
session->gen_digest_length);
}
#endif
return 0;
}
static inline void
aesni_gcm_fill_error_code(struct rte_crypto_sym_vec *vec, int32_t errnum)
{
uint32_t i;
for (i = 0; i < vec->num; i++)
vec->status[i] = errnum;
}
static inline int32_t
aesni_gcm_sgl_op_finalize_encryption(const struct aesni_gcm_session *s,
struct gcm_context_data *gdata_ctx, uint8_t *digest)
{
if (s->req_digest_length != s->gen_digest_length) {
uint8_t tmpdigest[s->gen_digest_length];
s->ops.finalize(&s->gdata_key, gdata_ctx, tmpdigest,
s->gen_digest_length);
memcpy(digest, tmpdigest, s->req_digest_length);
} else {
s->ops.finalize(&s->gdata_key, gdata_ctx, digest,
s->gen_digest_length);
}
return 0;
}
static inline int32_t
aesni_gcm_sgl_op_finalize_decryption(const struct aesni_gcm_session *s,
struct gcm_context_data *gdata_ctx, uint8_t *digest)
{
uint8_t tmpdigest[s->gen_digest_length];
s->ops.finalize(&s->gdata_key, gdata_ctx, tmpdigest,
s->gen_digest_length);
return memcmp(digest, tmpdigest, s->req_digest_length) == 0 ? 0 :
EBADMSG;
}
static inline void
aesni_gcm_process_gcm_sgl_op(const struct aesni_gcm_session *s,
struct gcm_context_data *gdata_ctx, struct rte_crypto_sgl *sgl,
void *iv, void *aad)
{
uint32_t i;
/* init crypto operation */
s->ops.init(&s->gdata_key, gdata_ctx, iv, aad,
(uint64_t)s->aad_length);
/* update with sgl data */
for (i = 0; i < sgl->num; i++) {
struct rte_crypto_vec *vec = &sgl->vec[i];
s->ops.update(&s->gdata_key, gdata_ctx, vec->base, vec->base,
vec->len);
}
}
static inline void
aesni_gcm_process_gmac_sgl_op(const struct aesni_gcm_session *s,
struct gcm_context_data *gdata_ctx, struct rte_crypto_sgl *sgl,
void *iv)
{
s->ops.init(&s->gdata_key, gdata_ctx, iv, sgl->vec[0].base,
sgl->vec[0].len);
}
static inline uint32_t
aesni_gcm_sgl_encrypt(struct aesni_gcm_session *s,
struct gcm_context_data *gdata_ctx, struct rte_crypto_sym_vec *vec)
{
uint32_t i, processed;
processed = 0;
for (i = 0; i < vec->num; ++i) {
aesni_gcm_process_gcm_sgl_op(s, gdata_ctx,
&vec->sgl[i], vec->iv[i].va,
vec->aad[i].va);
vec->status[i] = aesni_gcm_sgl_op_finalize_encryption(s,
gdata_ctx, vec->digest[i].va);
processed += (vec->status[i] == 0);
}
return processed;
}
static inline uint32_t
aesni_gcm_sgl_decrypt(struct aesni_gcm_session *s,
struct gcm_context_data *gdata_ctx, struct rte_crypto_sym_vec *vec)
{
uint32_t i, processed;
processed = 0;
for (i = 0; i < vec->num; ++i) {
aesni_gcm_process_gcm_sgl_op(s, gdata_ctx,
&vec->sgl[i], vec->iv[i].va,
vec->aad[i].va);
vec->status[i] = aesni_gcm_sgl_op_finalize_decryption(s,
gdata_ctx, vec->digest[i].va);
processed += (vec->status[i] == 0);
}
return processed;
}
static inline uint32_t
aesni_gmac_sgl_generate(struct aesni_gcm_session *s,
struct gcm_context_data *gdata_ctx, struct rte_crypto_sym_vec *vec)
{
uint32_t i, processed;
processed = 0;
for (i = 0; i < vec->num; ++i) {
