mirror of https://github.com/F-Stack/f-stack.git
1084 lines
26 KiB
C
1084 lines
26 KiB
C
/* SPDX-License-Identifier: BSD-3-Clause
|
|
* Copyright(c) 2010-2019 Intel Corporation
|
|
*/
|
|
|
|
#include <stdio.h>
|
|
#include <stdint.h>
|
|
#include <string.h>
|
|
#include <stdarg.h>
|
|
#include <errno.h>
|
|
#include <stdlib.h>
|
|
#include <sys/mman.h>
|
|
#include <sys/queue.h>
|
|
#include <unistd.h>
|
|
|
|
#include <rte_common.h>
|
|
#include <rte_memory.h>
|
|
#include <rte_per_lcore.h>
|
|
#include <rte_launch.h>
|
|
#include <rte_eal.h>
|
|
#include <rte_lcore.h>
|
|
#include <rte_malloc.h>
|
|
#include <rte_cycles.h>
|
|
#include <rte_random.h>
|
|
#include <rte_string_fns.h>
|
|
|
|
#include "test.h"
|
|
|
|
#define N 10000
|
|
|
|
|
|
static int
|
|
is_mem_on_socket(int32_t socket);
|
|
|
|
static int32_t
|
|
addr_to_socket(void *addr);
|
|
|
|
/*
|
|
* Malloc
|
|
* ======
|
|
*
|
|
* Allocate some dynamic memory from heap (3 areas). Check that areas
|
|
* don't overlap and that alignment constraints match. This test is
|
|
* done many times on different lcores simultaneously.
|
|
*/
|
|
|
|
/* Test if memory overlaps: return 1 if true, or 0 if false. */
|
|
static int
|
|
is_memory_overlap(void *p1, size_t len1, void *p2, size_t len2)
|
|
{
|
|
unsigned long ptr1 = (unsigned long)p1;
|
|
unsigned long ptr2 = (unsigned long)p2;
|
|
|
|
if (ptr2 >= ptr1 && (ptr2 - ptr1) < len1)
|
|
return 1;
|
|
else if (ptr2 < ptr1 && (ptr1 - ptr2) < len2)
|
|
return 1;
|
|
return 0;
|
|
}
|
|
|
|
static int
|
|
is_aligned(void *p, int align)
|
|
{
|
|
unsigned long addr = (unsigned long)p;
|
|
unsigned mask = align - 1;
|
|
|
|
if (addr & mask)
|
|
return 0;
|
|
return 1;
|
|
}
|
|
|
|
static int
|
|
test_align_overlap_per_lcore(__rte_unused void *arg)
|
|
{
|
|
const unsigned align1 = 8,
|
|
align2 = 64,
|
|
align3 = 2048;
|
|
unsigned i,j;
|
|
void *p1 = NULL, *p2 = NULL, *p3 = NULL;
|
|
int ret = 0;
|
|
|
|
for (i = 0; i < N; i++) {
|
|
p1 = rte_zmalloc("dummy", 1000, align1);
|
|
if (!p1){
|
|
printf("rte_zmalloc returned NULL (i=%u)\n", i);
|
|
ret = -1;
|
|
break;
|
|
}
|
|
for(j = 0; j < 1000 ; j++) {
|
|
if( *(char *)p1 != 0) {
|
|
printf("rte_zmalloc didn't zero the allocated memory\n");
|
|
ret = -1;
|
|
}
|
|
}
|
|
p2 = rte_malloc("dummy", 1000, align2);
|
|
if (!p2){
|
|
printf("rte_malloc returned NULL (i=%u)\n", i);
|
|
ret = -1;
|
|
rte_free(p1);
|
|
break;
|
|
}
|
|
p3 = rte_malloc("dummy", 1000, align3);
|
|
if (!p3){
|
|
printf("rte_malloc returned NULL (i=%u)\n", i);
|
|
ret = -1;
|
|
rte_free(p1);
|
|
rte_free(p2);
|
|
break;
|
|
}
|
|
if (is_memory_overlap(p1, 1000, p2, 1000)) {
|
|
printf("p1 and p2 overlaps\n");
|
|
ret = -1;
|
|
}
|
|
if (is_memory_overlap(p2, 1000, p3, 1000)) {
|
|
printf("p2 and p3 overlaps\n");
|
|
ret = -1;
|
|
}
|
|
if (is_memory_overlap(p1, 1000, p3, 1000)) {
|
|
printf("p1 and p3 overlaps\n");
|
|
ret = -1;
|
|
}
|
|
if (!is_aligned(p1, align1)) {
|
|
printf("p1 is not aligned\n");
|
|
ret = -1;
|
|
}
|
|
if (!is_aligned(p2, align2)) {
|
|
printf("p2 is not aligned\n");
|
|
ret = -1;
|
|
}
|
|
if (!is_aligned(p3, align3)) {
|
|
printf("p3 is not aligned\n");
|
|
ret = -1;
|
|
}
|
|
rte_free(p1);
|
|
rte_free(p2);
|
|
rte_free(p3);
|
|
}
|
