f-stack/freebsd/contrib/dev/ath/ath_hal/ar9300/ar9300_keycache.c

592 lines
21 KiB
C

/*
* Copyright (c) 2013 Qualcomm Atheros, Inc.
*
* Permission to use, copy, modify, and/or distribute this software for any
* purpose with or without fee is hereby granted, provided that the above
* copyright notice and this permission notice appear in all copies.
*
* THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES WITH
* REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY
* AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY SPECIAL, DIRECT,
* INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES WHATSOEVER RESULTING FROM
* LOSS OF USE, DATA OR PROFITS, WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR
* OTHER TORTIOUS ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR
* PERFORMANCE OF THIS SOFTWARE.
*/
#include "opt_ah.h"
#include "ah.h"
#include "ah_internal.h"
#include "ar9300/ar9300.h"
#include "ar9300/ar9300reg.h"
/*
* Note: The key cache hardware requires that each double-word
* pair be written in even/odd order (since the destination is
* a 64-bit register). Don't reorder the writes in this code
* w/o considering this!
*/
#define KEY_XOR 0xaa
#define IS_MIC_ENABLED(ah) \
(AH9300(ah)->ah_sta_id1_defaults & AR_STA_ID1_CRPT_MIC_ENABLE)
/*
* This isn't the keytable type; this is actually something separate
* for the TX descriptor.
*/
static const int keyType[] = {
1, /* HAL_CIPHER_WEP */
0, /* HAL_CIPHER_AES_OCB */
2, /* HAL_CIPHER_AES_CCM */
0, /* HAL_CIPHER_CKIP */
3, /* HAL_CIPHER_TKIP */
0 /* HAL_CIPHER_CLR */
};
/*
* Return the size of the hardware key cache.
*/
u_int32_t
ar9300_get_key_cache_size(struct ath_hal *ah)
{
return AH_PRIVATE(ah)->ah_caps.halKeyCacheSize;
}
/*
* Return AH_TRUE if the specific key cache entry is valid.
*/
HAL_BOOL
ar9300_is_key_cache_entry_valid(struct ath_hal *ah, u_int16_t entry)
{
if (entry < AH_PRIVATE(ah)->ah_caps.halKeyCacheSize) {
u_int32_t val = OS_REG_READ(ah, AR_KEYTABLE_MAC1(entry));
if (val & AR_KEYTABLE_VALID) {
return AH_TRUE;
}
}
return AH_FALSE;
}
/*
* Clear the specified key cache entry and any associated MIC entry.
*/
HAL_BOOL
ar9300_reset_key_cache_entry(struct ath_hal *ah, u_int16_t entry)
{
u_int32_t key_type;
struct ath_hal_9300 *ahp = AH9300(ah);
if (entry >= AH_PRIVATE(ah)->ah_caps.halKeyCacheSize) {
HALDEBUG(ah, HAL_DEBUG_KEYCACHE,
"%s: entry %u out of range\n", __func__, entry);
return AH_FALSE;
}
ahp->ah_keytype[entry] = keyType[HAL_CIPHER_CLR];
key_type = OS_REG_READ(ah, AR_KEYTABLE_TYPE(entry));
/* XXX why not clear key type/valid bit first? */
OS_REG_WRITE(ah, AR_KEYTABLE_KEY0(entry), 0);
OS_REG_WRITE(ah, AR_KEYTABLE_KEY1(entry), 0);
OS_REG_WRITE(ah, AR_KEYTABLE_KEY2(entry), 0);
