f-stack/dpdk/kernel/linux/kni/kni_net.c

819 lines
18 KiB
C

// SPDX-License-Identifier: GPL-2.0
/*
* Copyright(c) 2010-2014 Intel Corporation.
*/
/*
* This code is inspired from the book "Linux Device Drivers" by
* Alessandro Rubini and Jonathan Corbet, published by O'Reilly & Associates
*/
#include <linux/device.h>
#include <linux/module.h>
#include <linux/version.h>
#include <linux/netdevice.h>
#include <linux/etherdevice.h> /* eth_type_trans */
#include <linux/skbuff.h>
#include <linux/kthread.h>
#include <linux/delay.h>
#include <exec-env/rte_kni_common.h>
#include <kni_fifo.h>
#include "compat.h"
#include "kni_dev.h"
#define WD_TIMEOUT 5 /*jiffies */
#define KNI_WAIT_RESPONSE_TIMEOUT 300 /* 3 seconds */
/* typedef for rx function */
typedef void (*kni_net_rx_t)(struct kni_dev *kni);
static void kni_net_rx_normal(struct kni_dev *kni);
/* kni rx function pointer, with default to normal rx */
static kni_net_rx_t kni_net_rx_func = kni_net_rx_normal;
/* physical address to kernel virtual address */
static void *
pa2kva(void *pa)
{
return phys_to_virt((unsigned long)pa);
}
/* physical address to virtual address */
static void *
pa2va(void *pa, struct rte_kni_mbuf *m)
{
void *va;
va = (void *)((unsigned long)pa +
(unsigned long)m->buf_addr -
(unsigned long)m->buf_physaddr);
return va;
}
/* mbuf data kernel virtual address from mbuf kernel virtual address */
static void *
kva2data_kva(struct rte_kni_mbuf *m)
{
return phys_to_virt(m->buf_physaddr + m->data_off);
}
/*
* It can be called to process the request.
*/
static int
kni_net_process_request(struct kni_dev *kni, struct rte_kni_request *req)
{
int ret = -1;
void *resp_va;
uint32_t num;
int ret_val;
if (!kni || !req) {
pr_err("No kni instance or request\n");
return -EINVAL;
}
mutex_lock(&kni->sync_lock);
/* Construct data */
memcpy(kni->sync_kva, req, sizeof(struct rte_kni_request));
num = kni_fifo_put(kni->req_q, &kni->sync_va, 1);
if (num < 1) {
pr_err("Cannot send to req_q\n");
ret = -EBUSY;
goto fail;
}
ret_val = wait_event_interruptible_timeout(kni->wq,
kni_fifo_count(kni->resp_q), 3 * HZ);
if (signal_pending(current) || ret_val <= 0) {
ret = -ETIME;
goto fail;
}
num = kni_fifo_get(kni->resp_q, (void **)&resp_va, 1);
if (num != 1 || resp_va != kni->sync_va) {
/* This should never happen */
pr_err("No data in resp_q\n");
ret = -ENODATA;
goto fail;
}
memcpy(req, kni->sync_kva, sizeof(struct rte_kni_request));
ret = 0;
fail:
mutex_unlock(&kni->sync_lock);
return ret;
}
/*
* Open and close
*/
static int
kni_net_open(struct net_device *dev)
{
int ret;
struct rte_kni_request req;
struct kni_dev *kni = netdev_priv(dev);
netif_start_queue(dev);
if (dflt_carrier == 1)
netif_carrier_on(dev);
else
netif_carrier_off(dev);
memset(&req, 0, sizeof(req));
req.req_id = RTE_KNI_REQ_CFG_NETWORK_IF;
/* Setting if_up to non-zero means up */
req.if_up = 1;
ret = kni_net_process_request(kni, &req);
return (ret == 0) ? req.result : ret;
}
static int
kni_net_release(struct net_device *dev)
{
int ret;
struct rte_kni_request req;
struct kni_dev *kni = netdev_priv(dev);
netif_stop_queue(dev); /* can't transmit any more */
netif_carrier_off(dev);
memset(&req, 0, sizeof(req));
req.req_id = RTE_KNI_REQ_CFG_NETWORK_IF;
/* Setting if_up to 0 means down */
req.if_up = 0;
ret = kni_net_process_request(kni, &req);
return (ret == 0) ? req.result : ret;
}
static void
kni_fifo_trans_pa2va(struct kni_dev *kni,
struct rte_kni_fifo *src_pa, struct rte_kni_fifo *dst_va)
{
uint32_t ret, i, num_dst, num_rx;