|
rte_malloc_dump_stats(stdout, "dummy");
|
|
|
|
return ret;
|
|
}
|
|
|
|
static int
|
|
test_reordered_free_per_lcore(__rte_unused void *arg)
|
|
{
|
|
const unsigned align1 = 8,
|
|
align2 = 64,
|
|
align3 = 2048;
|
|
unsigned i,j;
|
|
void *p1, *p2, *p3;
|
|
int ret = 0;
|
|
|
|
for (i = 0; i < 30; i++) {
|
|
p1 = rte_zmalloc("dummy", 1000, align1);
|
|
if (!p1){
|
|
printf("rte_zmalloc returned NULL (i=%u)\n", i);
|
|
ret = -1;
|
|
break;
|
|
}
|
|
for(j = 0; j < 1000 ; j++) {
|
|
if( *(char *)p1 != 0) {
|
|
printf("rte_zmalloc didn't zero the allocated memory\n");
|
|
ret = -1;
|
|
}
|
|
}
|
|
/* use calloc to allocate 1000 16-byte items this time */
|
|
p2 = rte_calloc("dummy", 1000, 16, align2);
|
|
/* for third request use regular malloc again */
|
|
p3 = rte_malloc("dummy", 1000, align3);
|
|
if (!p2 || !p3){
|
|
printf("rte_malloc returned NULL (i=%u)\n", i);
|
|
ret = -1;
|
|
break;
|
|
}
|
|
if (is_memory_overlap(p1, 1000, p2, 1000)) {
|
|
printf("p1 and p2 overlaps\n");
|
|
ret = -1;
|
|
}
|
|
if (is_memory_overlap(p2, 1000, p3, 1000)) {
|
|
printf("p2 and p3 overlaps\n");
|
|
ret = -1;
|
|
}
|
|
if (is_memory_overlap(p1, 1000, p3, 1000)) {
|
|
printf("p1 and p3 overlaps\n");
|
|
ret = -1;
|
|
}
|
|
if (!is_aligned(p1, align1)) {
|
|
printf("p1 is not aligned\n");
|
|
ret = -1;
|
|
}
|
|
if (!is_aligned(p2, align2)) {
|
|
printf("p2 is not aligned\n");
|
|
ret = -1;
|
|
}
|
|
if (!is_aligned(p3, align3)) {
|
|
printf("p3 is not aligned\n");
|
|
ret = -1;
|
|
}
|
|
/* try freeing in every possible order */
|
|
switch (i%6){
|
|
case 0:
|
|
rte_free(p1);
|
|
rte_free(p2);
|
|
rte_free(p3);
|
|
break;
|
|
case 1:
|
|
rte_free(p1);
|
|
rte_free(p3);
|
|
rte_free(p2);
|
|
break;
|
|
case 2:
|
|
rte_free(p2);
|
|
rte_free(p1);
|
|
rte_free(p3);
|
|
break;
|
|
case 3:
|
|
rte_free(p2);
|
|
rte_free(p3);
|
|
rte_free(p1);
|
|
break;
|
|
case 4:
|
|
rte_free(p3);
|
|
rte_free(p1);
|
|
rte_free(p2);
|
|
break;
|
|
case 5:
|
|
rte_free(p3);
|
|
rte_free(p2);
|
|
rte_free(p1);
|
|
break;
|
|
}
|
|
}
|
|
rte_malloc_dump_stats(stdout, "dummy");
|
|
|
|
return ret;
|
|
}
|
|
|
|
/* test function inside the malloc lib*/
|
|
static int
|
|
test_str_to_size(void)
|
|
{
|
|
struct {
|
|
const char *str;
|
|
uint64_t value;
|
|
} test_values[] =
|
|
{{ "5G", (uint64_t)5 * 1024 * 1024 *1024 },
|
|
{"0x20g", (uint64_t)0x20 * 1024 * 1024 *1024},
|
|
{"10M", 10 * 1024 * 1024},
|
|
{"050m", 050 * 1024 * 1024},
|
|
{"8K", 8 * 1024},
|
|
{"15k", 15 * 1024},
|
|
{"0200", 0200},
|
|
{"0x103", 0x103},
|
|
{"432", 432},
|
|
{"-1", 0}, /* negative values return 0 */
|
|
{" -2", 0},
|
|
{" -3MB", 0},
|
|
{"18446744073709551616", 0} /* ULLONG_MAX + 1 == out of range*/
|
|
};
|
|
unsigned i;
|
|
for (i = 0; i < RTE_DIM(test_values); i++)
|
|
if (rte_str_to_size(test_values[i].str) != test_values[i].value)
|
|
return -1;
|
|
return 0;
|
|
}
|
|
|
|
static int
|
|
test_multi_alloc_statistics(void)
|
|
{
|
|
int socket = 0;
|
|
struct rte_malloc_socket_stats pre_stats, post_stats ,first_stats, second_stats;
|
|
size_t size = 2048;
|
|
int align = 1024;
|
|
int overhead = 0;
|
|
|
|
/* Dynamically calculate the overhead by allocating one cacheline and
|
|
* then comparing what was allocated from the heap.