OS_REG_WRITE(ah, AR_KEYTABLE_KEY3(entry), 0);
OS_REG_WRITE(ah, AR_KEYTABLE_KEY4(entry), 0);
OS_REG_WRITE(ah, AR_KEYTABLE_TYPE(entry), AR_KEYTABLE_TYPE_CLR);
OS_REG_WRITE(ah, AR_KEYTABLE_MAC0(entry), 0);
OS_REG_WRITE(ah, AR_KEYTABLE_MAC1(entry), 0);
if (key_type == AR_KEYTABLE_TYPE_TKIP && IS_MIC_ENABLED(ah)) {
u_int16_t micentry = entry + 64; /* MIC goes at slot+64 */
HALASSERT(micentry < AH_PRIVATE(ah)->ah_caps.halKeyCacheSize);
OS_REG_WRITE(ah, AR_KEYTABLE_KEY0(micentry), 0);
OS_REG_WRITE(ah, AR_KEYTABLE_KEY1(micentry), 0);
OS_REG_WRITE(ah, AR_KEYTABLE_KEY2(micentry), 0);
OS_REG_WRITE(ah, AR_KEYTABLE_KEY3(micentry), 0);
/* NB: key type and MAC are known to be ok */
}
if (AH_PRIVATE(ah)->ah_curchan == AH_NULL) {
return AH_TRUE;
}
if (ar9300_get_capability(ah, HAL_CAP_BB_RIFS_HANG, 0, AH_NULL)
== HAL_OK) {
if (key_type == AR_KEYTABLE_TYPE_TKIP ||
key_type == AR_KEYTABLE_TYPE_40 ||
key_type == AR_KEYTABLE_TYPE_104 ||
key_type == AR_KEYTABLE_TYPE_128) {
/* SW WAR for Bug 31602 */
if (--ahp->ah_rifs_sec_cnt == 0) {
HALDEBUG(ah, HAL_DEBUG_KEYCACHE,
"%s: Count = %d, enabling RIFS\n",
__func__, ahp->ah_rifs_sec_cnt);
ar9300_set_rifs_delay(ah, AH_TRUE);
}
}
}
return AH_TRUE;
}
/*
* Sets the mac part of the specified key cache entry (and any
* associated MIC entry) and mark them valid.
*/
HAL_BOOL
ar9300_set_key_cache_entry_mac(
struct ath_hal *ah,
u_int16_t entry,
const u_int8_t *mac)
{
u_int32_t mac_hi, mac_lo;
u_int32_t unicast_addr = AR_KEYTABLE_VALID;
if (entry >= AH_PRIVATE(ah)->ah_caps.halKeyCacheSize) {
HALDEBUG(ah, HAL_DEBUG_KEYCACHE,
"%s: entry %u out of range\n", __func__, entry);
return AH_FALSE;
}
/*
* Set MAC address -- shifted right by 1. mac_lo is
* the 4 MSBs, and mac_hi is the 2 LSBs.
*/
if (mac != AH_NULL) {
/*
* If upper layers have requested mcast MACaddr lookup, then
* signify this to the hw by setting the (poorly named) valid_bit
* to 0. Yes, really 0. The hardware specs, pcu_registers.txt, is
* has incorrectly named valid_bit. It should be called "Unicast".
* When the Key Cache entry is to decrypt Unicast frames, this bit
* should be '1'; for multicast and broadcast frames, this bit is '0'.
*/
if (mac[0] & 0x01) {
unicast_addr = 0; /* Not an unicast address */
}
mac_hi = (mac[5] << 8) | mac[4];
mac_lo = (mac[3] << 24) | (mac[2] << 16)
| (mac[1] << 8) | mac[0];
mac_lo >>= 1; /* Note that the bit 0 is shifted out. This bit is used to
* indicate that this is a multicast key cache. */
mac_lo |= (mac_hi & 1) << 31; /* carry */
mac_hi >>= 1;
} else {
mac_lo = mac_hi = 0;
}
OS_REG_WRITE(ah, AR_KEYTABLE_MAC0(entry), mac_lo);
OS_REG_WRITE(ah, AR_KEYTABLE_MAC1(entry), mac_hi | unicast_addr);
return AH_TRUE;
}
/*
* Sets the contents of the specified key cache entry
* and any associated MIC entry.