struct rte_kni_mbuf *kva, *prev_kva;
int nb_segs;
int kva_nb_segs;
do {
num_dst = kni_fifo_free_count(dst_va);
if (num_dst == 0)
return;
num_rx = min_t(uint32_t, num_dst, MBUF_BURST_SZ);
num_rx = kni_fifo_get(src_pa, kni->pa, num_rx);
if (num_rx == 0)
return;
for (i = 0; i < num_rx; i++) {
kva = pa2kva(kni->pa[i]);
kni->va[i] = pa2va(kni->pa[i], kva);
kva_nb_segs = kva->nb_segs;
for (nb_segs = 0; nb_segs < kva_nb_segs; nb_segs++) {
if (!kva->next)
break;
prev_kva = kva;
kva = pa2kva(kva->next);
/* Convert physical address to virtual address */
prev_kva->next = pa2va(prev_kva->next, kva);
}
}
ret = kni_fifo_put(dst_va, kni->va, num_rx);
if (ret != num_rx) {
/* Failing should not happen */
pr_err("Fail to enqueue entries into dst_va\n");
return;
}
} while (1);
}
/* Try to release mbufs when kni release */
void kni_net_release_fifo_phy(struct kni_dev *kni)
{
/* release rx_q first, because it can't release in userspace */
kni_fifo_trans_pa2va(kni, kni->rx_q, kni->free_q);
/* release alloc_q for speeding up kni release in userspace */
kni_fifo_trans_pa2va(kni, kni->alloc_q, kni->free_q);
}
/*
* Configuration changes (passed on by ifconfig)
*/
static int
kni_net_config(struct net_device *dev, struct ifmap *map)
{
if (dev->flags & IFF_UP) /* can't act on a running interface */
return -EBUSY;
/* ignore other fields */
return 0;
}
/*
* Transmit a packet (called by the kernel)
*/
static int
kni_net_tx(struct sk_buff *skb, struct net_device *dev)
{
int len = 0;
uint32_t ret;
struct kni_dev *kni = netdev_priv(dev);
struct rte_kni_mbuf *pkt_kva = NULL;
void *pkt_pa = NULL;
void *pkt_va = NULL;
/* save the timestamp */
#ifdef HAVE_TRANS_START_HELPER
netif_trans_update(dev);
#else
dev->trans_start = jiffies;
#endif
/* Check if the length of skb is less than mbuf size */
if (skb->len > kni->mbuf_size)
goto drop;
/**
* Check if it has at least one free entry in tx_q and
* one entry in alloc_q.
*/
if (kni_fifo_free_count(kni->tx_q) == 0 ||
kni_fifo_count(kni->alloc_q) == 0) {
/**
* If no free entry in tx_q or no entry in alloc_q,
* drops skb and goes out.
*/
goto drop;
}
/* dequeue a mbuf from alloc_q */
ret = kni_fifo_get(kni->alloc_q, &pkt_pa, 1);
if (likely(ret == 1)) {
void *data_kva;
pkt_kva = pa2kva(pkt_pa);
data_kva = kva2data_kva(pkt_kva);
pkt_va = pa2va(pkt_pa, pkt_kva);
len = skb->len;
memcpy(data_kva, skb->data, len);
if (unlikely(len < ETH_ZLEN)) {
memset(data_kva + len, 0, ETH_ZLEN - len);
len = ETH_ZLEN;
}
pkt_kva->pkt_len = len;
pkt_kva->data_len = len;
/* enqueue mbuf into tx_q */
ret = kni_fifo_put(kni->tx_q, &pkt_va, 1);
if (unlikely(ret != 1)) {
/* Failing should not happen */
pr_err("Fail to enqueue mbuf into tx_q\n");
goto drop;
}
} else {
/* Failing should not happen */
pr_err("Fail to dequeue mbuf from alloc_q\n");
goto drop;
}
/* Free skb and update statistics */
dev_kfree_skb(skb);
kni->stats.tx_bytes += len;
kni->stats.tx_packets++;
return NETDEV_TX_OK;
drop:
/* Free skb and update statistics */
dev_kfree_skb(skb);
kni->stats.tx_dropped++;
return NETDEV_TX_OK;
}
/*
* RX: normal working mode
*/
static void
kni_net_rx_normal(struct kni_dev *kni)
{
uint32_t ret;
uint32_t len;
uint32_t i, num_rx, num_fq;
struct rte_kni_mbuf *kva, *prev_kva;
void *data_kva;
struct sk_buff *skb;
struct net_device *dev = kni->net_dev;
/* Get the number of free entries in free_q */
num_fq = kni_fifo_free_count(kni->free_q);
if (num_fq == 0) {
/* No room on the free_q, bail out */
return;
}
/* Calculate the number of entries to dequeue from rx_q */
