f-stack/dpdk/lib/librte_bpf/bpf_validate.c

2249 lines
54 KiB
C

/* SPDX-License-Identifier: BSD-3-Clause
* Copyright(c) 2018 Intel Corporation
*/
#include <stdarg.h>
#include <stdio.h>
#include <string.h>
#include <errno.h>
#include <stdint.h>
#include <inttypes.h>
#include <rte_common.h>
#include <rte_eal.h>
#include <rte_byteorder.h>
#include "bpf_impl.h"
struct bpf_reg_val {
struct rte_bpf_arg v;
uint64_t mask;
struct {
int64_t min;
int64_t max;
} s;
struct {
uint64_t min;
uint64_t max;
} u;
};
struct bpf_eval_state {
struct bpf_reg_val rv[EBPF_REG_NUM];
struct bpf_reg_val sv[MAX_BPF_STACK_SIZE / sizeof(uint64_t)];
};
/* possible instruction node colour */
enum {
WHITE,
GREY,
BLACK,
MAX_NODE_COLOUR
};
/* possible edge types */
enum {
UNKNOWN_EDGE,
TREE_EDGE,
BACK_EDGE,
CROSS_EDGE,
MAX_EDGE_TYPE
};
#define MAX_EDGES 2
struct inst_node {
uint8_t colour;
uint8_t nb_edge:4;
uint8_t cur_edge:4;
uint8_t edge_type[MAX_EDGES];
uint32_t edge_dest[MAX_EDGES];
uint32_t prev_node;
struct bpf_eval_state *evst;
};
struct bpf_verifier {
const struct rte_bpf_prm *prm;
struct inst_node *in;
uint64_t stack_sz;
uint32_t nb_nodes;
uint32_t nb_jcc_nodes;
uint32_t node_colour[MAX_NODE_COLOUR];
uint32_t edge_type[MAX_EDGE_TYPE];
struct bpf_eval_state *evst;
struct inst_node *evin;
struct {
uint32_t num;
uint32_t cur;
struct bpf_eval_state *ent;
} evst_pool;
};
struct bpf_ins_check {
struct {
uint16_t dreg;
uint16_t sreg;
} mask;
struct {
uint16_t min;
uint16_t max;
} off;
struct {
uint32_t min;
uint32_t max;
} imm;
const char * (*check)(const struct ebpf_insn *);
const char * (*eval)(struct bpf_verifier *, const struct ebpf_insn *);
};
#define ALL_REGS RTE_LEN2MASK(EBPF_REG_NUM, uint16_t)
#define WRT_REGS RTE_LEN2MASK(EBPF_REG_10, uint16_t)
#define ZERO_REG RTE_LEN2MASK(EBPF_REG_1, uint16_t)
/*
* check and evaluate functions for particular instruction types.
*/
static const char *
check_alu_bele(const struct ebpf_insn *ins)
{
if (ins->imm != 16 && ins->imm != 32 && ins->imm != 64)
return "invalid imm field";
return NULL;
}
static const char *
eval_exit(struct bpf_verifier *bvf, const struct ebpf_insn *ins)
{
RTE_SET_USED(ins);
if (bvf->evst->rv[EBPF_REG_0].v.type == RTE_BPF_ARG_UNDEF)
return "undefined return value";
return NULL;
}
/* setup max possible with this mask bounds */
static void
eval_umax_bound(struct bpf_reg_val *rv, uint64_t mask)
{
rv->u.max = mask;
rv->u.min = 0;
}
static void
eval_smax_bound(struct bpf_reg_val *rv, uint64_t mask)
{
rv->s.max = mask >> 1;
rv->s.min = rv->s.max ^ UINT64_MAX;
}
static void
eval_max_bound(struct bpf_reg_val *rv, uint64_t mask)
{
eval_umax_bound(rv, mask);
eval_smax_bound(rv, mask);
}
static void
eval_fill_max_bound(struct bpf_reg_val *rv, uint64_t mask)
{
eval_max_bound(rv, mask);
rv->v.type = RTE_BPF_ARG_RAW;
rv->mask = mask;
}
static void
eval_fill_imm64(struct bpf_reg_val *rv, uint64_t mask, uint64_t val)
{
rv->mask = mask;
rv->s.min = val;
rv->s.max = val;
rv->u.min = val;
rv->u.max = val;
}
static void
eval_fill_imm(struct bpf_reg_val *rv, uint64_t mask, int32_t imm)
{
uint64_t v;
v = (uint64_t)imm & mask;
rv->v.type = RTE_BPF_ARG_RAW;
eval_fill_imm64(rv, mask, v);
}
static const char *
eval_ld_imm64(struct bpf_verifier *bvf, const struct ebpf_insn *ins)
{
uint32_t i;
uint64_t val;
struct bpf_reg_val *rd;
val = (uint32_t)ins[0].imm | (uint64_t)(uint32_t)ins[1].imm << 32;
rd = bvf->evst->rv + ins->dst_reg;
rd->v.type = RTE_BPF_ARG_RAW;
eval_fill_imm64(rd, UINT64_MAX, val);
for (i = 0; i != bvf->prm->nb_xsym; i++) {
/* load of external variable */
if (bvf->prm->xsym[i].type == RTE_BPF_XTYPE_VAR &&
(uintptr_t)bvf->prm->xsym[i].var.val == val) {
rd->v = bvf->prm->xsym[i].var.desc;
eval_fill_imm64(rd, UINT64_MAX, 0);
break;
}
}
return NULL;
}
static void
eval_apply_mask(struct bpf_reg_val *rv, uint64_t mask)
{
struct bpf_reg_val rt;
rt.u.min = rv->u.min & mask;
rt.u.max = rv->u.max & mask;
if (rt.u.min != rv->u.min || rt.u.max != rv->u.max) {
rv->u.max = RTE_MAX(rt.u.max, mask);
rv->u.min = 0;
}
eval_smax_bound(&rt, mask);
rv->s.max = RTE_MIN(rt.s.max, rv->s.max);
rv->s.min = RTE_MAX(rt.s.min, rv->s.min);
rv->mask = mask;
}
static void
eval_add(struct bpf_reg_val *rd, const struct bpf_reg_val *rs, uint64_t msk)
{
struct bpf_reg_val rv;
rv.u.min = (rd->u.min + rs->u.min) & msk;
rv.u.max = (rd->u.min + rs->u.max) & msk;
rv.s.min = (rd->s.min + rs->s.min) & msk;
rv.s.max = (rd->s.max + rs->s.max) & msk;
/*
* if at least one of the operands is not constant,
* then check for overflow
*/
if ((rd->u.min != rd->u.max || rs->u.min != rs->u.max) &&
(rv.u.min < rd->u.min || rv.u.max < rd->u.max))
eval_umax_bound(&rv, msk);
if ((rd->s.min != rd->s.max || rs->s.min != rs->s.max) &&
(((rs->s.min < 0 && rv.s.min > rd->s.min) ||
rv.s.min < rd->s.min) ||
((rs->s.max < 0 && rv.s.max > rd->s.max) ||
rv.s.max < rd->s.max)))
eval_smax_bound(&rv, msk);
rd->s = rv.s;
rd->u = rv.u;
}
static void
eval_sub(struct bpf_reg_val *rd, const struct bpf_reg_val *rs, uint64_t msk)
{
struct bpf_reg_val rv;
rv.u.min = (rd->u.min - rs->u.min) & msk;
rv.u.max = (rd->u.min - rs->u.max) & msk;
rv.s.min = (rd->s.min - rs->s.min) & msk;
rv.s.max = (rd->s.max - rs->s.max) & msk;
/*
* if at least one of the operands is not constant,
* then check for overflow
*/
if ((rd->u.min != rd->u.max || rs->u.min != rs->u.max) &&
(rv.u.min > rd->u.min || rv.u.max > rd->u.max))
eval_umax_bound(&rv, msk);
if ((rd->s.min != rd->s.max || rs->s.min != rs->s.max) &&
(((rs->s.min < 0 && rv.s.min < rd->s.min) ||
rv.s.min > rd->s.min) ||
((rs->s.max < 0 && rv.s.max < rd->s.max) ||
rv.s.max > rd->s.max)))
eval_smax_bound(&rv, msk);
rd->s = rv.s;
rd->u = rv.u;
}
static void
eval_lsh(struct bpf_reg_val *rd, const struct bpf_reg_val *rs, size_t opsz,
uint64_t msk)
{
/* check if shift value is less then max result bits */
if (rs->u.max >= opsz) {
eval_max_bound(rd, msk);
return;
}
/* check for overflow */
if (rd->u.max > RTE_LEN2MASK(opsz - rs->u.max, uint64_t))
eval_umax_bound(rd, msk);
else {
rd->u.max <<= rs->u.max;
rd->u.min <<= rs->u.min;
}
/* check that dreg values are and would remain always positive */
if ((uint64_t)rd->s.min >> (opsz - 1) != 0 || rd->s.max >=
RTE_LEN2MASK(opsz - rs->u.max - 1, int64_t))
eval_smax_bound(rd, msk);
else {
rd->s.max <<= rs->u.max;
rd->s.min <<= rs->u.min;
}
}
static void
eval_rsh(struct bpf_reg_val *rd, const struct bpf_reg_val *rs, size_t opsz,
uint64_t msk)
{