*/
HAL_BOOL
ar9300_set_key_cache_entry(struct ath_hal *ah, u_int16_t entry,
const HAL_KEYVAL *k, const u_int8_t *mac,
int xor_key)
{
const HAL_CAPABILITIES *p_cap = &AH_PRIVATE(ah)->ah_caps;
u_int32_t key0, key1, key2, key3, key4;
u_int32_t key_type;
u_int32_t xor_mask = xor_key ?
(KEY_XOR << 24 | KEY_XOR << 16 | KEY_XOR << 8 | KEY_XOR) : 0;
struct ath_hal_9300 *ahp = AH9300(ah);
u_int32_t pwrmgt, pwrmgt_mic, uapsd_cfg, psta = 0;
int is_proxysta_key = k->kv_type & HAL_KEY_PROXY_STA_MASK;
if (entry >= p_cap->halKeyCacheSize) {
HALDEBUG(ah, HAL_DEBUG_KEYCACHE,
"%s: entry %u out of range\n", __func__, entry);
return AH_FALSE;
}
HALDEBUG(ah, HAL_DEBUG_KEYCACHE, "%s[%d] mac %s proxy %d\n",
__func__, __LINE__, mac ? ath_hal_ether_sprintf(mac) : "null",
is_proxysta_key);
switch (k->kv_type & AH_KEYTYPE_MASK) {
case HAL_CIPHER_AES_OCB:
key_type = AR_KEYTABLE_TYPE_AES;
break;
case HAL_CIPHER_AES_CCM:
if (!p_cap->halCipherAesCcmSupport) {
HALDEBUG(ah, HAL_DEBUG_KEYCACHE, "%s: AES-CCM not supported by "
"mac rev 0x%x\n",
__func__, AH_PRIVATE(ah)->ah_macRev);
return AH_FALSE;
}
key_type = AR_KEYTABLE_TYPE_CCM;
break;
case HAL_CIPHER_TKIP:
key_type = AR_KEYTABLE_TYPE_TKIP;
if (IS_MIC_ENABLED(ah) && entry + 64 >= p_cap->halKeyCacheSize) {
HALDEBUG(ah, HAL_DEBUG_KEYCACHE,
"%s: entry %u inappropriate for TKIP\n",
__func__, entry);
return AH_FALSE;
}
break;
case HAL_CIPHER_WEP:
if (k->kv_len < 40 / NBBY) {
HALDEBUG(ah, HAL_DEBUG_KEYCACHE, "%s: WEP key length %u too small\n",
__func__, k->kv_len);
return AH_FALSE;
}
if (k->kv_len <= 40 / NBBY) {
key_type = AR_KEYTABLE_TYPE_40;
} else if (k->kv_len <= 104 / NBBY) {
key_type = AR_KEYTABLE_TYPE_104;
} else {
key_type = AR_KEYTABLE_TYPE_128;
}
break;
case HAL_CIPHER_CLR:
key_type = AR_KEYTABLE_TYPE_CLR;
break;
default:
HALDEBUG(ah, HAL_DEBUG_KEYCACHE, "%s: cipher %u not supported\n",
__func__, k->kv_type);
return AH_FALSE;
}
key0 = LE_READ_4(k->kv_val + 0) ^ xor_mask;
key1 = (LE_READ_2(k->kv_val + 4) ^ xor_mask) & 0xffff;
key2 = LE_READ_4(k->kv_val + 6) ^ xor_mask;
key3 = (LE_READ_2(k->kv_val + 10) ^ xor_mask) & 0xffff;
key4 = LE_READ_4(k->kv_val + 12) ^ xor_mask;
if (k->kv_len <= 104 / NBBY) {
key4 &= 0xff;
}
/* Extract the UAPSD AC bits and shift it appropriately */
uapsd_cfg = k->kv_apsd;
uapsd_cfg = (u_int32_t) SM(uapsd_cfg, AR_KEYTABLE_UAPSD);
/* Need to preserve the power management bit used by MAC */
pwrmgt = OS_REG_READ(ah, AR_KEYTABLE_TYPE(entry)) & AR_KEYTABLE_PWRMGT;
if (is_proxysta_key) {
u_int8_t bcast_mac[6] = { 0xff, 0xff, 0xff, 0xff, 0xff, 0xff};
if (!mac || OS_MEMCMP(mac, bcast_mac, 6)) {
psta = AR_KEYTABLE_DIR_ACK_BIT;
}
}
/*
* Note: key cache hardware requires that each double-word
* pair be written in even/odd order (since the destination is
* a 64-bit register). Don't reorder these writes w/o
* considering this!