num_rx = min_t(uint32_t, num_fq, MBUF_BURST_SZ);
/* Burst dequeue from rx_q */
num_rx = kni_fifo_get(kni->rx_q, kni->pa, num_rx);
if (num_rx == 0)
return;
/* Transfer received packets to netif */
for (i = 0; i < num_rx; i++) {
kva = pa2kva(kni->pa[i]);
len = kva->pkt_len;
data_kva = kva2data_kva(kva);
kni->va[i] = pa2va(kni->pa[i], kva);
skb = dev_alloc_skb(len + 2);
if (!skb) {
/* Update statistics */
kni->stats.rx_dropped++;
continue;
}
/* Align IP on 16B boundary */
skb_reserve(skb, 2);
if (kva->nb_segs == 1) {
memcpy(skb_put(skb, len), data_kva, len);
} else {
int nb_segs;
int kva_nb_segs = kva->nb_segs;
for (nb_segs = 0; nb_segs < kva_nb_segs; nb_segs++) {
memcpy(skb_put(skb, kva->data_len),
data_kva, kva->data_len);
if (!kva->next)
break;
prev_kva = kva;
kva = pa2kva(kva->next);
data_kva = kva2data_kva(kva);
/* Convert physical address to virtual address */
prev_kva->next = pa2va(prev_kva->next, kva);
}
}
skb->dev = dev;
skb->protocol = eth_type_trans(skb, dev);
skb->ip_summed = CHECKSUM_UNNECESSARY;
/* Call netif interface */
netif_rx_ni(skb);
/* Update statistics */
kni->stats.rx_bytes += len;
kni->stats.rx_packets++;
}
/* Burst enqueue mbufs into free_q */
ret = kni_fifo_put(kni->free_q, kni->va, num_rx);
if (ret != num_rx)
/* Failing should not happen */
pr_err("Fail to enqueue entries into free_q\n");
}
/*
* RX: loopback with enqueue/dequeue fifos.
*/
static void
kni_net_rx_lo_fifo(struct kni_dev *kni)
{
uint32_t ret;
uint32_t len;
uint32_t i, num, num_rq, num_tq, num_aq, num_fq;
struct rte_kni_mbuf *kva, *next_kva;
void *data_kva;
struct rte_kni_mbuf *alloc_kva;
void *alloc_data_kva;
/* Get the number of entries in rx_q */
num_rq = kni_fifo_count(kni->rx_q);
/* Get the number of free entries in tx_q */
num_tq = kni_fifo_free_count(kni->tx_q);
/* Get the number of entries in alloc_q */
num_aq = kni_fifo_count(kni->alloc_q);
/* Get the number of free entries in free_q */
num_fq = kni_fifo_free_count(kni->free_q);
/* Calculate the number of entries to be dequeued from rx_q */
num = min(num_rq, num_tq);
num = min(num, num_aq);
num = min(num, num_fq);
num = min_t(uint32_t, num, MBUF_BURST_SZ);
/* Return if no entry to dequeue from rx_q */
if (num == 0)
return;
/* Burst dequeue from rx_q */
ret = kni_fifo_get(kni->rx_q, kni->pa, num);
if (ret == 0)
return; /* Failing should not happen */
/* Dequeue entries from alloc_q */
ret = kni_fifo_get(kni->alloc_q, kni->alloc_pa, num);
if (ret) {
num = ret;
/* Copy mbufs */
for (i = 0; i < num; i++) {
kva = pa2kva(kni->pa[i]);
len = kva->data_len;
data_kva = kva2data_kva(kva);
kni->va[i] = pa2va(kni->pa[i], kva);
while (kva->next) {
next_kva = pa2kva(kva->next);
/* Convert physical address to virtual address */
kva->next = pa2va(kva->next, next_kva);
kva = next_kva;
}
alloc_kva = pa2kva(kni->alloc_pa[i]);
alloc_data_kva = kva2data_kva(alloc_kva);
kni->alloc_va[i] = pa2va(kni->alloc_pa[i], alloc_kva);
memcpy(alloc_data_kva, data_kva, len);
alloc_kva->pkt_len = len;
alloc_kva->data_len = len;
kni->stats.tx_bytes += len;
kni->stats.rx_bytes += len;
}
/* Burst enqueue mbufs into tx_q */
ret = kni_fifo_put(kni->tx_q, kni->alloc_va, num);
if (ret != num)
/* Failing should not happen */
pr_err("Fail to enqueue mbufs into tx_q\n");
}
/* Burst enqueue mbufs into free_q */
ret = kni_fifo_put(kni->free_q, kni->va, num);
if (ret != num)
/* Failing should not happen */
pr_err("Fail to enqueue mbufs into free_q\n");
/**
* Update statistic, and enqueue/dequeue failure is impossible,
* as all queues are checked at first.