/* check if shift value is less then max result bits */
if (rs->u.max >= opsz) {
eval_max_bound(rd, msk);
return;
}
rd->u.max >>= rs->u.min;
rd->u.min >>= rs->u.max;
/* check that dreg values are always positive */
if ((uint64_t)rd->s.min >> (opsz - 1) != 0)
eval_smax_bound(rd, msk);
else {
rd->s.max >>= rs->u.min;
rd->s.min >>= rs->u.max;
}
}
static void
eval_arsh(struct bpf_reg_val *rd, const struct bpf_reg_val *rs, size_t opsz,
uint64_t msk)
{
uint32_t shv;
/* check if shift value is less then max result bits */
if (rs->u.max >= opsz) {
eval_max_bound(rd, msk);
return;
}
rd->u.max = (int64_t)rd->u.max >> rs->u.min;
rd->u.min = (int64_t)rd->u.min >> rs->u.max;
/* if we have 32-bit values - extend them to 64-bit */
if (opsz == sizeof(uint32_t) * CHAR_BIT) {
rd->s.min <<= opsz;
rd->s.max <<= opsz;
shv = opsz;
} else
shv = 0;
if (rd->s.min < 0)
rd->s.min = (rd->s.min >> (rs->u.min + shv)) & msk;
else
rd->s.min = (rd->s.min >> (rs->u.max + shv)) & msk;
if (rd->s.max < 0)
rd->s.max = (rd->s.max >> (rs->u.max + shv)) & msk;
else
rd->s.max = (rd->s.max >> (rs->u.min + shv)) & msk;
}
static uint64_t
eval_umax_bits(uint64_t v, size_t opsz)
{
if (v == 0)
return 0;
v = __builtin_clzll(v);
return RTE_LEN2MASK(opsz - v, uint64_t);
}
/* estimate max possible value for (v1 & v2) */
static uint64_t
eval_uand_max(uint64_t v1, uint64_t v2, size_t opsz)
{
v1 = eval_umax_bits(v1, opsz);
v2 = eval_umax_bits(v2, opsz);
return (v1 & v2);
}
/* estimate max possible value for (v1 | v2) */
static uint64_t
eval_uor_max(uint64_t v1, uint64_t v2, size_t opsz)
{
v1 = eval_umax_bits(v1, opsz);
v2 = eval_umax_bits(v2, opsz);
return (v1 | v2);
}
static void
eval_and(struct bpf_reg_val *rd, const struct bpf_reg_val *rs, size_t opsz,
uint64_t msk)
{
/* both operands are constants */
if (rd->u.min == rd->u.max && rs->u.min == rs->u.max) {
rd->u.min &= rs->u.min;
rd->u.max &= rs->u.max;
} else {
rd->u.max = eval_uand_max(rd->u.max, rs->u.max, opsz);
rd->u.min &= rs->u.min;
}
/* both operands are constants */
if (rd->s.min == rd->s.max && rs->s.min == rs->s.max) {
rd->s.min &= rs->s.min;
rd->s.max &= rs->s.max;
/* at least one of operand is non-negative */
} else if (rd->s.min >= 0 || rs->s.min >= 0) {
rd->s.max = eval_uand_max(rd->s.max & (msk >> 1),
rs->s.max & (msk >> 1), opsz);
rd->s.min &= rs->s.min;
} else
eval_smax_bound(rd, msk);
}
static void
eval_or(struct bpf_reg_val *rd, const struct bpf_reg_val *rs, size_t opsz,
uint64_t msk)
{
/* both operands are constants */
if (rd->u.min == rd->u.max && rs->u.min == rs->u.max) {
rd->u.min |= rs->u.min;
rd->u.max |= rs->u.max;
} else {
rd->u.max = eval_uor_max(rd->u.max, rs->u.max, opsz);
rd->u.min |= rs->u.min;
}
/* both operands are constants */
if (rd->s.min == rd->s.max && rs->s.min == rs->s.max) {
rd->s.min |= rs->s.min;
rd->s.max |= rs->s.max;
/* both operands are non-negative */
} else if (rd->s.min >= 0 || rs->s.min >= 0) {
rd->s.max = eval_uor_max(rd->s.max, rs->s.max, opsz);
rd->s.min |= rs->s.min;
} else
eval_smax_bound(rd, msk);
}
static void
eval_xor(struct bpf_reg_val *rd, const struct bpf_reg_val *rs, size_t opsz,
uint64_t msk)
{
/* both operands are constants */
if (rd->u.min == rd->u.max && rs->u.min == rs->u.max) {
rd->u.min ^= rs->u.min;
rd->u.max ^= rs->u.max;
} else {
rd->u.max = eval_uor_max(rd->u.max, rs->u.max, opsz);
rd->u.min = 0;
}
/* both operands are constants */
if (rd->s.min == rd->s.max && rs->s.min == rs->s.max) {
rd->s.min ^= rs->s.min;
rd->s.max ^= rs->s.max;
/* both operands are non-negative */
} else if (rd->s.min >= 0 || rs->s.min >= 0) {
rd->s.max = eval_uor_max(rd->s.max, rs->s.max, opsz);
rd->s.min = 0;
} else
eval_smax_bound(rd, msk);
}
static void
eval_mul(struct bpf_reg_val *rd, const struct bpf_reg_val *rs, size_t opsz,
uint64_t msk)
{
/* both operands are constants */
if (rd->u.min == rd->u.max && rs->u.min == rs->u.max) {
rd->u.min = (rd->u.min * rs->u.min) & msk;
rd->u.max = (rd->u.max * rs->u.max) & msk;
/* check for overflow */
} else if (rd->u.max <= msk >> opsz / 2 && rs->u.max <= msk >> opsz) {
rd->u.max *= rs->u.max;
rd->u.min *= rd->u.min;
} else
eval_umax_bound(rd, msk);
/* both operands are constants */
if (rd->s.min == rd->s.max && rs->s.min == rs->s.max) {
rd->s.min = (rd->s.min * rs->s.min) & msk;
rd->s.max = (rd->s.max * rs->s.max) & msk;
/* check that both operands are positive and no overflow */
} else if (rd->s.min >= 0 && rs->s.min >= 0) {
rd->s.max *= rs->s.max;
rd->s.min *= rd->s.min;
} else
eval_smax_bound(rd, msk);
}
static const char *
eval_divmod(uint32_t op, struct bpf_reg_val *rd, struct bpf_reg_val *rs,
size_t opsz, uint64_t msk)
{
/* both operands are constants */
if (rd->u.min == rd->u.max && rs->u.min == rs->u.max) {
if (rs->u.max == 0)
return "division by 0";
if (op == BPF_DIV) {
rd->u.min /= rs->u.min;
rd->u.max /= rs->u.max;
} else {
rd->u.min %= rs->u.min;
rd->u.max %= rs->u.max;
}
} else {
if (op == BPF_MOD)
rd->u.max = RTE_MIN(rd->u.max, rs->u.max - 1);
else
rd->u.max = rd->u.max;
rd->u.min = 0;
}
/* if we have 32-bit values - extend them to 64-bit */
if (opsz == sizeof(uint32_t) * CHAR_BIT) {
rd->s.min = (int32_t)rd->s.min;
rd->s.max = (int32_t)rd->s.max;
rs->s.min = (int32_t)rs->s.min;
rs->s.max = (int32_t)rs->s.max;
}
/* both operands are constants */
if (rd->s.min == rd->s.max && rs->s.min == rs->s.max) {
if (rs->s.max == 0)
return "division by 0";
if (op == BPF_DIV) {
rd->s.min /= rs->s.min;
rd->s.max /= rs->s.max;
} else {
rd->s.min %= rs->s.min;
rd->s.max %= rs->s.max;
}
} else if (op == BPF_MOD) {
rd->s.min = RTE_MAX(rd->s.max, 0);
rd->s.min = RTE_MIN(rd->s.min, 0);
} else
eval_smax_bound(rd, msk);
rd->s.max &= msk;
rd->s.min &= msk;
return NULL;
}
static void
eval_neg(struct bpf_reg_val *rd, size_t opsz, uint64_t msk)
{
uint64_t ux, uy;
int64_t sx, sy;
/* if we have 32-bit values - extend them to 64-bit */
if (opsz == sizeof(uint32_t) * CHAR_BIT) {
rd->u.min = (int32_t)rd->u.min;
rd->u.max = (int32_t)rd->u.max;
}
ux = -(int64_t)rd->u.min & msk;
uy = -(int64_t)rd->u.max & msk;
rd->u.max = RTE_MAX(ux, uy);
rd->u.min = RTE_MIN(ux, uy);
/* if we have 32-bit values - extend them to 64-bit */
if (opsz == sizeof(uint32_t) * CHAR_BIT) {
rd->s.min = (int32_t)rd->s.min;
rd->s.max = (int32_t)rd->s.max;
}
sx = -rd->s.min & msk;
sy = -rd->s.max & msk;
rd->s.max = RTE_MAX(sx, sy);
rd->s.min = RTE_MIN(sx, sy);
}
/*
* check that destination and source operand are in defined state.