if (vec->sgl[i].num != 1) {
vec->status[i] = ENOTSUP;
continue;
}
aesni_gcm_process_gmac_sgl_op(s, gdata_ctx,
&vec->sgl[i], vec->iv[i].va);
vec->status[i] = aesni_gcm_sgl_op_finalize_encryption(s,
gdata_ctx, vec->digest[i].va);
processed += (vec->status[i] == 0);
}
return processed;
}
static inline uint32_t
aesni_gmac_sgl_verify(struct aesni_gcm_session *s,
struct gcm_context_data *gdata_ctx, struct rte_crypto_sym_vec *vec)
{
uint32_t i, processed;
processed = 0;
for (i = 0; i < vec->num; ++i) {
if (vec->sgl[i].num != 1) {
vec->status[i] = ENOTSUP;
continue;
}
aesni_gcm_process_gmac_sgl_op(s, gdata_ctx,
&vec->sgl[i], vec->iv[i].va);
vec->status[i] = aesni_gcm_sgl_op_finalize_decryption(s,
gdata_ctx, vec->digest[i].va);
processed += (vec->status[i] == 0);
}
return processed;
}
/** Process CPU crypto bulk operations */
uint32_t
aesni_gcm_pmd_cpu_crypto_process(struct rte_cryptodev *dev,
struct rte_cryptodev_sym_session *sess,
__rte_unused union rte_crypto_sym_ofs ofs,
struct rte_crypto_sym_vec *vec)
{
void *sess_priv;
struct aesni_gcm_session *s;
struct gcm_context_data gdata_ctx;
sess_priv = get_sym_session_private_data(sess, dev->driver_id);
if (unlikely(sess_priv == NULL)) {
aesni_gcm_fill_error_code(vec, EINVAL);
return 0;
}
s = sess_priv;
switch (s->op) {
case AESNI_GCM_OP_AUTHENTICATED_ENCRYPTION:
return aesni_gcm_sgl_encrypt(s, &gdata_ctx, vec);
case AESNI_GCM_OP_AUTHENTICATED_DECRYPTION:
return aesni_gcm_sgl_decrypt(s, &gdata_ctx, vec);
case AESNI_GMAC_OP_GENERATE:
return aesni_gmac_sgl_generate(s, &gdata_ctx, vec);
case AESNI_GMAC_OP_VERIFY:
return aesni_gmac_sgl_verify(s, &gdata_ctx, vec);
default:
aesni_gcm_fill_error_code(vec, EINVAL);
return 0;
}
}
/**
* Process a completed job and return rte_mbuf which job processed
*
* @param job JOB_AES_HMAC job to process
*
* @return
* - Returns processed mbuf which is trimmed of output digest used in
* verification of supplied digest in the case of a HASH_CIPHER operation
* - Returns NULL on invalid job
*/
static void
post_process_gcm_crypto_op(struct aesni_gcm_qp *qp,
struct rte_crypto_op *op,
struct aesni_gcm_session *session)
{
op->status = RTE_CRYPTO_OP_STATUS_SUCCESS;
/* Verify digest if required */
if (session->op == AESNI_GCM_OP_AUTHENTICATED_DECRYPTION ||
session->op == AESNI_GMAC_OP_VERIFY) {
uint8_t *digest;
uint8_t *tag = qp->temp_digest;
if (session->op == AESNI_GMAC_OP_VERIFY)
digest = op->sym->auth.digest.data;
else
digest = op->sym->aead.digest.data;
#ifdef RTE_LIBRTE_PMD_AESNI_GCM_DEBUG
rte_hexdump(stdout, "auth tag (orig):",
digest, session->req_digest_length);
rte_hexdump(stdout, "auth tag (calc):",
tag, session->req_digest_length);
#endif
if (memcmp(tag, digest, session->req_digest_length) != 0)
op->status = RTE_CRYPTO_OP_STATUS_AUTH_FAILED;
} else {
if (session->req_digest_length != session->gen_digest_length) {