|
|
*/
|
|
rte_malloc_get_socket_stats(socket, &pre_stats);
|
|
|
|
void *dummy = rte_malloc_socket(NULL, RTE_CACHE_LINE_SIZE, 0, socket);
|
|
if (dummy == NULL)
|
|
return -1;
|
|
|
|
rte_malloc_get_socket_stats(socket, &post_stats);
|
|
|
|
/* after subtracting cache line, remainder is overhead */
|
|
overhead = post_stats.heap_allocsz_bytes - pre_stats.heap_allocsz_bytes;
|
|
overhead -= RTE_CACHE_LINE_SIZE;
|
|
|
|
rte_free(dummy);
|
|
|
|
/* Now start the real tests */
|
|
rte_malloc_get_socket_stats(socket, &pre_stats);
|
|
|
|
void *p1 = rte_malloc_socket("stats", size , align, socket);
|
|
if (!p1)
|
|
return -1;
|
|
rte_free(p1);
|
|
rte_malloc_dump_stats(stdout, "stats");
|
|
|
|
rte_malloc_get_socket_stats(socket,&post_stats);
|
|
/* Check statistics reported are correct */
|
|
/* All post stats should be equal to pre stats after alloc freed */
|
|
if ((post_stats.heap_totalsz_bytes != pre_stats.heap_totalsz_bytes) &&
|
|
(post_stats.heap_freesz_bytes!=pre_stats.heap_freesz_bytes) &&
|
|
(post_stats.heap_allocsz_bytes!=pre_stats.heap_allocsz_bytes)&&
|
|
(post_stats.alloc_count!=pre_stats.alloc_count)&&
|
|
(post_stats.free_count!=pre_stats.free_count)) {
|
|
printf("Malloc statistics are incorrect - freed alloc\n");
|
|
return -1;
|
|
}
|
|
/* Check two consecutive allocations */
|
|
size = 1024;
|
|
align = 0;
|
|
rte_malloc_get_socket_stats(socket,&pre_stats);
|
|
void *p2 = rte_malloc_socket("add", size ,align, socket);
|
|
if (!p2)
|
|
return -1;
|
|
rte_malloc_get_socket_stats(socket,&first_stats);
|
|
|
|
void *p3 = rte_malloc_socket("add2", size,align, socket);
|
|
if (!p3)
|
|
return -1;
|
|
|
|
rte_malloc_get_socket_stats(socket,&second_stats);
|
|
|
|
rte_free(p2);
|
|
rte_free(p3);
|
|
|
|
/* After freeing both allocations check stats return to original */
|
|
rte_malloc_get_socket_stats(socket, &post_stats);
|
|
|
|
if(second_stats.heap_totalsz_bytes != first_stats.heap_totalsz_bytes) {
|
|
printf("Incorrect heap statistics: Total size \n");
|
|
return -1;
|
|
}
|
|
/* Check allocated size is equal to two additions plus overhead */
|
|
if(second_stats.heap_allocsz_bytes !=
|
|
size + overhead + first_stats.heap_allocsz_bytes) {
|
|
printf("Incorrect heap statistics: Allocated size \n");
|
|
return -1;
|
|
}
|
|
/* Check that allocation count increments correctly i.e. +1 */
|
|
if (second_stats.alloc_count != first_stats.alloc_count + 1) {
|
|
printf("Incorrect heap statistics: Allocated count \n");
|
|
return -1;
|
|
}
|
|
|
|
if (second_stats.free_count != first_stats.free_count){
|
|
printf("Incorrect heap statistics: Free count \n");
|
|
return -1;
|
|
}
|
|
|
|
/* Make sure that we didn't touch our greatest chunk: 2 * 11M) */
|
|
if (post_stats.greatest_free_size != pre_stats.greatest_free_size) {
|
|
printf("Incorrect heap statistics: Greatest free size \n");
|
|
return -1;
|
|
}
|
|
/* Free size must equal the original free size minus the new allocation*/
|
|
if (first_stats.heap_freesz_bytes <= second_stats.heap_freesz_bytes) {
|
|
printf("Incorrect heap statistics: Free size \n");
|
|
return -1;
|
|
}
|
|
|
|
if ((post_stats.heap_totalsz_bytes != pre_stats.heap_totalsz_bytes) &&
|
|
(post_stats.heap_freesz_bytes!=pre_stats.heap_freesz_bytes) &&
|
|
(post_stats.heap_allocsz_bytes!=pre_stats.heap_allocsz_bytes)&&
|
|
(post_stats.alloc_count!=pre_stats.alloc_count)&&
|
|
(post_stats.free_count!=pre_stats.free_count)) {
|
|
printf("Malloc statistics are incorrect - freed alloc\n");
|
|
return -1;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
static int
|
|
test_realloc_socket(int socket)
|
|
{
|