*/
kni->stats.tx_packets += num;
kni->stats.rx_packets += num;
}
/*
* RX: loopback with enqueue/dequeue fifos and sk buffer copies.
*/
static void
kni_net_rx_lo_fifo_skb(struct kni_dev *kni)
{
uint32_t ret;
uint32_t len;
uint32_t i, num_rq, num_fq, num;
struct rte_kni_mbuf *kva, *prev_kva;
void *data_kva;
struct sk_buff *skb;
struct net_device *dev = kni->net_dev;
/* Get the number of entries in rx_q */
num_rq = kni_fifo_count(kni->rx_q);
/* Get the number of free entries in free_q */
num_fq = kni_fifo_free_count(kni->free_q);
/* Calculate the number of entries to dequeue from rx_q */
num = min(num_rq, num_fq);
num = min_t(uint32_t, num, MBUF_BURST_SZ);
/* Return if no entry to dequeue from rx_q */
if (num == 0)
return;
/* Burst dequeue mbufs from rx_q */
ret = kni_fifo_get(kni->rx_q, kni->pa, num);
if (ret == 0)
return;
/* Copy mbufs to sk buffer and then call tx interface */
for (i = 0; i < num; i++) {
kva = pa2kva(kni->pa[i]);
len = kva->pkt_len;
data_kva = kva2data_kva(kva);
kni->va[i] = pa2va(kni->pa[i], kva);
skb = dev_alloc_skb(len + 2);
if (skb) {
/* Align IP on 16B boundary */
skb_reserve(skb, 2);
memcpy(skb_put(skb, len), data_kva, len);
skb->dev = dev;
skb->ip_summed = CHECKSUM_UNNECESSARY;
dev_kfree_skb(skb);
}
/* Simulate real usage, allocate/copy skb twice */
skb = dev_alloc_skb(len + 2);
if (skb == NULL) {
kni->stats.rx_dropped++;
continue;
}
/* Align IP on 16B boundary */
skb_reserve(skb, 2);
if (kva->nb_segs == 1) {
memcpy(skb_put(skb, len), data_kva, len);
} else {
int nb_segs;
int kva_nb_segs = kva->nb_segs;
for (nb_segs = 0; nb_segs < kva_nb_segs; nb_segs++) {
memcpy(skb_put(skb, kva->data_len),
data_kva, kva->data_len);
if (!kva->next)
break;
prev_kva = kva;
kva = pa2kva(kva->next);
data_kva = kva2data_kva(kva);
/* Convert physical address to virtual address */
prev_kva->next = pa2va(prev_kva->next, kva);
}
}
skb->dev = dev;
skb->ip_summed = CHECKSUM_UNNECESSARY;
kni->stats.rx_bytes += len;
kni->stats.rx_packets++;
/* call tx interface */
kni_net_tx(skb, dev);
}
/* enqueue all the mbufs from rx_q into free_q */
ret = kni_fifo_put(kni->free_q, kni->va, num);
if (ret != num)
/* Failing should not happen */
pr_err("Fail to enqueue mbufs into free_q\n");
}
/* rx interface */
void
kni_net_rx(struct kni_dev *kni)
{
/**
* It doesn't need to check if it is NULL pointer,
* as it has a default value
*/
(*kni_net_rx_func)(kni);
}
/*
* Deal with a transmit timeout.