*/
if (key_type == AR_KEYTABLE_TYPE_TKIP && IS_MIC_ENABLED(ah)) {
u_int16_t micentry = entry + 64; /* MIC goes at slot+64 */
/* Need to preserve the power management bit used by MAC */
pwrmgt_mic =
OS_REG_READ(ah, AR_KEYTABLE_TYPE(micentry)) & AR_KEYTABLE_PWRMGT;
/*
* Invalidate the encrypt/decrypt key until the MIC
* key is installed so pending rx frames will fail
* with decrypt errors rather than a MIC error.
*/
OS_REG_WRITE(ah, AR_KEYTABLE_KEY0(entry), ~key0);
OS_REG_WRITE(ah, AR_KEYTABLE_KEY1(entry), ~key1);
OS_REG_WRITE(ah, AR_KEYTABLE_KEY2(entry), key2);
OS_REG_WRITE(ah, AR_KEYTABLE_KEY3(entry), key3);
OS_REG_WRITE(ah, AR_KEYTABLE_KEY4(entry), key4);
OS_REG_WRITE(ah, AR_KEYTABLE_TYPE(entry),
key_type | pwrmgt | uapsd_cfg | psta);
ar9300_set_key_cache_entry_mac(ah, entry, mac);
/*
* since the AR_MISC_MODE register was written with the contents of
* ah_misc_mode (if any) in ar9300_attach, just check ah_misc_mode and
* save a pci read per key set.
*/
if (ahp->ah_misc_mode & AR_PCU_MIC_NEW_LOC_ENA) {
u_int32_t mic0, mic1, mic2, mic3, mic4;
/*
* both RX and TX mic values can be combined into
* one cache slot entry.
* 8*N + 800 31:0 RX Michael key 0
* 8*N + 804 15:0 TX Michael key 0 [31:16]
* 8*N + 808 31:0 RX Michael key 1
* 8*N + 80C 15:0 TX Michael key 0 [15:0]
* 8*N + 810 31:0 TX Michael key 1
* 8*N + 814 15:0 reserved
* 8*N + 818 31:0 reserved
* 8*N + 81C 14:0 reserved
* 15 key valid == 0
*/
/* RX mic */
mic0 = LE_READ_4(k->kv_mic + 0);
mic2 = LE_READ_4(k->kv_mic + 4);
/* TX mic */
mic1 = LE_READ_2(k->kv_txmic + 2) & 0xffff;
mic3 = LE_READ_2(k->kv_txmic + 0) & 0xffff;
mic4 = LE_READ_4(k->kv_txmic + 4);
OS_REG_WRITE(ah, AR_KEYTABLE_KEY0(micentry), mic0);
OS_REG_WRITE(ah, AR_KEYTABLE_KEY1(micentry), mic1);
OS_REG_WRITE(ah, AR_KEYTABLE_KEY2(micentry), mic2);
OS_REG_WRITE(ah, AR_KEYTABLE_KEY3(micentry), mic3);
OS_REG_WRITE(ah, AR_KEYTABLE_KEY4(micentry), mic4);
OS_REG_WRITE(ah, AR_KEYTABLE_TYPE(micentry),
AR_KEYTABLE_TYPE_CLR | pwrmgt_mic | uapsd_cfg);
} else {
u_int32_t mic0, mic2;
mic0 = LE_READ_4(k->kv_mic + 0);
mic2 = LE_READ_4(k->kv_mic + 4);
OS_REG_WRITE(ah, AR_KEYTABLE_KEY0(micentry), mic0);
OS_REG_WRITE(ah, AR_KEYTABLE_KEY1(micentry), 0);
OS_REG_WRITE(ah, AR_KEYTABLE_KEY2(micentry), mic2);
OS_REG_WRITE(ah, AR_KEYTABLE_KEY3(micentry), 0);
OS_REG_WRITE(ah, AR_KEYTABLE_KEY4(micentry), 0);
OS_REG_WRITE(ah,
AR_KEYTABLE_TYPE(micentry | pwrmgt_mic | uapsd_cfg),