*/
static const char *
eval_defined(const struct bpf_reg_val *dst, const struct bpf_reg_val *src)
{
if (dst != NULL && dst->v.type == RTE_BPF_ARG_UNDEF)
return "dest reg value is undefined";
if (src != NULL && src->v.type == RTE_BPF_ARG_UNDEF)
return "src reg value is undefined";
return NULL;
}
static const char *
eval_alu(struct bpf_verifier *bvf, const struct ebpf_insn *ins)
{
uint64_t msk;
uint32_t op;
size_t opsz;
const char *err;
struct bpf_eval_state *st;
struct bpf_reg_val *rd, rs;
opsz = (BPF_CLASS(ins->code) == BPF_ALU) ?
sizeof(uint32_t) : sizeof(uint64_t);
opsz = opsz * CHAR_BIT;
msk = RTE_LEN2MASK(opsz, uint64_t);
st = bvf->evst;
rd = st->rv + ins->dst_reg;
if (BPF_SRC(ins->code) == BPF_X) {
rs = st->rv[ins->src_reg];
eval_apply_mask(&rs, msk);
} else
eval_fill_imm(&rs, msk, ins->imm);
eval_apply_mask(rd, msk);
op = BPF_OP(ins->code);
err = eval_defined((op != EBPF_MOV) ? rd : NULL,
(op != BPF_NEG) ? &rs : NULL);
if (err != NULL)
return err;
if (op == BPF_ADD)
eval_add(rd, &rs, msk);
else if (op == BPF_SUB)
eval_sub(rd, &rs, msk);
else if (op == BPF_LSH)
eval_lsh(rd, &rs, opsz, msk);
else if (op == BPF_RSH)
eval_rsh(rd, &rs, opsz, msk);
else if (op == EBPF_ARSH)
eval_arsh(rd, &rs, opsz, msk);
else if (op == BPF_AND)
eval_and(rd, &rs, opsz, msk);
else if (op == BPF_OR)
eval_or(rd, &rs, opsz, msk);
else if (op == BPF_XOR)
eval_xor(rd, &rs, opsz, msk);
else if (op == BPF_MUL)
eval_mul(rd, &rs, opsz, msk);
else if (op == BPF_DIV || op == BPF_MOD)
err = eval_divmod(op, rd, &rs, opsz, msk);
else if (op == BPF_NEG)
eval_neg(rd, opsz, msk);
else if (op == EBPF_MOV)
*rd = rs;
else
eval_max_bound(rd, msk);
return err;
}
static const char *
eval_bele(struct bpf_verifier *bvf, const struct ebpf_insn *ins)
{
uint64_t msk;
struct bpf_eval_state *st;
struct bpf_reg_val *rd;
const char *err;
msk = RTE_LEN2MASK(ins->imm, uint64_t);
st = bvf->evst;
rd = st->rv + ins->dst_reg;
err = eval_defined(rd, NULL);
if (err != NULL)
return err;
#if RTE_BYTE_ORDER == RTE_LITTLE_ENDIAN
if (ins->code == (BPF_ALU | EBPF_END | EBPF_TO_BE))
eval_max_bound(rd, msk);
else
eval_apply_mask(rd, msk);
#else
if (ins->code == (BPF_ALU | EBPF_END | EBPF_TO_LE))
eval_max_bound(rd, msk);
else
eval_apply_mask(rd, msk);
#endif
return NULL;
}
static const char *
eval_ptr(struct bpf_verifier *bvf, struct bpf_reg_val *rm, uint32_t opsz,
uint32_t align, int16_t off)
{
struct bpf_reg_val rv;
/* calculate reg + offset */
eval_fill_imm(&rv, rm->mask, off);
eval_add(rm, &rv, rm->mask);
if (RTE_BPF_ARG_PTR_TYPE(rm->v.type) == 0)
return "destination is not a pointer";
if (rm->mask != UINT64_MAX)
return "pointer truncation";
if (rm->u.max + opsz > rm->v.size ||
(uint64_t)rm->s.max + opsz > rm->v.size ||
rm->s.min < 0)
return "memory boundary violation";
if (rm->u.max % align != 0)
return "unaligned memory access";
if (rm->v.type == RTE_BPF_ARG_PTR_STACK) {
if (rm->u.max != rm->u.min || rm->s.max != rm->s.min ||
rm->u.max != (uint64_t)rm->s.max)
return "stack access with variable offset";
bvf->stack_sz = RTE_MAX(bvf->stack_sz, rm->v.size - rm->u.max);
/* pointer to mbuf */
} else if (rm->v.type == RTE_BPF_ARG_PTR_MBUF) {
if (rm->u.max != rm->u.min || rm->s.max != rm->s.min ||
rm->u.max != (uint64_t)rm->s.max)
return "mbuf access with variable offset";
}
return NULL;
}
static void
eval_max_load(struct bpf_reg_val *rv, uint64_t mask)
{
eval_umax_bound(rv, mask);
/* full 64-bit load */
if (mask == UINT64_MAX)
eval_smax_bound(rv, mask);
/* zero-extend load */
rv->s.min = rv->u.min;
rv->s.max = rv->u.max;
}
static const char *
eval_load(struct bpf_verifier *bvf, const struct ebpf_insn *ins)
{
uint32_t opsz;
uint64_t msk;
const char *err;
struct bpf_eval_state *st;
struct bpf_reg_val *rd, rs;
const struct bpf_reg_val *sv;
st = bvf->evst;
rd = st->rv + ins->dst_reg;
rs = st->rv[ins->src_reg];
opsz = bpf_size(BPF_SIZE(ins->code));
msk = RTE_LEN2MASK(opsz * CHAR_BIT, uint64_t);
err = eval_ptr(bvf, &rs, opsz, 1, ins->off);
if (err != NULL)
return err;
if (rs.v.type == RTE_BPF_ARG_PTR_STACK) {
sv = st->sv + rs.u.max / sizeof(uint64_t);
if (sv->v.type == RTE_BPF_ARG_UNDEF || sv->mask < msk)
return "undefined value on the stack";
*rd = *sv;
/* pointer to mbuf */
} else if (rs.v.type == RTE_BPF_ARG_PTR_MBUF) {
if (rs.u.max == offsetof(struct rte_mbuf, next)) {
eval_fill_imm(rd, msk, 0);
rd->v = rs.v;
} else if (rs.u.max == offsetof(struct rte_mbuf, buf_addr)) {
eval_fill_imm(rd, msk, 0);
rd->v.type = RTE_BPF_ARG_PTR;
rd->v.size = rs.v.buf_size;
} else if (rs.u.max == offsetof(struct rte_mbuf, data_off)) {
eval_fill_imm(rd, msk, RTE_PKTMBUF_HEADROOM);
rd->v.type = RTE_BPF_ARG_RAW;
} else {
eval_max_load(rd, msk);
rd->v.type = RTE_BPF_ARG_RAW;
}
/* pointer to raw data */
} else {
eval_max_load(rd, msk);
rd->v.type = RTE_BPF_ARG_RAW;
}
return NULL;
}
static const char *
eval_mbuf_store(const struct bpf_reg_val *rv, uint32_t opsz)
{
uint32_t i;
static const struct {
size_t off;
size_t sz;
} mbuf_ro_fileds[] = {
{ .off = offsetof(struct rte_mbuf, buf_addr), },
{ .off = offsetof(struct rte_mbuf, refcnt), },
{ .off = offsetof(struct rte_mbuf, nb_segs), },
{ .off = offsetof(struct rte_mbuf, buf_len), },
{ .off = offsetof(struct rte_mbuf, pool), },
{ .off = offsetof(struct rte_mbuf, next), },
{ .off = offsetof(struct rte_mbuf, priv_size), },
};
for (i = 0; i != RTE_DIM(mbuf_ro_fileds) &&
(mbuf_ro_fileds[i].off + mbuf_ro_fileds[i].sz <=
rv->u.max || rv->u.max + opsz <= mbuf_ro_fileds[i].off);
i++)
;
if (i != RTE_DIM(mbuf_ro_fileds))
return "store to the read-only mbuf field";
return NULL;
}
static const char *
eval_store(struct bpf_verifier *bvf, const struct ebpf_insn *ins)
{
uint32_t opsz;
uint64_t msk;
const char *err;
struct bpf_eval_state *st;
struct bpf_reg_val rd, rs, *sv;
opsz = bpf_size(BPF_SIZE(ins->code));
msk = RTE_LEN2MASK(opsz * CHAR_BIT, uint64_t);
st = bvf->evst;
rd = st->rv[ins->dst_reg];
if (BPF_CLASS(ins->code) == BPF_STX) {
rs = st->rv[ins->src_reg];
eval_apply_mask(&rs, msk);
} else
eval_fill_imm(&rs, msk, ins->imm);
err = eval_defined(NULL, &rs);
if (err != NULL)
return err;
err = eval_ptr(bvf, &rd, opsz, 1, ins->off);
if (err != NULL)
return err;
if (rd.v.type == RTE_BPF_ARG_PTR_STACK) {
sv = st->sv + rd.u.max / sizeof(uint64_t);
if (BPF_CLASS(ins->code) == BPF_STX &&
BPF_MODE(ins->code) == EBPF_XADD)
eval_max_bound(sv, msk);
else
*sv = rs;
/* pointer to mbuf */
} else if (rd.v.type == RTE_BPF_ARG_PTR_MBUF) {
err = eval_mbuf_store(&rd, opsz);
if (err != NULL)
return err;
}
return NULL;
}
static const char *
eval_func_arg(struct bpf_verifier *bvf, const struct rte_bpf_arg *arg,
struct bpf_reg_val *rv)
{
uint32_t i, n;
struct bpf_eval_state *st;
const char *err;
st = bvf->evst;
if (rv->v.type == RTE_BPF_ARG_UNDEF)
return "Undefined argument type";
if (arg->type != rv->v.type &&
arg->type != RTE_BPF_ARG_RAW &&
(arg->type != RTE_BPF_ARG_PTR ||
RTE_BPF_ARG_PTR_TYPE(rv->v.type) == 0))
return "Invalid argument type";
err = NULL;
/* argument is a pointer */
if (RTE_BPF_ARG_PTR_TYPE(arg->type) != 0) {
err = eval_ptr(bvf, rv, arg->size, 1, 0);
/*
* pointer to the variable on the stack is passed
* as an argument, mark stack space it occupies as initialized.