if (session->op == AESNI_GCM_OP_AUTHENTICATED_ENCRYPTION)
memcpy(op->sym->aead.digest.data, qp->temp_digest,
session->req_digest_length);
else
memcpy(op->sym->auth.digest.data, qp->temp_digest,
session->req_digest_length);
}
}
}
/**
* Process a completed GCM request
*
* @param qp Queue Pair to process
* @param op Crypto operation
* @param job JOB_AES_HMAC job
*
* @return
* - Number of processed jobs
*/
static void
handle_completed_gcm_crypto_op(struct aesni_gcm_qp *qp,
struct rte_crypto_op *op,
struct aesni_gcm_session *sess)
{
post_process_gcm_crypto_op(qp, op, sess);
/* Free session if a session-less crypto op */
if (op->sess_type == RTE_CRYPTO_OP_SESSIONLESS) {
memset(sess, 0, sizeof(struct aesni_gcm_session));
memset(op->sym->session, 0,
rte_cryptodev_sym_get_existing_header_session_size(
op->sym->session));
rte_mempool_put(qp->sess_mp_priv, sess);
rte_mempool_put(qp->sess_mp, op->sym->session);
op->sym->session = NULL;
}
}
static uint16_t
aesni_gcm_pmd_dequeue_burst(void *queue_pair,
struct rte_crypto_op **ops, uint16_t nb_ops)
{
struct aesni_gcm_session *sess;
struct aesni_gcm_qp *qp = queue_pair;
int retval = 0;
unsigned int i, nb_dequeued;
nb_dequeued = rte_ring_dequeue_burst(qp->processed_pkts,
(void **)ops, nb_ops, NULL);
for (i = 0; i < nb_dequeued; i++) {
sess = aesni_gcm_get_session(qp, ops[i]);
if (unlikely(sess == NULL)) {
ops[i]->status = RTE_CRYPTO_OP_STATUS_INVALID_ARGS;
qp->qp_stats.dequeue_err_count++;
break;
}
retval = process_gcm_crypto_op(qp, ops[i], sess);
if (retval < 0) {
ops[i]->status = RTE_CRYPTO_OP_STATUS_INVALID_ARGS;
qp->qp_stats.dequeue_err_count++;
break;
}
handle_completed_gcm_crypto_op(qp, ops[i], sess);
}
qp->qp_stats.dequeued_count += i;
return i;
}
static uint16_t
aesni_gcm_pmd_enqueue_burst(void *queue_pair,
struct rte_crypto_op **ops, uint16_t nb_ops)
{
struct aesni_gcm_qp *qp = queue_pair;
unsigned int nb_enqueued;
nb_enqueued = rte_ring_enqueue_burst(qp->processed_pkts,
(void **)ops, nb_ops, NULL);
qp->qp_stats.enqueued_count += nb_enqueued;
return nb_enqueued;
}
static int aesni_gcm_remove(struct rte_vdev_device *vdev);
static int
aesni_gcm_create(const char *name,
struct rte_vdev_device *vdev,
struct rte_cryptodev_pmd_init_params *init_params)
{
struct rte_cryptodev *dev;
struct aesni_gcm_private *internals;
enum aesni_gcm_vector_mode vector_mode;
MB_MGR *mb_mgr;
dev = rte_cryptodev_pmd_create(name, &vdev->device, init_params);
if (dev == NULL) {
AESNI_GCM_LOG(ERR, "driver %s: create failed",
init_params->name);
return -ENODEV;
}
/* Check CPU for supported vector instruction set */
if (rte_cpu_get_flag_enabled(RTE_CPUFLAG_AVX512F))
vector_mode = RTE_AESNI_GCM_AVX512;
else if (rte_cpu_get_flag_enabled(RTE_CPUFLAG_AVX2))
vector_mode = RTE_AESNI_GCM_AVX2;
else if (rte_cpu_get_flag_enabled(RTE_CPUFLAG_AVX))
vector_mode = RTE_AESNI_GCM_AVX;