AR_KEYTABLE_TYPE_CLR);
}
/* NB: MIC key is not marked valid and has no MAC address */
OS_REG_WRITE(ah, AR_KEYTABLE_MAC0(micentry), 0);
OS_REG_WRITE(ah, AR_KEYTABLE_MAC1(micentry), 0);
/* correct intentionally corrupted key */
OS_REG_WRITE(ah, AR_KEYTABLE_KEY0(entry), key0);
OS_REG_WRITE(ah, AR_KEYTABLE_KEY1(entry), key1);
} else {
OS_REG_WRITE(ah, AR_KEYTABLE_KEY0(entry), key0);
OS_REG_WRITE(ah, AR_KEYTABLE_KEY1(entry), key1);
OS_REG_WRITE(ah, AR_KEYTABLE_KEY2(entry), key2);
OS_REG_WRITE(ah, AR_KEYTABLE_KEY3(entry), key3);
OS_REG_WRITE(ah, AR_KEYTABLE_KEY4(entry), key4);
OS_REG_WRITE(ah, AR_KEYTABLE_TYPE(entry),
key_type | pwrmgt | uapsd_cfg | psta);
/*
ath_hal_printf(ah, "%s[%d] mac %s proxy %d\n",
__func__, __LINE__, mac ? ath_hal_ether_sprintf(mac) : "null",
is_proxysta_key);
*/
ar9300_set_key_cache_entry_mac(ah, entry, mac);
}
ahp->ah_keytype[entry] = keyType[k->kv_type];
HALDEBUG(ah, HAL_DEBUG_KEYCACHE, "%s: entry=%d, k->kv_type=%d,"
"keyType=%d\n", __func__, entry, k->kv_type, keyType[k->kv_type]);
if (AH_PRIVATE(ah)->ah_curchan == AH_NULL) {
return AH_TRUE;
}
if (ar9300_get_capability(ah, HAL_CAP_BB_RIFS_HANG, 0, AH_NULL)
== HAL_OK) {
if (key_type == AR_KEYTABLE_TYPE_TKIP ||
key_type == AR_KEYTABLE_TYPE_40 ||
key_type == AR_KEYTABLE_TYPE_104 ||
key_type == AR_KEYTABLE_TYPE_128) {
/* SW WAR for Bug 31602 */
ahp->ah_rifs_sec_cnt++;
HALDEBUG(ah, HAL_DEBUG_KEYCACHE,
"%s: Count = %d, disabling RIFS\n",
__func__, ahp->ah_rifs_sec_cnt);
ar9300_set_rifs_delay(ah, AH_FALSE);
}
}
HALDEBUG(ah, HAL_DEBUG_KEYCACHE, "%s[%d] mac %s proxy %d\n",
__func__, __LINE__, mac ? ath_hal_ether_sprintf(mac) : "null",
is_proxysta_key);
return AH_TRUE;
}
/*
* Enable the Keysearch for every subframe of an aggregate
*/
void
ar9300_enable_keysearch_always(struct ath_hal *ah, int enable)
{
u_int32_t val;
if (!ah) {
return;
}
val = OS_REG_READ(ah, AR_PCU_MISC);
if (enable) {
val |= AR_PCU_ALWAYS_PERFORM_KEYSEARCH;
} else {
val &= ~AR_PCU_ALWAYS_PERFORM_KEYSEARCH;
}
OS_REG_WRITE(ah, AR_PCU_MISC, val);
}
void ar9300_dump_keycache(struct ath_hal *ah, int n, u_int32_t *entry)
{
#define AH_KEY_REG_SIZE 8
int i;
for (i = 0; i < AH_KEY_REG_SIZE; i++) {
entry[i] = OS_REG_READ(ah, AR_KEYTABLE_KEY0(n) + i * 4);
}
#undef AH_KEY_REG_SIZE
}
#if ATH_SUPPORT_KEYPLUMB_WAR
/*
* Check the contents of the specified key cache entry
* and any associated MIC entry.