*/
if (err == NULL && rv->v.type == RTE_BPF_ARG_PTR_STACK) {
i = rv->u.max / sizeof(uint64_t);
n = i + arg->size / sizeof(uint64_t);
while (i != n) {
eval_fill_max_bound(st->sv + i, UINT64_MAX);
i++;
};
}
}
return err;
}
static const char *
eval_call(struct bpf_verifier *bvf, const struct ebpf_insn *ins)
{
uint32_t i, idx;
struct bpf_reg_val *rv;
const struct rte_bpf_xsym *xsym;
const char *err;
idx = ins->imm;
if (idx >= bvf->prm->nb_xsym ||
bvf->prm->xsym[idx].type != RTE_BPF_XTYPE_FUNC)
return "invalid external function index";
/* for now don't support function calls on 32 bit platform */
if (sizeof(uint64_t) != sizeof(uintptr_t))
return "function calls are supported only for 64 bit apps";
xsym = bvf->prm->xsym + idx;
/* evaluate function arguments */
err = NULL;
for (i = 0; i != xsym->func.nb_args && err == NULL; i++) {
err = eval_func_arg(bvf, xsym->func.args + i,
bvf->evst->rv + EBPF_REG_1 + i);
}
/* R1-R5 argument/scratch registers */
for (i = EBPF_REG_1; i != EBPF_REG_6; i++)
bvf->evst->rv[i].v.type = RTE_BPF_ARG_UNDEF;
/* update return value */
rv = bvf->evst->rv + EBPF_REG_0;
rv->v = xsym->func.ret;
if (rv->v.type == RTE_BPF_ARG_RAW)
eval_fill_max_bound(rv,
RTE_LEN2MASK(rv->v.size * CHAR_BIT, uint64_t));
else if (RTE_BPF_ARG_PTR_TYPE(rv->v.type) != 0)
eval_fill_imm64(rv, UINTPTR_MAX, 0);
return err;
}
static void
eval_jeq_jne(struct bpf_reg_val *trd, struct bpf_reg_val *trs)
{
/* sreg is constant */
if (trs->u.min == trs->u.max) {
trd->u = trs->u;
/* dreg is constant */
} else if (trd->u.min == trd->u.max) {
trs->u = trd->u;
} else {
trd->u.max = RTE_MIN(trd->u.max, trs->u.max);
trd->u.min = RTE_MAX(trd->u.min, trs->u.min);
trs->u = trd->u;
}
/* sreg is constant */
if (trs->s.min == trs->s.max) {
trd->s = trs->s;
/* dreg is constant */
} else if (trd->s.min == trd->s.max) {
trs->s = trd->s;
} else {
trd->s.max = RTE_MIN(trd->s.max, trs->s.max);
trd->s.min = RTE_MAX(trd->s.min, trs->s.min);
trs->s = trd->s;
}
}
static void
eval_jgt_jle(struct bpf_reg_val *trd, struct bpf_reg_val *trs,
struct bpf_reg_val *frd, struct bpf_reg_val *frs)
{
frd->u.max = RTE_MIN(frd->u.max, frs->u.min);
trd->u.min = RTE_MAX(trd->u.min, trs->u.min + 1);
}
static void
eval_jlt_jge(struct bpf_reg_val *trd, struct bpf_reg_val *trs,
struct bpf_reg_val *frd, struct bpf_reg_val *frs)
{
frd->u.min = RTE_MAX(frd->u.min, frs->u.min);
trd->u.max = RTE_MIN(trd->u.max, trs->u.max - 1);
}
static void
eval_jsgt_jsle(struct bpf_reg_val *trd, struct bpf_reg_val *trs,
struct bpf_reg_val *frd, struct bpf_reg_val *frs)
{
frd->s.max = RTE_MIN(frd->s.max, frs->s.min);
trd->s.min = RTE_MAX(trd->s.min, trs->s.min + 1);
}
static void
eval_jslt_jsge(struct bpf_reg_val *trd, struct bpf_reg_val *trs,
struct bpf_reg_val *frd, struct bpf_reg_val *frs)
{
frd->s.min = RTE_MAX(frd->s.min, frs->s.min);
trd->s.max = RTE_MIN(trd->s.max, trs->s.max - 1);
}
static const char *
eval_jcc(struct bpf_verifier *bvf, const struct ebpf_insn *ins)
{
uint32_t op;
const char *err;
struct bpf_eval_state *fst, *tst;
struct bpf_reg_val *frd, *frs, *trd, *trs;
struct bpf_reg_val rvf, rvt;
tst = bvf->evst;
fst = bvf->evin->evst;
frd = fst->rv + ins->dst_reg;
trd = tst->rv + ins->dst_reg;
if (BPF_SRC(ins->code) == BPF_X) {
frs = fst->rv + ins->src_reg;
trs = tst->rv + ins->src_reg;
} else {
frs = &rvf;
trs = &rvt;
eval_fill_imm(frs, UINT64_MAX, ins->imm);
eval_fill_imm(trs, UINT64_MAX, ins->imm);
}
err = eval_defined(trd, trs);
if (err != NULL)
return err;
op = BPF_OP(ins->code);
if (op == BPF_JEQ)
eval_jeq_jne(trd, trs);
else if (op == EBPF_JNE)
eval_jeq_jne(frd, frs);
else if (op == BPF_JGT)
eval_jgt_jle(trd, trs, frd, frs);
else if (op == EBPF_JLE)
eval_jgt_jle(frd, frs, trd, trs);
else if (op == EBPF_JLT)
eval_jlt_jge(trd, trs, frd, frs);
else if (op == BPF_JGE)
eval_jlt_jge(frd, frs, trd, trs);
else if (op == EBPF_JSGT)
eval_jsgt_jsle(trd, trs, frd, frs);
else if (op == EBPF_JSLE)
eval_jsgt_jsle(frd, frs, trd, trs);
else if (op == EBPF_JLT)
eval_jslt_jsge(trd, trs, frd, frs);
else if (op == EBPF_JSGE)
eval_jslt_jsge(frd, frs, trd, trs);
return NULL;
}
/*
* validate parameters for each instruction type.
*/
static const struct bpf_ins_check ins_chk[UINT8_MAX + 1] = {
/* ALU IMM 32-bit instructions */
[(BPF_ALU | BPF_ADD | BPF_K)] = {
.mask = {.dreg = WRT_REGS, .sreg = ZERO_REG},
.off = { .min = 0, .max = 0},
.imm = { .min = 0, .max = UINT32_MAX,},
.eval = eval_alu,
},
[(BPF_ALU | BPF_SUB | BPF_K)] = {
.mask = {.dreg = WRT_REGS, .sreg = ZERO_REG},
.off = { .min = 0, .max = 0},
.imm = { .min = 0, .max = UINT32_MAX,},
.eval = eval_alu,
},
[(BPF_ALU | BPF_AND | BPF_K)] = {
.mask = {.dreg = WRT_REGS, .sreg = ZERO_REG},
.off = { .min = 0, .max = 0},
.imm = { .min = 0, .max = UINT32_MAX,},
.eval = eval_alu,
},
[(BPF_ALU | BPF_OR | BPF_K)] = {
.mask = {.dreg = WRT_REGS, .sreg = ZERO_REG},
.off = { .min = 0, .max = 0},
.imm = { .min = 0, .max = UINT32_MAX,},
.eval = eval_alu,
},
[(BPF_ALU | BPF_LSH | BPF_K)] = {
.mask = {.dreg = WRT_REGS, .sreg = ZERO_REG},
.off = { .min = 0, .max = 0},
.imm = { .min = 0, .max = UINT32_MAX,},
.eval = eval_alu,
},
[(BPF_ALU | BPF_RSH | BPF_K)] = {
.mask = {.dreg = WRT_REGS, .sreg = ZERO_REG},
.off = { .min = 0, .max = 0},
.imm = { .min = 0, .max = UINT32_MAX,},
.eval = eval_alu,
},
[(BPF_ALU | BPF_XOR | BPF_K)] = {
.mask = {.dreg = WRT_REGS, .sreg = ZERO_REG},
.off = { .min = 0, .max = 0},
.imm = { .min = 0, .max = UINT32_MAX,},
.eval = eval_alu,
},
[(BPF_ALU | BPF_MUL | BPF_K)] = {
.mask = {.dreg = WRT_REGS, .sreg = ZERO_REG},
.off = { .min = 0, .max = 0},
.imm = { .min = 0, .max = UINT32_MAX,},
.eval = eval_alu,
},
[(BPF_ALU | EBPF_MOV | BPF_K)] = {
.mask = {.dreg = WRT_REGS, .sreg = ZERO_REG},
.off = { .min = 0, .max = 0},
.imm = { .min = 0, .max = UINT32_MAX,},
.eval = eval_alu,
},
[(BPF_ALU | BPF_DIV | BPF_K)] = {
.mask = { .dreg = WRT_REGS, .sreg = ZERO_REG},
.off = { .min = 0, .max = 0},
.imm = { .min = 1, .max = UINT32_MAX},
.eval = eval_alu,
},
[(BPF_ALU | BPF_MOD | BPF_K)] = {
.mask = { .dreg = WRT_REGS, .sreg = ZERO_REG},
.off = { .min = 0, .max = 0},
.imm = { .min = 1, .max = UINT32_MAX},
.eval = eval_alu,
},
/* ALU IMM 64-bit instructions */
[(EBPF_ALU64 | BPF_ADD | BPF_K)] = {
.mask = {.dreg = WRT_REGS, .sreg = ZERO_REG},
.off = { .min = 0, .max = 0},
.imm = { .min = 0, .max = UINT32_MAX,},
.eval = eval_alu,
},
[(EBPF_ALU64 | BPF_SUB | BPF_K)] = {
.mask = {.dreg = WRT_REGS, .sreg = ZERO_REG},
.off = { .min = 0, .max = 0},
.imm = { .min = 0, .max = UINT32_MAX,},
.eval = eval_alu,
},
[(EBPF_ALU64 | BPF_AND | BPF_K)] = {
.mask = {.dreg = WRT_REGS, .sreg = ZERO_REG},
.off = { .min = 0, .max = 0},
.imm = { .min = 0, .max = UINT32_MAX,},
.eval = eval_alu,
},
[(EBPF_ALU64 | BPF_OR | BPF_K)] = {