else
vector_mode = RTE_AESNI_GCM_SSE;
dev->driver_id = cryptodev_driver_id;
dev->dev_ops = rte_aesni_gcm_pmd_ops;
/* register rx/tx burst functions for data path */
dev->dequeue_burst = aesni_gcm_pmd_dequeue_burst;
dev->enqueue_burst = aesni_gcm_pmd_enqueue_burst;
dev->feature_flags = RTE_CRYPTODEV_FF_SYMMETRIC_CRYPTO |
RTE_CRYPTODEV_FF_SYM_OPERATION_CHAINING |
RTE_CRYPTODEV_FF_IN_PLACE_SGL |
RTE_CRYPTODEV_FF_OOP_SGL_IN_LB_OUT |
RTE_CRYPTODEV_FF_OOP_LB_IN_LB_OUT |
RTE_CRYPTODEV_FF_SYM_CPU_CRYPTO |
RTE_CRYPTODEV_FF_SYM_SESSIONLESS;
/* Check CPU for support for AES instruction set */
if (rte_cpu_get_flag_enabled(RTE_CPUFLAG_AES))
dev->feature_flags |= RTE_CRYPTODEV_FF_CPU_AESNI;
else
AESNI_GCM_LOG(WARNING, "AES instructions not supported by CPU");
mb_mgr = alloc_mb_mgr(0);
if (mb_mgr == NULL)
return -ENOMEM;
switch (vector_mode) {
case RTE_AESNI_GCM_SSE:
dev->feature_flags |= RTE_CRYPTODEV_FF_CPU_SSE;
init_mb_mgr_sse(mb_mgr);
break;
case RTE_AESNI_GCM_AVX:
dev->feature_flags |= RTE_CRYPTODEV_FF_CPU_AVX;
init_mb_mgr_avx(mb_mgr);
break;
case RTE_AESNI_GCM_AVX2:
dev->feature_flags |= RTE_CRYPTODEV_FF_CPU_AVX2;
init_mb_mgr_avx2(mb_mgr);
break;
case RTE_AESNI_GCM_AVX512:
dev->feature_flags |= RTE_CRYPTODEV_FF_CPU_AVX512;
init_mb_mgr_avx512(mb_mgr);
break;
default:
AESNI_GCM_LOG(ERR, "Unsupported vector mode %u\n", vector_mode);
goto error_exit;
}
internals = dev->data->dev_private;
internals->vector_mode = vector_mode;
internals->mb_mgr = mb_mgr;
/* Set arch independent function pointers, based on key size */
internals->ops[GCM_KEY_128].enc = mb_mgr->gcm128_enc;
internals->ops[GCM_KEY_128].dec = mb_mgr->gcm128_dec;
internals->ops[GCM_KEY_128].pre = mb_mgr->gcm128_pre;
internals->ops[GCM_KEY_128].init = mb_mgr->gcm128_init;
internals->ops[GCM_KEY_128].update_enc = mb_mgr->gcm128_enc_update;
internals->ops[GCM_KEY_128].update_dec = mb_mgr->gcm128_dec_update;
internals->ops[GCM_KEY_128].finalize_enc = mb_mgr->gcm128_enc_finalize;
internals->ops[GCM_KEY_128].finalize_dec = mb_mgr->gcm128_dec_finalize;
#if IMB_VERSION(0, 54, 0) < IMB_VERSION_NUM
internals->ops[GCM_KEY_128].gmac_init = mb_mgr->gmac128_init;
internals->ops[GCM_KEY_128].gmac_update = mb_mgr->gmac128_update;
internals->ops[GCM_KEY_128].gmac_finalize = mb_mgr->gmac128_finalize;
#endif
internals->ops[GCM_KEY_192].enc = mb_mgr->gcm192_enc;
internals->ops[GCM_KEY_192].dec = mb_mgr->gcm192_dec;
internals->ops[GCM_KEY_192].pre = mb_mgr->gcm192_pre;
internals->ops[GCM_KEY_192].init = mb_mgr->gcm192_init;
internals->ops[GCM_KEY_192].update_enc = mb_mgr->gcm192_enc_update;
internals->ops[GCM_KEY_192].update_dec = mb_mgr->gcm192_dec_update;
internals->ops[GCM_KEY_192].finalize_enc = mb_mgr->gcm192_enc_finalize;
internals->ops[GCM_KEY_192].finalize_dec = mb_mgr->gcm192_dec_finalize;
#if IMB_VERSION(0, 54, 0) < IMB_VERSION_NUM