*/
HAL_BOOL
ar9300_check_key_cache_entry(struct ath_hal *ah, u_int16_t entry,
const HAL_KEYVAL *k, int xorKey)
{
const HAL_CAPABILITIES *pCap = &AH_PRIVATE(ah)->ah_caps;
u_int32_t key0, key1, key2, key3, key4;
u_int32_t keyType;
u_int32_t xorMask = xorKey ?
(KEY_XOR << 24 | KEY_XOR << 16 | KEY_XOR << 8 | KEY_XOR) : 0;
struct ath_hal_9300 *ahp = AH9300(ah);
if (entry >= pCap->hal_key_cache_size) {
HALDEBUG(ah, HAL_DEBUG_KEYCACHE,
"%s: entry %u out of range\n", __func__, entry);
return AH_FALSE;
}
switch (k->kv_type) {
case HAL_CIPHER_AES_OCB:
keyType = AR_KEYTABLE_TYPE_AES;
break;
case HAL_CIPHER_AES_CCM:
if (!pCap->hal_cipher_aes_ccm_support) {
HALDEBUG(ah, HAL_DEBUG_KEYCACHE, "%s: AES-CCM not supported by "
"mac rev 0x%x\n",
__func__, AH_PRIVATE(ah)->ah_macRev);
return AH_FALSE;
}
keyType = AR_KEYTABLE_TYPE_CCM;
break;
case HAL_CIPHER_TKIP:
keyType = AR_KEYTABLE_TYPE_TKIP;
if (IS_MIC_ENABLED(ah) && entry + 64 >= pCap->hal_key_cache_size) {
HALDEBUG(ah, HAL_DEBUG_KEYCACHE,
"%s: entry %u inappropriate for TKIP\n",
__func__, entry);
return AH_FALSE;
}
break;
case HAL_CIPHER_WEP:
if (k->kv_len < 40 / NBBY) {
HALDEBUG(ah, HAL_DEBUG_KEYCACHE, "%s: WEP key length %u too small\n",
__func__, k->kv_len);
return AH_FALSE;
}
if (k->kv_len <= 40 / NBBY) {
keyType = AR_KEYTABLE_TYPE_40;
} else if (k->kv_len <= 104 / NBBY) {
keyType = AR_KEYTABLE_TYPE_104;
} else {
keyType = AR_KEYTABLE_TYPE_128;
}
break;
case HAL_CIPHER_CLR:
keyType = AR_KEYTABLE_TYPE_CLR;
return AH_TRUE;
default:
HALDEBUG(ah, HAL_DEBUG_KEYCACHE, "%s: cipher %u not supported\n",
__func__, k->kv_type);
return AH_TRUE;
}
key0 = LE_READ_4(k->kv_val + 0) ^ xorMask;
key1 = (LE_READ_2(k->kv_val + 4) ^ xorMask) & 0xffff;
key2 = LE_READ_4(k->kv_val + 6) ^ xorMask;
key3 = (LE_READ_2(k->kv_val + 10) ^ xorMask) & 0xffff;
key4 = LE_READ_4(k->kv_val + 12) ^ xorMask;
if (k->kv_len <= 104 / NBBY) {
key4 &= 0xff;
}
/*
* Note: key cache hardware requires that each double-word
* pair be written in even/odd order (since the destination is
* a 64-bit register). Don't reorder these writes w/o
* considering this!