|
const char hello_str[] = "Hello, world!";
|
|
const unsigned size1 = 1024;
|
|
const unsigned size2 = size1 + 1024;
|
|
const unsigned size3 = size2;
|
|
const unsigned size4 = size3 + 1024;
|
|
|
|
/* test data is the same even if element is moved*/
|
|
char *ptr1 = rte_zmalloc_socket(
|
|
NULL, size1, RTE_CACHE_LINE_SIZE, socket);
|
|
if (!ptr1){
|
|
printf("NULL pointer returned from rte_zmalloc\n");
|
|
return -1;
|
|
}
|
|
strlcpy(ptr1, hello_str, size1);
|
|
char *ptr2 = rte_realloc_socket(
|
|
ptr1, size2, RTE_CACHE_LINE_SIZE, socket);
|
|
if (!ptr2){
|
|
rte_free(ptr1);
|
|
printf("NULL pointer returned from rte_realloc\n");
|
|
return -1;
|
|
}
|
|
if (ptr1 == ptr2){
|
|
printf("unexpected - ptr1 == ptr2\n");
|
|
}
|
|
if (strcmp(ptr2, hello_str) != 0){
|
|
printf("Error - lost data from pointed area\n");
|
|
rte_free(ptr2);
|
|
return -1;
|
|
}
|
|
unsigned i;
|
|
for (i = strnlen(hello_str, sizeof(hello_str)); i < size1; i++)
|
|
if (ptr2[i] != 0){
|
|
printf("Bad data in realloc\n");
|
|
rte_free(ptr2);
|
|
return -1;
|
|
}
|
|
/* now allocate third element, free the second
|
|
* and resize third. It should not move. (ptr1 is now invalid)
|
|
*/
|
|
char *ptr3 = rte_zmalloc_socket(
|
|
NULL, size3, RTE_CACHE_LINE_SIZE, socket);
|
|
if (!ptr3){
|
|
printf("NULL pointer returned from rte_zmalloc\n");
|
|
rte_free(ptr2);
|
|
return -1;
|
|
}
|
|
for (i = 0; i < size3; i++)
|
|
if (ptr3[i] != 0){
|
|
printf("Bad data in zmalloc\n");
|
|
rte_free(ptr3);
|
|
rte_free(ptr2);
|
|
return -1;
|
|
}
|
|
rte_free(ptr2);
|
|
/* first resize to half the size of the freed block */
|
|
char *ptr4 = rte_realloc_socket(
|
|
ptr3, size4, RTE_CACHE_LINE_SIZE, socket);
|
|
if (!ptr4){
|
|
printf("NULL pointer returned from rte_realloc\n");
|
|
rte_free(ptr3);
|
|
return -1;
|
|
}
|
|
if (ptr3 != ptr4){
|
|
printf("Unexpected - ptr4 != ptr3\n");
|
|
rte_free(ptr4);
|
|
return -1;
|
|
}
|
|
/* now resize again to the full size of the freed block */
|
|
ptr4 = rte_realloc_socket(ptr3, size3 + size2 + size1,
|
|
RTE_CACHE_LINE_SIZE, socket);
|
|
if (ptr3 != ptr4){
|
|
printf("Unexpected - ptr4 != ptr3 on second resize\n");
|
|
rte_free(ptr4);
|
|
return -1;
|
|
}
|
|
rte_free(ptr4);
|
|
|
|
/* now try a resize to a smaller size, see if it works */
|
|
const unsigned size5 = 1024;
|
|
const unsigned size6 = size5 / 2;
|
|
char *ptr5 = rte_malloc_socket(
|
|
NULL, size5, RTE_CACHE_LINE_SIZE, socket);
|
|
if (!ptr5){
|
|
printf("NULL pointer returned from rte_malloc\n");
|
|
return -1;
|
|
}
|
|
char *ptr6 = rte_realloc_socket(
|
|
ptr5, size6, RTE_CACHE_LINE_SIZE, socket);
|
|
if (!ptr6){
|
|
printf("NULL pointer returned from rte_realloc\n");
|
|
rte_free(ptr5);
|
|
return -1;
|
|
}
|
|
if (ptr5 != ptr6){
|
|
printf("Error, resizing to a smaller size moved data\n");
|
|
rte_free(ptr6);
|
|
return -1;
|
|
}
|
|
rte_free(ptr6);
|
|
|
|
/* check for behaviour changing alignment */
|
|
const unsigned size7 = 1024;
|
|
const unsigned orig_align = RTE_CACHE_LINE_SIZE;
|
|
unsigned new_align = RTE_CACHE_LINE_SIZE * 2;
|
|
char *ptr7 = rte_malloc_socket(NULL, size7, orig_align, socket);
|
|
if (!ptr7){
|
|
printf("NULL pointer returned from rte_malloc\n");
|
|
return -1;
|
|
}
|
|
/* calc an alignment we don't already have */
|
|
while(RTE_PTR_ALIGN(ptr7, new_align) == ptr7)
|
|
new_align *= 2;
|
|
char *ptr8 = rte_realloc_socket(ptr7, size7, new_align, socket);
|
|
if (!ptr8){
|
|
printf("NULL pointer returned from rte_realloc\n");
|
|
rte_free(ptr7);
|
|
return -1;
|
|
}
|
|
if (RTE_PTR_ALIGN(ptr8, new_align) != ptr8){
|
|
printf("Failure to re-align data\n");