.mask = {.dreg = WRT_REGS, .sreg = ZERO_REG},
.off = { .min = 0, .max = 0},
.imm = { .min = 0, .max = UINT32_MAX,},
.eval = eval_alu,
},
[(EBPF_ALU64 | BPF_LSH | BPF_K)] = {
.mask = {.dreg = WRT_REGS, .sreg = ZERO_REG},
.off = { .min = 0, .max = 0},
.imm = { .min = 0, .max = UINT32_MAX,},
.eval = eval_alu,
},
[(EBPF_ALU64 | BPF_RSH | BPF_K)] = {
.mask = {.dreg = WRT_REGS, .sreg = ZERO_REG},
.off = { .min = 0, .max = 0},
.imm = { .min = 0, .max = UINT32_MAX,},
.eval = eval_alu,
},
[(EBPF_ALU64 | EBPF_ARSH | BPF_K)] = {
.mask = {.dreg = WRT_REGS, .sreg = ZERO_REG},
.off = { .min = 0, .max = 0},
.imm = { .min = 0, .max = UINT32_MAX,},
.eval = eval_alu,
},
[(EBPF_ALU64 | BPF_XOR | BPF_K)] = {
.mask = {.dreg = WRT_REGS, .sreg = ZERO_REG},
.off = { .min = 0, .max = 0},
.imm = { .min = 0, .max = UINT32_MAX,},
.eval = eval_alu,
},
[(EBPF_ALU64 | BPF_MUL | BPF_K)] = {
.mask = {.dreg = WRT_REGS, .sreg = ZERO_REG},
.off = { .min = 0, .max = 0},
.imm = { .min = 0, .max = UINT32_MAX,},
.eval = eval_alu,
},
[(EBPF_ALU64 | EBPF_MOV | BPF_K)] = {
.mask = {.dreg = WRT_REGS, .sreg = ZERO_REG},
.off = { .min = 0, .max = 0},
.imm = { .min = 0, .max = UINT32_MAX,},
.eval = eval_alu,
},
[(EBPF_ALU64 | BPF_DIV | BPF_K)] = {
.mask = { .dreg = WRT_REGS, .sreg = ZERO_REG},
.off = { .min = 0, .max = 0},
.imm = { .min = 1, .max = UINT32_MAX},
.eval = eval_alu,
},
[(EBPF_ALU64 | BPF_MOD | BPF_K)] = {
.mask = { .dreg = WRT_REGS, .sreg = ZERO_REG},
.off = { .min = 0, .max = 0},
.imm = { .min = 1, .max = UINT32_MAX},
.eval = eval_alu,
},
/* ALU REG 32-bit instructions */
[(BPF_ALU | BPF_ADD | BPF_X)] = {
.mask = { .dreg = WRT_REGS, .sreg = ALL_REGS},
.off = { .min = 0, .max = 0},
.imm = { .min = 0, .max = 0},
.eval = eval_alu,
},
[(BPF_ALU | BPF_SUB | BPF_X)] = {
.mask = { .dreg = WRT_REGS, .sreg = ALL_REGS},
.off = { .min = 0, .max = 0},
.imm = { .min = 0, .max = 0},
.eval = eval_alu,
},
[(BPF_ALU | BPF_AND | BPF_X)] = {
.mask = { .dreg = WRT_REGS, .sreg = ALL_REGS},
.off = { .min = 0, .max = 0},
.imm = { .min = 0, .max = 0},
.eval = eval_alu,
},
[(BPF_ALU | BPF_OR | BPF_X)] = {
.mask = { .dreg = WRT_REGS, .sreg = ALL_REGS},
.off = { .min = 0, .max = 0},
.imm = { .min = 0, .max = 0},
.eval = eval_alu,
},
[(BPF_ALU | BPF_LSH | BPF_X)] = {
.mask = { .dreg = WRT_REGS, .sreg = ALL_REGS},
.off = { .min = 0, .max = 0},
.imm = { .min = 0, .max = 0},
.eval = eval_alu,
},
[(BPF_ALU | BPF_RSH | BPF_X)] = {
.mask = { .dreg = WRT_REGS, .sreg = ALL_REGS},
.off = { .min = 0, .max = 0},
.imm = { .min = 0, .max = 0},
.eval = eval_alu,
},
[(BPF_ALU | BPF_XOR | BPF_X)] = {
.mask = { .dreg = WRT_REGS, .sreg = ALL_REGS},
.off = { .min = 0, .max = 0},
.imm = { .min = 0, .max = 0},
.eval = eval_alu,
},
[(BPF_ALU | BPF_MUL | BPF_X)] = {
.mask = { .dreg = WRT_REGS, .sreg = ALL_REGS},
.off = { .min = 0, .max = 0},
.imm = { .min = 0, .max = 0},
.eval = eval_alu,
},
[(BPF_ALU | BPF_DIV | BPF_X)] = {
.mask = { .dreg = WRT_REGS, .sreg = ALL_REGS},
.off = { .min = 0, .max = 0},
.imm = { .min = 0, .max = 0},
.eval = eval_alu,
},
[(BPF_ALU | BPF_MOD | BPF_X)] = {
.mask = { .dreg = WRT_REGS, .sreg = ALL_REGS},
.off = { .min = 0, .max = 0},
.imm = { .min = 0, .max = 0},
.eval = eval_alu,
},
[(BPF_ALU | EBPF_MOV | BPF_X)] = {
.mask = { .dreg = WRT_REGS, .sreg = ALL_REGS},
.off = { .min = 0, .max = 0},
.imm = { .min = 0, .max = 0},
.eval = eval_alu,
},
[(BPF_ALU | BPF_NEG)] = {
.mask = { .dreg = WRT_REGS, .sreg = ZERO_REG},
.off = { .min = 0, .max = 0},
.imm = { .min = 0, .max = 0},
.eval = eval_alu,
},
[(BPF_ALU | EBPF_END | EBPF_TO_BE)] = {
.mask = { .dreg = WRT_REGS, .sreg = ZERO_REG},
.off = { .min = 0, .max = 0},
.imm = { .min = 16, .max = 64},
.check = check_alu_bele,
.eval = eval_bele,
},
[(BPF_ALU | EBPF_END | EBPF_TO_LE)] = {
.mask = { .dreg = WRT_REGS, .sreg = ZERO_REG},
.off = { .min = 0, .max = 0},
.imm = { .min = 16, .max = 64},
.check = check_alu_bele,
.eval = eval_bele,
},
/* ALU REG 64-bit instructions */
[(EBPF_ALU64 | BPF_ADD | BPF_X)] = {
.mask = { .dreg = WRT_REGS, .sreg = ALL_REGS},
.off = { .min = 0, .max = 0},
.imm = { .min = 0, .max = 0},
.eval = eval_alu,
},
[(EBPF_ALU64 | BPF_SUB | BPF_X)] = {
.mask = { .dreg = WRT_REGS, .sreg = ALL_REGS},
.off = { .min = 0, .max = 0},
.imm = { .min = 0, .max = 0},
.eval = eval_alu,
},
[(EBPF_ALU64 | BPF_AND | BPF_X)] = {
.mask = { .dreg = WRT_REGS, .sreg = ALL_REGS},
.off = { .min = 0, .max = 0},
.imm = { .min = 0, .max = 0},
.eval = eval_alu,
},
[(EBPF_ALU64 | BPF_OR | BPF_X)] = {
.mask = { .dreg = WRT_REGS, .sreg = ALL_REGS},
.off = { .min = 0, .max = 0},
.imm = { .min = 0, .max = 0},
.eval = eval_alu,
},
[(EBPF_ALU64 | BPF_LSH | BPF_X)] = {
.mask = { .dreg = WRT_REGS, .sreg = ALL_REGS},
.off = { .min = 0, .max = 0},
.imm = { .min = 0, .max = 0},
.eval = eval_alu,
},
[(EBPF_ALU64 | BPF_RSH | BPF_X)] = {
.mask = { .dreg = WRT_REGS, .sreg = ALL_REGS},
.off = { .min = 0, .max = 0},
.imm = { .min = 0, .max = 0},
.eval = eval_alu,
},
[(EBPF_ALU64 | EBPF_ARSH | BPF_X)] = {
.mask = { .dreg = WRT_REGS, .sreg = ALL_REGS},
.off = { .min = 0, .max = 0},
.imm = { .min = 0, .max = 0},
.eval = eval_alu,
},
[(EBPF_ALU64 | BPF_XOR | BPF_X)] = {
.mask = { .dreg = WRT_REGS, .sreg = ALL_REGS},
.off = { .min = 0, .max = 0},
.imm = { .min = 0, .max = 0},
.eval = eval_alu,
},
[(EBPF_ALU64 | BPF_MUL | BPF_X)] = {
.mask = { .dreg = WRT_REGS, .sreg = ALL_REGS},
.off = { .min = 0, .max = 0},
.imm = { .min = 0, .max = 0},
.eval = eval_alu,
},
[(EBPF_ALU64 | BPF_DIV | BPF_X)] = {
.mask = { .dreg = WRT_REGS, .sreg = ALL_REGS},
.off = { .min = 0, .max = 0},
.imm = { .min = 0, .max = 0},
.eval = eval_alu,
},
[(EBPF_ALU64 | BPF_MOD | BPF_X)] = {
.mask = { .dreg = WRT_REGS, .sreg = ALL_REGS},
.off = { .min = 0, .max = 0},
.imm = { .min = 0, .max = 0},
.eval = eval_alu,
},
[(EBPF_ALU64 | EBPF_MOV | BPF_X)] = {
.mask = { .dreg = WRT_REGS, .sreg = ALL_REGS},
.off = { .min = 0, .max = 0},
.imm = { .min = 0, .max = 0},
.eval = eval_alu,
},
[(EBPF_ALU64 | BPF_NEG)] = {
.mask = { .dreg = WRT_REGS, .sreg = ZERO_REG},
.off = { .min = 0, .max = 0},
.imm = { .min = 0, .max = 0},
.eval = eval_alu,
},
/* load instructions */
[(BPF_LDX | BPF_MEM | BPF_B)] = {
.mask = {. dreg = WRT_REGS, .sreg = ALL_REGS},
.off = { .min = 0, .max = UINT16_MAX},
.imm = { .min = 0, .max = 0},
.eval = eval_load,
},
[(BPF_LDX | BPF_MEM | BPF_H)] = {
.mask = {. dreg = WRT_REGS, .sreg = ALL_REGS},
.off = { .min = 0, .max = UINT16_MAX},
.imm = { .min = 0, .max = 0},
.eval = eval_load,
},
[(BPF_LDX | BPF_MEM | BPF_W)] = {
.mask = {. dreg = WRT_REGS, .sreg = ALL_REGS},
.off = { .min = 0, .max = UINT16_MAX},
.imm = { .min = 0, .max = 0},
.eval = eval_load,
},
[(BPF_LDX | BPF_MEM | EBPF_DW)] = {
.mask = {. dreg = WRT_REGS, .sreg = ALL_REGS},
.off = { .min = 0, .max = UINT16_MAX},