internals->ops[GCM_KEY_192].gmac_init = mb_mgr->gmac192_init;
internals->ops[GCM_KEY_192].gmac_update = mb_mgr->gmac192_update;
internals->ops[GCM_KEY_192].gmac_finalize = mb_mgr->gmac192_finalize;
#endif
internals->ops[GCM_KEY_256].enc = mb_mgr->gcm256_enc;
internals->ops[GCM_KEY_256].dec = mb_mgr->gcm256_dec;
internals->ops[GCM_KEY_256].pre = mb_mgr->gcm256_pre;
internals->ops[GCM_KEY_256].init = mb_mgr->gcm256_init;
internals->ops[GCM_KEY_256].update_enc = mb_mgr->gcm256_enc_update;
internals->ops[GCM_KEY_256].update_dec = mb_mgr->gcm256_dec_update;
internals->ops[GCM_KEY_256].finalize_enc = mb_mgr->gcm256_enc_finalize;
internals->ops[GCM_KEY_256].finalize_dec = mb_mgr->gcm256_dec_finalize;
#if IMB_VERSION(0, 54, 0) < IMB_VERSION_NUM
internals->ops[GCM_KEY_256].gmac_init = mb_mgr->gmac256_init;
internals->ops[GCM_KEY_256].gmac_update = mb_mgr->gmac256_update;
internals->ops[GCM_KEY_256].gmac_finalize = mb_mgr->gmac256_finalize;
#endif
internals->max_nb_queue_pairs = init_params->max_nb_queue_pairs;
#if IMB_VERSION_NUM >= IMB_VERSION(0, 50, 0)
AESNI_GCM_LOG(INFO, "IPSec Multi-buffer library version used: %s\n",
imb_get_version_str());
#else
AESNI_GCM_LOG(INFO, "IPSec Multi-buffer library version used: 0.49.0\n");
#endif
return 0;
error_exit:
if (mb_mgr)
free_mb_mgr(mb_mgr);
rte_cryptodev_pmd_destroy(dev);
return -1;
}
static int
aesni_gcm_probe(struct rte_vdev_device *vdev)
{
struct rte_cryptodev_pmd_init_params init_params = {
"",
sizeof(struct aesni_gcm_private),
rte_socket_id(),
RTE_CRYPTODEV_PMD_DEFAULT_MAX_NB_QUEUE_PAIRS
};
const char *name;
const char *input_args;
name = rte_vdev_device_name(vdev);
if (name == NULL)
return -EINVAL;
input_args = rte_vdev_device_args(vdev);
rte_cryptodev_pmd_parse_input_args(&init_params, input_args);
return aesni_gcm_create(name, vdev, &init_params);
}
static int
aesni_gcm_remove(struct rte_vdev_device *vdev)
{
struct rte_cryptodev *cryptodev;
struct aesni_gcm_private *internals;
const char *name;
name = rte_vdev_device_name(vdev);
if (name == NULL)
return -EINVAL;
cryptodev = rte_cryptodev_pmd_get_named_dev(name);
if (cryptodev == NULL)
return -ENODEV;
internals = cryptodev->data->dev_private;
free_mb_mgr(internals->mb_mgr);
return rte_cryptodev_pmd_destroy(cryptodev);
}
static struct rte_vdev_driver aesni_gcm_pmd_drv = {
.probe = aesni_gcm_probe,
.remove = aesni_gcm_remove
};
static struct cryptodev_driver aesni_gcm_crypto_drv;
RTE_PMD_REGISTER_VDEV(CRYPTODEV_NAME_AESNI_GCM_PMD, aesni_gcm_pmd_drv);
RTE_PMD_REGISTER_ALIAS(CRYPTODEV_NAME_AESNI_GCM_PMD, cryptodev_aesni_gcm_pmd);
RTE_PMD_REGISTER_PARAM_STRING(CRYPTODEV_NAME_AESNI_GCM_PMD,
"max_nb_queue_pairs=<int> "
"socket_id=<int>");
RTE_PMD_REGISTER_CRYPTO_DRIVER(aesni_gcm_crypto_drv, aesni_gcm_pmd_drv.driver,
cryptodev_driver_id);
RTE_LOG_REGISTER(aesni_gcm_logtype_driver, pmd.crypto.aesni_gcm, NOTICE);