|
|
rte_free(ptr8);
|
|
return -1;
|
|
}
|
|
rte_free(ptr8);
|
|
|
|
/* test behaviour when there is a free block after current one,
|
|
* but its not big enough
|
|
*/
|
|
unsigned size9 = 1024, size10 = 1024;
|
|
unsigned size11 = size9 + size10 + 256;
|
|
char *ptr9 = rte_malloc_socket(
|
|
NULL, size9, RTE_CACHE_LINE_SIZE, socket);
|
|
if (!ptr9){
|
|
printf("NULL pointer returned from rte_malloc\n");
|
|
return -1;
|
|
}
|
|
char *ptr10 = rte_malloc_socket(
|
|
NULL, size10, RTE_CACHE_LINE_SIZE, socket);
|
|
if (!ptr10){
|
|
printf("NULL pointer returned from rte_malloc\n");
|
|
return -1;
|
|
}
|
|
rte_free(ptr9);
|
|
char *ptr11 = rte_realloc_socket(
|
|
ptr10, size11, RTE_CACHE_LINE_SIZE, socket);
|
|
if (!ptr11){
|
|
printf("NULL pointer returned from rte_realloc\n");
|
|
rte_free(ptr10);
|
|
return -1;
|
|
}
|
|
if (ptr11 == ptr10){
|
|
printf("Error, unexpected that realloc has not created new buffer\n");
|
|
rte_free(ptr11);
|
|
return -1;
|
|
}
|
|
rte_free(ptr11);
|
|
|
|
/* check we don't crash if we pass null to realloc
|
|
* We should get a malloc of the size requested*/
|
|
const size_t size12 = 1024;
|
|
size_t size12_check;
|
|
char *ptr12 = rte_realloc_socket(
|
|
NULL, size12, RTE_CACHE_LINE_SIZE, socket);
|
|
if (!ptr12){
|
|
printf("NULL pointer returned from rte_realloc\n");
|
|
return -1;
|
|
}
|
|
if (rte_malloc_validate(ptr12, &size12_check) < 0 ||
|
|
size12_check != size12){
|
|
rte_free(ptr12);
|
|
return -1;
|
|
}
|
|
rte_free(ptr12);
|
|
|
|
/* do the same, but for regular memory */
|
|
ptr12 = rte_realloc(NULL, size12, RTE_CACHE_LINE_SIZE);
|
|
if (!ptr12) {
|
|
printf("NULL pointer returned from rte_realloc\n");
|
|
return -1;
|
|
}
|
|
if (rte_malloc_validate(ptr12, &size12_check) < 0 ||
|
|
size12_check != size12) {
|
|
rte_free(ptr12);
|
|
return -1;
|
|
}
|
|
rte_free(ptr12);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int
|
|
test_realloc_numa(void)
|
|
{
|
|
/* check realloc_socket part */
|
|
int32_t socket_count = 0, socket_allocated, socket;
|
|
void *ptr1, *ptr2;
|
|
int ret = -1;
|
|
size_t size = 1024;
|
|
|
|
ptr1 = NULL;
|
|
for (socket = 0; socket < RTE_MAX_NUMA_NODES; socket++) {
|
|
if (is_mem_on_socket(socket)) {
|
|
int j = 2;
|
|
|
|
socket_count++;
|
|
while (j--) {
|
|
/* j == 1 -> resizing */
|
|
ptr2 = rte_realloc_socket(ptr1, size,
|
|
RTE_CACHE_LINE_SIZE,
|
|
socket);
|
|
if (ptr2 == NULL) {
|
|
printf("NULL pointer returned from rte_realloc_socket\n");
|
|
goto end;
|
|
}
|
|
|
|
ptr1 = ptr2;
|
|
socket_allocated = addr_to_socket(ptr2);
|
|
if (socket_allocated != socket) {
|
|
printf("Requested socket (%d) doesn't mach allocated one (%d)\n",
|
|
socket, socket_allocated);
|
|
goto end;
|
|
}
|
|
size += RTE_CACHE_LINE_SIZE;
|
|
}
|
|
}
|
|
}
|
|
|
|
/* Print warnign if only a single socket, but don't fail the test */
|
|
if (socket_count < 2)
|
|
printf("WARNING: realloc_socket test needs memory on multiple sockets!\n");
|
|
|
|
ret = 0;
|
|
end:
|
|
rte_free(ptr1);
|
|
return ret;
|
|
}
|
|
|
|
static int
|
|
test_realloc(void)
|
|
{
|
|
const char *heap_name = "realloc_heap";
|
|
int realloc_heap_socket;
|
|
unsigned int mem_sz = 1U << 13; /* 8K */
|
|
unsigned int page_sz = sysconf(_SC_PAGESIZE);
|
|
void *mem;
|
|
int ret;
|
|
|
|
/* page size may be bigger than total mem size, so adjust */
|
|
mem_sz = RTE_MAX(mem_sz, page_sz);
|
|
|
|
/*
|
|
* the realloc tests depend on specific layout of underlying memory, so
|
|
* to prevent accidental failures to do fragmented main heap, we will
|
|
* do all of our tests on an artificially created memory.