.imm = { .min = 0, .max = 0},
.eval = eval_load,
},
/* load 64 bit immediate value */
[(BPF_LD | BPF_IMM | EBPF_DW)] = {
.mask = { .dreg = WRT_REGS, .sreg = ZERO_REG},
.off = { .min = 0, .max = 0},
.imm = { .min = 0, .max = UINT32_MAX},
.eval = eval_ld_imm64,
},
/* store REG instructions */
[(BPF_STX | BPF_MEM | BPF_B)] = {
.mask = { .dreg = ALL_REGS, .sreg = ALL_REGS},
.off = { .min = 0, .max = UINT16_MAX},
.imm = { .min = 0, .max = 0},
.eval = eval_store,
},
[(BPF_STX | BPF_MEM | BPF_H)] = {
.mask = { .dreg = ALL_REGS, .sreg = ALL_REGS},
.off = { .min = 0, .max = UINT16_MAX},
.imm = { .min = 0, .max = 0},
.eval = eval_store,
},
[(BPF_STX | BPF_MEM | BPF_W)] = {
.mask = { .dreg = ALL_REGS, .sreg = ALL_REGS},
.off = { .min = 0, .max = UINT16_MAX},
.imm = { .min = 0, .max = 0},
.eval = eval_store,
},
[(BPF_STX | BPF_MEM | EBPF_DW)] = {
.mask = { .dreg = ALL_REGS, .sreg = ALL_REGS},
.off = { .min = 0, .max = UINT16_MAX},
.imm = { .min = 0, .max = 0},
.eval = eval_store,
},
/* atomic add instructions */
[(BPF_STX | EBPF_XADD | BPF_W)] = {
.mask = { .dreg = ALL_REGS, .sreg = ALL_REGS},
.off = { .min = 0, .max = UINT16_MAX},
.imm = { .min = 0, .max = 0},
.eval = eval_store,
},
[(BPF_STX | EBPF_XADD | EBPF_DW)] = {
.mask = { .dreg = ALL_REGS, .sreg = ALL_REGS},
.off = { .min = 0, .max = UINT16_MAX},
.imm = { .min = 0, .max = 0},
.eval = eval_store,
},
/* store IMM instructions */
[(BPF_ST | BPF_MEM | BPF_B)] = {
.mask = { .dreg = ALL_REGS, .sreg = ZERO_REG},
.off = { .min = 0, .max = UINT16_MAX},
.imm = { .min = 0, .max = UINT32_MAX},
.eval = eval_store,
},
[(BPF_ST | BPF_MEM | BPF_H)] = {
.mask = { .dreg = ALL_REGS, .sreg = ZERO_REG},
.off = { .min = 0, .max = UINT16_MAX},
.imm = { .min = 0, .max = UINT32_MAX},
.eval = eval_store,
},
[(BPF_ST | BPF_MEM | BPF_W)] = {
.mask = { .dreg = ALL_REGS, .sreg = ZERO_REG},
.off = { .min = 0, .max = UINT16_MAX},
.imm = { .min = 0, .max = UINT32_MAX},
.eval = eval_store,
},
[(BPF_ST | BPF_MEM | EBPF_DW)] = {
.mask = { .dreg = ALL_REGS, .sreg = ZERO_REG},
.off = { .min = 0, .max = UINT16_MAX},
.imm = { .min = 0, .max = UINT32_MAX},
.eval = eval_store,
},
/* jump instruction */
[(BPF_JMP | BPF_JA)] = {
.mask = { .dreg = ZERO_REG, .sreg = ZERO_REG},
.off = { .min = 0, .max = UINT16_MAX},
.imm = { .min = 0, .max = 0},
},
/* jcc IMM instructions */
[(BPF_JMP | BPF_JEQ | BPF_K)] = {
.mask = { .dreg = ALL_REGS, .sreg = ZERO_REG},
.off = { .min = 0, .max = UINT16_MAX},
.imm = { .min = 0, .max = UINT32_MAX},
.eval = eval_jcc,
},
[(BPF_JMP | EBPF_JNE | BPF_K)] = {
.mask = { .dreg = ALL_REGS, .sreg = ZERO_REG},
.off = { .min = 0, .max = UINT16_MAX},
.imm = { .min = 0, .max = UINT32_MAX},
.eval = eval_jcc,
},
[(BPF_JMP | BPF_JGT | BPF_K)] = {
.mask = { .dreg = ALL_REGS, .sreg = ZERO_REG},
.off = { .min = 0, .max = UINT16_MAX},
.imm = { .min = 0, .max = UINT32_MAX},
.eval = eval_jcc,
},
[(BPF_JMP | EBPF_JLT | BPF_K)] = {
.mask = { .dreg = ALL_REGS, .sreg = ZERO_REG},
.off = { .min = 0, .max = UINT16_MAX},
.imm = { .min = 0, .max = UINT32_MAX},
.eval = eval_jcc,
},
[(BPF_JMP | BPF_JGE | BPF_K)] = {
.mask = { .dreg = ALL_REGS, .sreg = ZERO_REG},
.off = { .min = 0, .max = UINT16_MAX},
.imm = { .min = 0, .max = UINT32_MAX},
.eval = eval_jcc,
},
[(BPF_JMP | EBPF_JLE | BPF_K)] = {
.mask = { .dreg = ALL_REGS, .sreg = ZERO_REG},
.off = { .min = 0, .max = UINT16_MAX},
.imm = { .min = 0, .max = UINT32_MAX},
.eval = eval_jcc,
},
[(BPF_JMP | EBPF_JSGT | BPF_K)] = {
.mask = { .dreg = ALL_REGS, .sreg = ZERO_REG},
.off = { .min = 0, .max = UINT16_MAX},
.imm = { .min = 0, .max = UINT32_MAX},
.eval = eval_jcc,
},
[(BPF_JMP | EBPF_JSLT | BPF_K)] = {
.mask = { .dreg = ALL_REGS, .sreg = ZERO_REG},
.off = { .min = 0, .max = UINT16_MAX},
.imm = { .min = 0, .max = UINT32_MAX},
.eval = eval_jcc,
},
[(BPF_JMP | EBPF_JSGE | BPF_K)] = {
.mask = { .dreg = ALL_REGS, .sreg = ZERO_REG},
.off = { .min = 0, .max = UINT16_MAX},
.imm = { .min = 0, .max = UINT32_MAX},
.eval = eval_jcc,
},
[(BPF_JMP | EBPF_JSLE | BPF_K)] = {
.mask = { .dreg = ALL_REGS, .sreg = ZERO_REG},
.off = { .min = 0, .max = UINT16_MAX},
.imm = { .min = 0, .max = UINT32_MAX},
.eval = eval_jcc,
},
[(BPF_JMP | BPF_JSET | BPF_K)] = {
.mask = { .dreg = ALL_REGS, .sreg = ZERO_REG},
.off = { .min = 0, .max = UINT16_MAX},
.imm = { .min = 0, .max = UINT32_MAX},
.eval = eval_jcc,
},
/* jcc REG instructions */
[(BPF_JMP | BPF_JEQ | BPF_X)] = {
.mask = { .dreg = ALL_REGS, .sreg = ALL_REGS},
.off = { .min = 0, .max = UINT16_MAX},
.imm = { .min = 0, .max = 0},
.eval = eval_jcc,
},
[(BPF_JMP | EBPF_JNE | BPF_X)] = {
.mask = { .dreg = ALL_REGS, .sreg = ALL_REGS},
.off = { .min = 0, .max = UINT16_MAX},
.imm = { .min = 0, .max = 0},
.eval = eval_jcc,
},
[(BPF_JMP | BPF_JGT | BPF_X)] = {
.mask = { .dreg = ALL_REGS, .sreg = ALL_REGS},
.off = { .min = 0, .max = UINT16_MAX},
.imm = { .min = 0, .max = 0},
.eval = eval_jcc,
},
[(BPF_JMP | EBPF_JLT | BPF_X)] = {
.mask = { .dreg = ALL_REGS, .sreg = ALL_REGS},
.off = { .min = 0, .max = UINT16_MAX},
.imm = { .min = 0, .max = 0},
.eval = eval_jcc,
},
[(BPF_JMP | BPF_JGE | BPF_X)] = {
.mask = { .dreg = ALL_REGS, .sreg = ALL_REGS},
.off = { .min = 0, .max = UINT16_MAX},
.imm = { .min = 0, .max = 0},
.eval = eval_jcc,
},
[(BPF_JMP | EBPF_JLE | BPF_X)] = {
.mask = { .dreg = ALL_REGS, .sreg = ALL_REGS},
.off = { .min = 0, .max = UINT16_MAX},
.imm = { .min = 0, .max = 0},
.eval = eval_jcc,
},
[(BPF_JMP | EBPF_JSGT | BPF_X)] = {
.mask = { .dreg = ALL_REGS, .sreg = ALL_REGS},
.off = { .min = 0, .max = UINT16_MAX},
.imm = { .min = 0, .max = 0},
.eval = eval_jcc,
},
[(BPF_JMP | EBPF_JSLT | BPF_X)] = {
.mask = { .dreg = ALL_REGS, .sreg = ALL_REGS},
.off = { .min = 0, .max = UINT16_MAX},
.imm = { .min = 0, .max = 0},
},
[(BPF_JMP | EBPF_JSGE | BPF_X)] = {
.mask = { .dreg = ALL_REGS, .sreg = ALL_REGS},
.off = { .min = 0, .max = UINT16_MAX},
.imm = { .min = 0, .max = 0},
.eval = eval_jcc,
},
[(BPF_JMP | EBPF_JSLE | BPF_X)] = {
.mask = { .dreg = ALL_REGS, .sreg = ALL_REGS},
.off = { .min = 0, .max = UINT16_MAX},
.imm = { .min = 0, .max = 0},
.eval = eval_jcc,
},
[(BPF_JMP | BPF_JSET | BPF_X)] = {
.mask = { .dreg = ALL_REGS, .sreg = ALL_REGS},
.off = { .min = 0, .max = UINT16_MAX},
.imm = { .min = 0, .max = 0},
.eval = eval_jcc,
},
/* call instruction */
[(BPF_JMP | EBPF_CALL)] = {
.mask = { .dreg = ZERO_REG, .sreg = ZERO_REG},
.off = { .min = 0, .max = 0},
.imm = { .min = 0, .max = UINT32_MAX},
.eval = eval_call,
},
/* ret instruction */
[(BPF_JMP | EBPF_EXIT)] = {
.mask = { .dreg = ZERO_REG, .sreg = ZERO_REG},
.off = { .min = 0, .max = 0},
.imm = { .min = 0, .max = 0},
.eval = eval_exit,
},
};
/*
* make sure that instruction syntax is valid,
* and it fields don't violate partciular instrcution type restrictions.