*/
if (keyType == AR_KEYTABLE_TYPE_TKIP && IS_MIC_ENABLED(ah)) {
u_int16_t micentry = entry + 64; /* MIC goes at slot+64 */
/*
* Invalidate the encrypt/decrypt key until the MIC
* key is installed so pending rx frames will fail
* with decrypt errors rather than a MIC error.
*/
if ((OS_REG_READ(ah, AR_KEYTABLE_KEY0(entry)) == key0) &&
(OS_REG_READ(ah, AR_KEYTABLE_KEY1(entry)) == key1) &&
(OS_REG_READ(ah, AR_KEYTABLE_KEY2(entry)) == key2) &&
(OS_REG_READ(ah, AR_KEYTABLE_KEY3(entry)) == key3) &&
(OS_REG_READ(ah, AR_KEYTABLE_KEY4(entry)) == key4) &&
((OS_REG_READ(ah, AR_KEYTABLE_TYPE(entry)) & AR_KEY_TYPE) == (keyType & AR_KEY_TYPE)))
{
/*
* since the AR_MISC_MODE register was written with the contents of
* ah_miscMode (if any) in ar9300Attach, just check ah_miscMode and
* save a pci read per key set.
*/
if (ahp->ah_misc_mode & AR_PCU_MIC_NEW_LOC_ENA) {
u_int32_t mic0,mic1,mic2,mic3,mic4;
/*
* both RX and TX mic values can be combined into
* one cache slot entry.
* 8*N + 800 31:0 RX Michael key 0
* 8*N + 804 15:0 TX Michael key 0 [31:16]
* 8*N + 808 31:0 RX Michael key 1
* 8*N + 80C 15:0 TX Michael key 0 [15:0]
* 8*N + 810 31:0 TX Michael key 1
* 8*N + 814 15:0 reserved
* 8*N + 818 31:0 reserved
* 8*N + 81C 14:0 reserved
* 15 key valid == 0
*/
/* RX mic */
mic0 = LE_READ_4(k->kv_mic + 0);
mic2 = LE_READ_4(k->kv_mic + 4);
/* TX mic */
mic1 = LE_READ_2(k->kv_txmic + 2) & 0xffff;
mic3 = LE_READ_2(k->kv_txmic + 0) & 0xffff;
mic4 = LE_READ_4(k->kv_txmic + 4);
if ((OS_REG_READ(ah, AR_KEYTABLE_KEY0(micentry)) == mic0) &&
(OS_REG_READ(ah, AR_KEYTABLE_KEY1(micentry)) == mic1) &&
(OS_REG_READ(ah, AR_KEYTABLE_KEY2(micentry)) == mic2) &&
(OS_REG_READ(ah, AR_KEYTABLE_KEY3(micentry)) == mic3) &&
(OS_REG_READ(ah, AR_KEYTABLE_KEY4(micentry)) == mic4) &&
((OS_REG_READ(ah, AR_KEYTABLE_TYPE(micentry)) & AR_KEY_TYPE) == (AR_KEYTABLE_TYPE_CLR & AR_KEY_TYPE))) {
return AH_TRUE;
}
} else {
return AH_TRUE;
}
}
} else {
if ((OS_REG_READ(ah, AR_KEYTABLE_KEY0(entry)) == key0) &&
(OS_REG_READ(ah, AR_KEYTABLE_KEY1(entry)) == key1) &&
(OS_REG_READ(ah, AR_KEYTABLE_KEY2(entry)) == key2) &&
(OS_REG_READ(ah, AR_KEYTABLE_KEY3(entry)) == key3) &&
(OS_REG_READ(ah, AR_KEYTABLE_KEY4(entry)) == key4) &&
((OS_REG_READ(ah, AR_KEYTABLE_TYPE(entry)) & AR_KEY_TYPE) == (keyType & AR_KEY_TYPE))) {
return AH_TRUE;
}
}
return AH_FALSE;
}
#endif