|
|
*/
|
|
if (rte_malloc_heap_create(heap_name) != 0) {
|
|
printf("Failed to create external heap\n");
|
|
ret = -1;
|
|
goto end;
|
|
}
|
|
realloc_heap_socket = rte_malloc_heap_get_socket(heap_name);
|
|
|
|
mem = mmap(NULL, mem_sz, PROT_READ | PROT_WRITE,
|
|
MAP_PRIVATE | MAP_ANONYMOUS, -1, 0);
|
|
if (mem == MAP_FAILED) {
|
|
printf("Failed to allocate memory for external heap\n");
|
|
ret = -1;
|
|
goto heap_destroy;
|
|
}
|
|
|
|
if (rte_malloc_heap_memory_add(
|
|
heap_name, mem, mem_sz, NULL, 0, page_sz) != 0) {
|
|
printf("Failed to add memory to external heap\n");
|
|
ret = -1;
|
|
goto mem_free;
|
|
}
|
|
|
|
/* run the socket-bound tests */
|
|
ret = test_realloc_socket(realloc_heap_socket);
|
|
if (ret != 0)
|
|
goto mem_remove;
|
|
|
|
/* now, run the NUMA node tests */
|
|
ret = test_realloc_numa();
|
|
|
|
mem_remove:
|
|
rte_malloc_heap_memory_remove(heap_name, mem, mem_sz);
|
|
mem_free:
|
|
munmap(mem, mem_sz);
|
|
heap_destroy:
|
|
rte_malloc_heap_destroy(heap_name);
|
|
end:
|
|
return ret;
|
|
}
|
|
|
|
static int
|
|
test_random_alloc_free(void *_ __rte_unused)
|
|
{
|
|
struct mem_list {
|
|
struct mem_list *next;
|
|
char data[0];
|
|
} *list_head = NULL;
|
|
unsigned i;
|
|
unsigned count = 0;
|
|
|
|
rte_srand((unsigned)rte_rdtsc());
|
|
|
|
for (i = 0; i < N; i++){
|
|
unsigned free_mem = 0;
|
|
size_t allocated_size;
|
|
while (!free_mem){
|
|
const unsigned mem_size = sizeof(struct mem_list) + \
|
|
rte_rand() % (64 * 1024);
|
|
const unsigned align = 1 << (rte_rand() % 12); /* up to 4k alignment */
|
|
struct mem_list *entry = rte_malloc(NULL,
|
|
mem_size, align);
|
|
if (entry == NULL)
|
|
return -1;
|
|
if (RTE_PTR_ALIGN(entry, align)!= entry)
|
|
return -1;
|
|
if (rte_malloc_validate(entry, &allocated_size) == -1
|
|
|| allocated_size < mem_size)
|
|
return -1;
|
|
memset(entry->data, rte_lcore_id(),
|
|
mem_size - sizeof(*entry));
|
|
entry->next = list_head;
|
|
if (rte_malloc_validate(entry, NULL) == -1)
|
|
return -1;
|
|
list_head = entry;
|
|
|
|
count++;
|
|
/* switch to freeing the memory with a 20% probability */
|
|
free_mem = ((rte_rand() % 10) >= 8);
|
|
}
|
|
while (list_head){
|
|
struct mem_list *entry = list_head;
|
|
list_head = list_head->next;
|
|
rte_free(entry);
|
|
}
|
|
}
|
|
printf("Lcore %u allocated/freed %u blocks\n", rte_lcore_id(), count);
|
|
return 0;
|
|
}
|
|
|
|
#define err_return() do { \
|
|
printf("%s: %d - Error\n", __func__, __LINE__); \
|
|
goto err_return; \
|
|
} while (0)
|
|
|
|
static int
|
|
test_rte_malloc_validate(void)
|
|
{
|
|
const size_t request_size = 1024;
|
|
size_t allocated_size;
|
|
char *data_ptr = rte_malloc(NULL, request_size, RTE_CACHE_LINE_SIZE);
|
|
#ifdef RTE_MALLOC_DEBUG
|
|
int retval;
|
|
char *over_write_vals = NULL;
|
|
#endif
|
|
|
|
if (data_ptr == NULL) {
|
|
printf("%s: %d - Allocation error\n", __func__, __LINE__);
|
|
return -1;
|
|
}
|
|
|
|
/* check that a null input returns -1 */
|
|
if (rte_malloc_validate(NULL, NULL) != -1)
|
|
err_return();
|
|
|
|
/* check that we get ok on a valid pointer */
|
|
if (rte_malloc_validate(data_ptr, &allocated_size) < 0)
|
|
err_return();
|
|
|
|
/* check that the returned size is ok */
|
|
if (allocated_size < request_size)
|
|
err_return();
|
|
|
|
#ifdef RTE_MALLOC_DEBUG
|
|
|
|
/****** change the header to be bad */
|
|
char save_buf[64];
|
|
over_write_vals = (char *)((uintptr_t)data_ptr - sizeof(save_buf));
|
|
/* first save the data as a backup before overwriting it */
|
|
memcpy(save_buf, over_write_vals, sizeof(save_buf));
|
|
memset(over_write_vals, 1, sizeof(save_buf));
|
|
/* then run validate */
|
|
retval = rte_malloc_validate(data_ptr, NULL);
|
|
/* finally restore the data again */
|
|
memcpy(over_write_vals, save_buf, sizeof(save_buf));