*/
static const char *
check_syntax(const struct ebpf_insn *ins)
{
uint8_t op;
uint16_t off;
uint32_t imm;
op = ins->code;
if (ins_chk[op].mask.dreg == 0)
return "invalid opcode";
if ((ins_chk[op].mask.dreg & 1 << ins->dst_reg) == 0)
return "invalid dst-reg field";
if ((ins_chk[op].mask.sreg & 1 << ins->src_reg) == 0)
return "invalid src-reg field";
off = ins->off;
if (ins_chk[op].off.min > off || ins_chk[op].off.max < off)
return "invalid off field";
imm = ins->imm;
if (ins_chk[op].imm.min > imm || ins_chk[op].imm.max < imm)
return "invalid imm field";
if (ins_chk[op].check != NULL)
return ins_chk[op].check(ins);
return NULL;
}
/*
* helper function, return instruction index for the given node.
*/
static uint32_t
get_node_idx(const struct bpf_verifier *bvf, const struct inst_node *node)
{
return node - bvf->in;
}
/*
* helper function, used to walk through constructed CFG.
*/
static struct inst_node *
get_next_node(struct bpf_verifier *bvf, struct inst_node *node)
{
uint32_t ce, ne, dst;
ne = node->nb_edge;
ce = node->cur_edge;
if (ce == ne)
return NULL;
node->cur_edge++;
dst = node->edge_dest[ce];
return bvf->in + dst;
}
static void
set_node_colour(struct bpf_verifier *bvf, struct inst_node *node,
uint32_t new)
{
uint32_t prev;
prev = node->colour;
node->colour = new;
bvf->node_colour[prev]--;
bvf->node_colour[new]++;
}
/*
* helper function, add new edge between two nodes.
*/
static int
add_edge(struct bpf_verifier *bvf, struct inst_node *node, uint32_t nidx)
{
uint32_t ne;
if (nidx > bvf->prm->nb_ins) {
RTE_BPF_LOG(ERR, "%s: program boundary violation at pc: %u, "
"next pc: %u\n",
__func__, get_node_idx(bvf, node), nidx);
return -EINVAL;
}
ne = node->nb_edge;
if (ne >= RTE_DIM(node->edge_dest)) {
RTE_BPF_LOG(ERR, "%s: internal error at pc: %u\n",
__func__, get_node_idx(bvf, node));
return -EINVAL;
}
node->edge_dest[ne] = nidx;
node->nb_edge = ne + 1;
return 0;
}
/*
* helper function, determine type of edge between two nodes.
*/
static void
set_edge_type(struct bpf_verifier *bvf, struct inst_node *node,
const struct inst_node *next)
{
uint32_t ce, clr, type;
ce = node->cur_edge - 1;
clr = next->colour;
type = UNKNOWN_EDGE;
if (clr == WHITE)
type = TREE_EDGE;
else if (clr == GREY)
type = BACK_EDGE;
else if (clr == BLACK)
/*
* in fact it could be either direct or cross edge,
* but for now, we don't need to distinguish between them.
*/
type = CROSS_EDGE;
node->edge_type[ce] = type;
bvf->edge_type[type]++;
}
static struct inst_node *
get_prev_node(struct bpf_verifier *bvf, struct inst_node *node)
{
return bvf->in + node->prev_node;
}
/*
* Depth-First Search (DFS) through previously constructed
* Control Flow Graph (CFG).
* Information collected at this path would be used later
* to determine is there any loops, and/or unreachable instructions.
*/
static void
dfs(struct bpf_verifier *bvf)
{
struct inst_node *next, *node;
node = bvf->in;
while (node != NULL) {
if (node->colour == WHITE)
set_node_colour(bvf, node, GREY);
if (node->colour == GREY) {
/* find next unprocessed child node */
do {
next = get_next_node(bvf, node);
if (next == NULL)
break;
set_edge_type(bvf, node, next);
} while (next->colour != WHITE);
if (next != NULL) {
/* proceed with next child */
next->prev_node = get_node_idx(bvf, node);
node = next;
} else {
/*
* finished with current node and all it's kids,
* proceed with parent
*/
set_node_colour(bvf, node, BLACK);
node->cur_edge = 0;
node = get_prev_node(bvf, node);
}
} else
node = NULL;
}
}
/*
* report unreachable instructions.
*/
static void
log_unreachable(const struct bpf_verifier *bvf)
{
uint32_t i;
struct inst_node *node;
const struct ebpf_insn *ins;
for (i = 0; i != bvf->prm->nb_ins; i++) {
node = bvf->in + i;
ins = bvf->prm->ins + i;
if (node->colour == WHITE &&
ins->code != (BPF_LD | BPF_IMM | EBPF_DW))
RTE_BPF_LOG(ERR, "unreachable code at pc: %u;\n", i);
}
}
/*
* report loops detected.
*/
static void
log_loop(const struct bpf_verifier *bvf)
{
uint32_t i, j;
struct inst_node *node;
for (i = 0; i != bvf->prm->nb_ins; i++) {
node = bvf->in + i;
if (node->colour != BLACK)
continue;
for (j = 0; j != node->nb_edge; j++) {
if (node->edge_type[j] == BACK_EDGE)
RTE_BPF_LOG(ERR,
"loop at pc:%u --> pc:%u;\n",
i, node->edge_dest[j]);
}
}
}
/*
* First pass goes though all instructions in the set, checks that each
* instruction is a valid one (correct syntax, valid field values, etc.)
* and constructs control flow graph (CFG).
* Then deapth-first search is performed over the constructed graph.
* Programs with unreachable instructions and/or loops will be rejected.
*/
static int
validate(struct bpf_verifier *bvf)
{
int32_t rc;
uint32_t i;
struct inst_node *node;
const struct ebpf_insn *ins;
const char *err;
rc = 0;
for (i = 0; i < bvf->prm->nb_ins; i++) {
ins = bvf->prm->ins + i;
node = bvf->in + i;
err = check_syntax(ins);
if (err != 0) {
RTE_BPF_LOG(ERR, "%s: %s at pc: %u\n",
__func__, err, i);
rc |= -EINVAL;
}
/*
* construct CFG, jcc nodes have to outgoing edges,
* 'exit' nodes - none, all others nodes have exaclty one
* outgoing edge.