|
|
/* check we previously had an error */
|
|
if (retval != -1)
|
|
err_return();
|
|
|
|
/* check all ok again */
|
|
if (rte_malloc_validate(data_ptr, &allocated_size) < 0)
|
|
err_return();
|
|
|
|
/**** change the trailer to be bad */
|
|
over_write_vals = (char *)((uintptr_t)data_ptr + allocated_size);
|
|
/* first save the data as a backup before overwriting it */
|
|
memcpy(save_buf, over_write_vals, sizeof(save_buf));
|
|
memset(over_write_vals, 1, sizeof(save_buf));
|
|
/* then run validate */
|
|
retval = rte_malloc_validate(data_ptr, NULL);
|
|
/* finally restore the data again */
|
|
memcpy(over_write_vals, save_buf, sizeof(save_buf));
|
|
if (retval != -1)
|
|
err_return();
|
|
|
|
/* check all ok again */
|
|
if (rte_malloc_validate(data_ptr, &allocated_size) < 0)
|
|
err_return();
|
|
#endif
|
|
|
|
rte_free(data_ptr);
|
|
return 0;
|
|
|
|
err_return:
|
|
/*clean up */
|
|
rte_free(data_ptr);
|
|
return -1;
|
|
}
|
|
|
|
static int
|
|
test_zero_aligned_alloc(void)
|
|
{
|
|
char *p1 = rte_malloc(NULL,1024, 0);
|
|
if (!p1)
|
|
goto err_return;
|
|
if (!rte_is_aligned(p1, RTE_CACHE_LINE_SIZE))
|
|
goto err_return;
|
|
rte_free(p1);
|
|
return 0;
|
|
|
|
err_return:
|
|
/*clean up */
|
|
if (p1) rte_free(p1);
|
|
return -1;
|
|
}
|
|
|
|
static int
|
|
test_malloc_bad_params(void)
|
|
{
|
|
const char *type = NULL;
|
|
size_t size = 0;
|
|
unsigned align = RTE_CACHE_LINE_SIZE;
|
|
|
|
/* rte_malloc expected to return null with inappropriate size */
|
|
char *bad_ptr = rte_malloc(type, size, align);
|
|
if (bad_ptr != NULL)
|
|
goto err_return;
|
|
|
|
/* rte_realloc expected to return null with inappropriate size */
|
|
bad_ptr = rte_realloc(NULL, size, align);
|
|
if (bad_ptr != NULL)
|
|
goto err_return;
|
|
|
|
/* rte_malloc expected to return null with inappropriate alignment */
|
|
align = 17;
|
|
size = 1024;
|
|
|
|
bad_ptr = rte_malloc(type, size, align);
|
|
if (bad_ptr != NULL)
|
|
goto err_return;
|
|
|
|
/* rte_realloc expected to return null with inappropriate alignment */
|
|
bad_ptr = rte_realloc(NULL, size, align);
|
|
if (bad_ptr != NULL)
|
|
goto err_return;
|
|
|
|
#if defined(RTE_CC_GCC) || defined(RTE_CC_CLANG)
|
|
/* this test can not be built, will get trapped at compile time! */
|
|
#else
|
|
/* rte_malloc expected to return null with size will cause overflow */
|
|
align = RTE_CACHE_LINE_SIZE;
|
|
size = (size_t)-8;
|
|
|
|
bad_ptr = rte_malloc(type, size, align);
|
|
if (bad_ptr != NULL)
|
|
goto err_return;
|
|
|
|
bad_ptr = rte_realloc(NULL, size, align);
|
|
if (bad_ptr != NULL)
|
|
goto err_return;
|
|
#endif
|
|
return 0;
|
|
|
|
err_return:
|
|
/* clean up pointer */
|
|
if (bad_ptr)
|
|
rte_free(bad_ptr);
|
|
return -1;
|
|
}
|
|
|
|
static int
|
|
check_socket_mem(const struct rte_memseg_list *msl, void *arg)
|
|
{
|
|
int32_t *socket = arg;
|
|
|
|
if (msl->external)
|
|
return 0;
|
|
|
|
return *socket == msl->socket_id;
|
|
}
|
|
|
|
/* Check if memory is available on a specific socket */
|
|
static int
|
|
is_mem_on_socket(int32_t socket)
|
|
{
|
|
return rte_memseg_list_walk(check_socket_mem, &socket);
|
|
}
|
|
|
|
|
|
/*
|
|
* Find what socket a memory address is on. Only works for addresses within
|
|
* memsegs, not heap or stack...
|
|
*/
|
|
static int32_t
|
|
addr_to_socket(void * addr)
|
|
{
|
|
const struct rte_memseg *ms = rte_mem_virt2memseg(addr, NULL);
|
|
return ms == NULL ? -1 : ms->socket_id;
|
|
|
|
}
|
|
|
|
/* Test using rte_[c|m|zm]alloc_socket() on a specific socket */
|
|
static int
|
|
test_alloc_single_socket(int32_t socket)
|
|
{
|
|
const char *type = NULL;
|
|
const size_t size = 10;
|
|
const unsigned align = 0;
|
|
char *mem = NULL;
|
|
int32_t desired_socket = (socket == SOCKET_ID_ANY) ?