*/
switch (ins->code) {
case (BPF_JMP | EBPF_EXIT):
break;
case (BPF_JMP | BPF_JEQ | BPF_K):
case (BPF_JMP | EBPF_JNE | BPF_K):
case (BPF_JMP | BPF_JGT | BPF_K):
case (BPF_JMP | EBPF_JLT | BPF_K):
case (BPF_JMP | BPF_JGE | BPF_K):
case (BPF_JMP | EBPF_JLE | BPF_K):
case (BPF_JMP | EBPF_JSGT | BPF_K):
case (BPF_JMP | EBPF_JSLT | BPF_K):
case (BPF_JMP | EBPF_JSGE | BPF_K):
case (BPF_JMP | EBPF_JSLE | BPF_K):
case (BPF_JMP | BPF_JSET | BPF_K):
case (BPF_JMP | BPF_JEQ | BPF_X):
case (BPF_JMP | EBPF_JNE | BPF_X):
case (BPF_JMP | BPF_JGT | BPF_X):
case (BPF_JMP | EBPF_JLT | BPF_X):
case (BPF_JMP | BPF_JGE | BPF_X):
case (BPF_JMP | EBPF_JLE | BPF_X):
case (BPF_JMP | EBPF_JSGT | BPF_X):
case (BPF_JMP | EBPF_JSLT | BPF_X):
case (BPF_JMP | EBPF_JSGE | BPF_X):
case (BPF_JMP | EBPF_JSLE | BPF_X):
case (BPF_JMP | BPF_JSET | BPF_X):
rc |= add_edge(bvf, node, i + ins->off + 1);
rc |= add_edge(bvf, node, i + 1);
bvf->nb_jcc_nodes++;
break;
case (BPF_JMP | BPF_JA):
rc |= add_edge(bvf, node, i + ins->off + 1);
break;
/* load 64 bit immediate value */
case (BPF_LD | BPF_IMM | EBPF_DW):
rc |= add_edge(bvf, node, i + 2);
i++;
break;
default:
rc |= add_edge(bvf, node, i + 1);
break;
}
bvf->nb_nodes++;
bvf->node_colour[WHITE]++;
}
if (rc != 0)
return rc;
dfs(bvf);
RTE_BPF_LOG(DEBUG, "%s(%p) stats:\n"
"nb_nodes=%u;\n"
"nb_jcc_nodes=%u;\n"
"node_color={[WHITE]=%u, [GREY]=%u,, [BLACK]=%u};\n"
"edge_type={[UNKNOWN]=%u, [TREE]=%u, [BACK]=%u, [CROSS]=%u};\n",
__func__, bvf,
bvf->nb_nodes,
bvf->nb_jcc_nodes,
bvf->node_colour[WHITE], bvf->node_colour[GREY],
bvf->node_colour[BLACK],
bvf->edge_type[UNKNOWN_EDGE], bvf->edge_type[TREE_EDGE],
bvf->edge_type[BACK_EDGE], bvf->edge_type[CROSS_EDGE]);
if (bvf->node_colour[BLACK] != bvf->nb_nodes) {
RTE_BPF_LOG(ERR, "%s(%p) unreachable instructions;\n",
__func__, bvf);
log_unreachable(bvf);
return -EINVAL;
}
if (bvf->node_colour[GREY] != 0 || bvf->node_colour[WHITE] != 0 ||
bvf->edge_type[UNKNOWN_EDGE] != 0) {
RTE_BPF_LOG(ERR, "%s(%p) DFS internal error;\n",
__func__, bvf);
return -EINVAL;
}
if (bvf->edge_type[BACK_EDGE] != 0) {
RTE_BPF_LOG(ERR, "%s(%p) loops detected;\n",
__func__, bvf);
log_loop(bvf);
return -EINVAL;
}
return 0;
}
/*
* helper functions get/free eval states.
*/
static struct bpf_eval_state *
pull_eval_state(struct bpf_verifier *bvf)
{
uint32_t n;
n = bvf->evst_pool.cur;
if (n == bvf->evst_pool.num)
return NULL;
bvf->evst_pool.cur = n + 1;
return bvf->evst_pool.ent + n;
}
static void
push_eval_state(struct bpf_verifier *bvf)
{
bvf->evst_pool.cur--;
}
static void
evst_pool_fini(struct bpf_verifier *bvf)
{
bvf->evst = NULL;
free(bvf->evst_pool.ent);
memset(&bvf->evst_pool, 0, sizeof(bvf->evst_pool));
}
static int
evst_pool_init(struct bpf_verifier *bvf)
{
uint32_t n;
n = bvf->nb_jcc_nodes + 1;
bvf->evst_pool.ent = calloc(n, sizeof(bvf->evst_pool.ent[0]));
if (bvf->evst_pool.ent == NULL)
return -ENOMEM;
bvf->evst_pool.num = n;
bvf->evst_pool.cur = 0;
bvf->evst = pull_eval_state(bvf);
return 0;
}
/*
* Save current eval state.
*/
static int
save_eval_state(struct bpf_verifier *bvf, struct inst_node *node)
{
struct bpf_eval_state *st;
/* get new eval_state for this node */
st = pull_eval_state(bvf);
if (st == NULL) {
RTE_BPF_LOG(ERR,
"%s: internal error (out of space) at pc: %u\n",
__func__, get_node_idx(bvf, node));
return -ENOMEM;
}
/* make a copy of current state */
memcpy(st, bvf->evst, sizeof(*st));
/* swap current state with new one */
node->evst = bvf->evst;
bvf->evst = st;
RTE_BPF_LOG(DEBUG, "%s(bvf=%p,node=%u) old/new states: %p/%p;\n",
__func__, bvf, get_node_idx(bvf, node), node->evst, bvf->evst);
return 0;
}
/*
* Restore previous eval state and mark current eval state as free.
*/
static void
restore_eval_state(struct bpf_verifier *bvf, struct inst_node *node)
{
RTE_BPF_LOG(DEBUG, "%s(bvf=%p,node=%u) old/new states: %p/%p;\n",
__func__, bvf, get_node_idx(bvf, node), bvf->evst, node->evst);
bvf->evst = node->evst;
node->evst = NULL;
push_eval_state(bvf);
}
static void
log_eval_state(const struct bpf_verifier *bvf, const struct ebpf_insn *ins,
uint32_t pc, int32_t loglvl)
{
const struct bpf_eval_state *st;
const struct bpf_reg_val *rv;
rte_log(loglvl, rte_bpf_logtype, "%s(pc=%u):\n", __func__, pc);
st = bvf->evst;
rv = st->rv + ins->dst_reg;
rte_log(loglvl, rte_bpf_logtype,
"r%u={\n"
"\tv={type=%u, size=%zu},\n"
"\tmask=0x%" PRIx64 ",\n"
"\tu={min=0x%" PRIx64 ", max=0x%" PRIx64 "},\n"
"\ts={min=%" PRId64 ", max=%" PRId64 "},\n"
"};\n",
ins->dst_reg,
rv->v.type, rv->v.size,
rv->mask,
rv->u.min, rv->u.max,
rv->s.min, rv->s.max);
}
/*
* Do second pass through CFG and try to evaluate instructions
* via each possible path.
* Right now evaluation functionality is quite limited.
* Still need to add extra checks for:
* - use/return uninitialized registers.
* - use uninitialized data from the stack.
* - memory boundaries violation.
*/
static int
evaluate(struct bpf_verifier *bvf)
{
int32_t rc;
uint32_t idx, op;
const char *err;
const struct ebpf_insn *ins;
struct inst_node *next, *node;
/* initial state of frame pointer */
static const struct bpf_reg_val rvfp = {
.v = {
.type = RTE_BPF_ARG_PTR_STACK,
.size = MAX_BPF_STACK_SIZE,
},
.mask = UINT64_MAX,
.u = {.min = MAX_BPF_STACK_SIZE, .max = MAX_BPF_STACK_SIZE},
.s = {.min = MAX_BPF_STACK_SIZE, .max = MAX_BPF_STACK_SIZE},
};
bvf->evst->rv[EBPF_REG_1].v = bvf->prm->prog_arg;
bvf->evst->rv[EBPF_REG_1].mask = UINT64_MAX;
if (bvf->prm->prog_arg.type == RTE_BPF_ARG_RAW)
eval_max_bound(bvf->evst->rv + EBPF_REG_1, UINT64_MAX);
bvf->evst->rv[EBPF_REG_10] = rvfp;
ins = bvf->prm->ins;
node = bvf->in;
next = node;
rc = 0;
while (node != NULL && rc == 0) {
/*
* current node evaluation, make sure we evaluate
* each node only once.
*/
if (next != NULL) {
bvf->evin = node;
idx = get_node_idx(bvf, node);
op = ins[idx].code;
/* for jcc node make a copy of evaluatoion state */
if (node->nb_edge > 1)
rc |= save_eval_state(bvf, node);
if (ins_chk[op].eval != NULL && rc == 0) {
err = ins_chk[op].eval(bvf, ins + idx);
if (err != NULL) {
RTE_BPF_LOG(ERR, "%s: %s at pc: %u\n",
__func__, err, idx);
rc = -EINVAL;
}
}
log_eval_state(bvf, ins + idx, idx, RTE_LOG_DEBUG);
bvf->evin = NULL;
}
/* proceed through CFG */
next = get_next_node(bvf, node);
if (next != NULL) {
/* proceed with next child */
if (node->cur_edge == node->nb_edge &&
node->evst != NULL)
restore_eval_state(bvf, node);
next->prev_node = get_node_idx(bvf, node);
node = next;
} else {
/*
* finished with current node and all it's kids,
* proceed with parent
*/
node->cur_edge = 0;
node = get_prev_node(bvf, node);
/* finished */
if (node == bvf->in)
node = NULL;
}
}
return rc;
}
int
bpf_validate(struct rte_bpf *bpf)
{
int32_t rc;
struct bpf_verifier bvf;
/* check input argument type, don't allow mbuf ptr on 32-bit */
if (bpf->prm.prog_arg.type != RTE_BPF_ARG_RAW &&
bpf->prm.prog_arg.type != RTE_BPF_ARG_PTR &&
(sizeof(uint64_t) != sizeof(uintptr_t) ||
bpf->prm.prog_arg.type != RTE_BPF_ARG_PTR_MBUF)) {
RTE_BPF_LOG(ERR, "%s: unsupported argument type\n", __func__);
return -ENOTSUP;
}
memset(&bvf, 0, sizeof(bvf));
bvf.prm = &bpf->prm;
bvf.in = calloc(bpf->prm.nb_ins, sizeof(bvf.in[0]));
if (bvf.in == NULL)
return -ENOMEM;
rc = validate(&bvf);
if (rc == 0) {
rc = evst_pool_init(&bvf);
if (rc == 0)
rc = evaluate(&bvf);
evst_pool_fini(&bvf);
}
free(bvf.in);
/* copy collected info */
if (rc == 0)
bpf->stack_sz = bvf.stack_sz;
return rc;
}