|
|
(int32_t)rte_socket_id() : socket;
|
|
|
|
/* Test rte_calloc_socket() */
|
|
mem = rte_calloc_socket(type, size, sizeof(char), align, socket);
|
|
if (mem == NULL)
|
|
return -1;
|
|
if (addr_to_socket(mem) != desired_socket) {
|
|
rte_free(mem);
|
|
return -1;
|
|
}
|
|
rte_free(mem);
|
|
|
|
/* Test rte_malloc_socket() */
|
|
mem = rte_malloc_socket(type, size, align, socket);
|
|
if (mem == NULL)
|
|
return -1;
|
|
if (addr_to_socket(mem) != desired_socket) {
|
|
return -1;
|
|
}
|
|
rte_free(mem);
|
|
|
|
/* Test rte_zmalloc_socket() */
|
|
mem = rte_zmalloc_socket(type, size, align, socket);
|
|
if (mem == NULL)
|
|
return -1;
|
|
if (addr_to_socket(mem) != desired_socket) {
|
|
rte_free(mem);
|
|
return -1;
|
|
}
|
|
rte_free(mem);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int
|
|
test_alloc_socket(void)
|
|
{
|
|
unsigned socket_count = 0;
|
|
unsigned i;
|
|
|
|
if (test_alloc_single_socket(SOCKET_ID_ANY) < 0)
|
|
return -1;
|
|
|
|
for (i = 0; i < RTE_MAX_NUMA_NODES; i++) {
|
|
if (is_mem_on_socket(i)) {
|
|
socket_count++;
|
|
if (test_alloc_single_socket(i) < 0) {
|
|
printf("Fail: rte_malloc_socket(..., %u) did not succeed\n",
|
|
i);
|
|
return -1;
|
|
}
|
|
}
|
|
else {
|
|
if (test_alloc_single_socket(i) == 0) {
|
|
printf("Fail: rte_malloc_socket(..., %u) succeeded\n",
|
|
i);
|
|
return -1;
|
|
}
|
|
}
|
|
}
|
|
|
|
/* Print warnign if only a single socket, but don't fail the test */
|
|
if (socket_count < 2) {
|
|
printf("WARNING: alloc_socket test needs memory on multiple sockets!\n");
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int
|
|
test_malloc(void)
|
|
{
|
|
unsigned lcore_id;
|
|
int ret = 0;
|
|
|
|
if (test_str_to_size() < 0){
|
|
printf("test_str_to_size() failed\n");
|
|
return -1;
|
|
}
|
|
else printf("test_str_to_size() passed\n");
|
|
|
|
if (test_zero_aligned_alloc() < 0){
|
|
printf("test_zero_aligned_alloc() failed\n");
|
|
return -1;
|
|
}
|
|
else printf("test_zero_aligned_alloc() passed\n");
|
|
|
|
if (test_malloc_bad_params() < 0){
|
|
printf("test_malloc_bad_params() failed\n");
|
|
return -1;
|
|
}
|
|
else printf("test_malloc_bad_params() passed\n");
|
|
|
|
if (test_realloc() < 0){
|
|
printf("test_realloc() failed\n");
|
|
return -1;
|
|
}
|
|
else printf("test_realloc() passed\n");
|
|
|
|
/*----------------------------*/
|
|
RTE_LCORE_FOREACH_WORKER(lcore_id) {
|
|
rte_eal_remote_launch(test_align_overlap_per_lcore, NULL, lcore_id);
|
|
}
|
|
|
|
RTE_LCORE_FOREACH_WORKER(lcore_id) {
|
|
if (rte_eal_wait_lcore(lcore_id) < 0)
|
|
ret = -1;
|
|
}
|
|
if (ret < 0){
|
|
printf("test_align_overlap_per_lcore() failed\n");
|
|
return ret;
|
|
}
|
|
else printf("test_align_overlap_per_lcore() passed\n");
|
|
|
|
/*----------------------------*/
|
|
RTE_LCORE_FOREACH_WORKER(lcore_id) {
|
|
rte_eal_remote_launch(test_reordered_free_per_lcore, NULL, lcore_id);
|
|
}
|
|
|
|
RTE_LCORE_FOREACH_WORKER(lcore_id) {
|
|
if (rte_eal_wait_lcore(lcore_id) < 0)
|
|
ret = -1;
|
|
}
|
|
if (ret < 0){
|
|
printf("test_reordered_free_per_lcore() failed\n");
|
|
return ret;
|
|
}
|
|
else printf("test_reordered_free_per_lcore() passed\n");
|
|
|
|
/*----------------------------*/
|
|
RTE_LCORE_FOREACH_WORKER(lcore_id) {
|
|
rte_eal_remote_launch(test_random_alloc_free, NULL, lcore_id);
|
|
}
|
|
|
|
RTE_LCORE_FOREACH_WORKER(lcore_id) {
|
|
if (rte_eal_wait_lcore(lcore_id) < 0)
|
|
ret = -1;
|
|
}
|
|
if (ret < 0){
|
|
printf("test_random_alloc_free() failed\n");
|
|
return ret;
|
|
}
|
|
else printf("test_random_alloc_free() passed\n");
|
|
|
|
/*----------------------------*/
|
|
ret = test_rte_malloc_validate();
|
|
if (ret < 0){
|
|
printf("test_rte_malloc_validate() failed\n");
|
|
return ret;
|
|
}
|
|
else printf("test_rte_malloc_validate() passed\n");
|
|
|
|
ret = test_alloc_socket();
|
|
if (ret < 0){
|
|
printf("test_alloc_socket() failed\n");
|
|
return ret;
|
|
}
|
|
else printf("test_alloc_socket() passed\n");
|
|
|
|
ret = test_multi_alloc_statistics();
|
|
if (ret < 0) {
|
|
printf("test_multi_alloc_statistics() failed\n");
|
|
return ret;
|
|
}
|
|
else
|
|
printf("test_multi_alloc_statistics() passed\n");
|
|
|
|
return 0;
|
|
}
|
|
|
|
REGISTER_TEST_COMMAND(malloc_autotest, test_malloc);
|