*/
static void
kni_net_tx_timeout(struct net_device *dev)
{
struct kni_dev *kni = netdev_priv(dev);
pr_debug("Transmit timeout at %ld, latency %ld\n", jiffies,
jiffies - dev_trans_start(dev));
kni->stats.tx_errors++;
netif_wake_queue(dev);
}
/*
* Ioctl commands
*/
static int
kni_net_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
{
pr_debug("kni_net_ioctl group:%d cmd:%d\n",
((struct kni_dev *)netdev_priv(dev))->group_id, cmd);
return -EOPNOTSUPP;
}
static void
kni_net_set_rx_mode(struct net_device *dev)
{
}
static int
kni_net_change_mtu(struct net_device *dev, int new_mtu)
{
int ret;
struct rte_kni_request req;
struct kni_dev *kni = netdev_priv(dev);
pr_debug("kni_net_change_mtu new mtu %d to be set\n", new_mtu);
memset(&req, 0, sizeof(req));
req.req_id = RTE_KNI_REQ_CHANGE_MTU;
req.new_mtu = new_mtu;
ret = kni_net_process_request(kni, &req);
if (ret == 0 && req.result == 0)
dev->mtu = new_mtu;
return (ret == 0) ? req.result : ret;
}
static void
kni_net_set_promiscusity(struct net_device *netdev, int flags)
{
struct rte_kni_request req;
struct kni_dev *kni = netdev_priv(netdev);
memset(&req, 0, sizeof(req));
req.req_id = RTE_KNI_REQ_CHANGE_PROMISC;
if (netdev->flags & IFF_PROMISC)
req.promiscusity = 1;
else
req.promiscusity = 0;
kni_net_process_request(kni, &req);
}
/*
* Checks if the user space application provided the resp message
*/
void
kni_net_poll_resp(struct kni_dev *kni)
{
if (kni_fifo_count(kni->resp_q))
wake_up_interruptible(&kni->wq);
}
/*
* Return statistics to the caller
*/
static struct net_device_stats *
kni_net_stats(struct net_device *dev)
{
struct kni_dev *kni = netdev_priv(dev);
return &kni->stats;
}
/*
* Fill the eth header
*/
static int
kni_net_header(struct sk_buff *skb, struct net_device *dev,
unsigned short type, const void *daddr,
const void *saddr, uint32_t len)
{
struct ethhdr *eth = (struct ethhdr *) skb_push(skb, ETH_HLEN);
memcpy(eth->h_source, saddr ? saddr : dev->dev_addr, dev->addr_len);
memcpy(eth->h_dest, daddr ? daddr : dev->dev_addr, dev->addr_len);
eth->h_proto = htons(type);
return dev->hard_header_len;
}
/*
* Re-fill the eth header
*/
#ifdef HAVE_REBUILD_HEADER
static int
kni_net_rebuild_header(struct sk_buff *skb)
{
struct net_device *dev = skb->dev;
struct ethhdr *eth = (struct ethhdr *) skb->data;
memcpy(eth->h_source, dev->dev_addr, dev->addr_len);
memcpy(eth->h_dest, dev->dev_addr, dev->addr_len);
return 0;
}
#endif /* < 4.1.0 */
/**
* kni_net_set_mac - Change the Ethernet Address of the KNI NIC
* @netdev: network interface device structure
* @p: pointer to an address structure
*
* Returns 0 on success, negative on failure
**/
static int
kni_net_set_mac(struct net_device *netdev, void *p)
{
int ret;
struct rte_kni_request req;
struct kni_dev *kni;
struct sockaddr *addr = p;
memset(&req, 0, sizeof(req));
req.req_id = RTE_KNI_REQ_CHANGE_MAC_ADDR;
if (!is_valid_ether_addr((unsigned char *)(addr->sa_data)))
return -EADDRNOTAVAIL;
memcpy(req.mac_addr, addr->sa_data, netdev->addr_len);
memcpy(netdev->dev_addr, addr->sa_data, netdev->addr_len);
kni = netdev_priv(netdev);
ret = kni_net_process_request(kni, &req);
return (ret == 0 ? req.result : ret);
}
#ifdef HAVE_CHANGE_CARRIER_CB
static int
kni_net_change_carrier(struct net_device *dev, bool new_carrier)
{
if (new_carrier)
netif_carrier_on(dev);
else
netif_carrier_off(dev);
return 0;
}
#endif
static const struct header_ops kni_net_header_ops = {
.create = kni_net_header,
#ifdef HAVE_REBUILD_HEADER
.rebuild = kni_net_rebuild_header,
#endif /* < 4.1.0 */
.cache = NULL, /* disable caching */
};
static const struct net_device_ops kni_net_netdev_ops = {
.ndo_open = kni_net_open,
.ndo_stop = kni_net_release,
.ndo_set_config = kni_net_config,
.ndo_change_rx_flags = kni_net_set_promiscusity,
.ndo_start_xmit = kni_net_tx,
.ndo_change_mtu = kni_net_change_mtu,
.ndo_do_ioctl = kni_net_ioctl,
.ndo_set_rx_mode = kni_net_set_rx_mode,
.ndo_get_stats = kni_net_stats,
.ndo_tx_timeout = kni_net_tx_timeout,
.ndo_set_mac_address = kni_net_set_mac,
#ifdef HAVE_CHANGE_CARRIER_CB
.ndo_change_carrier = kni_net_change_carrier,
#endif
};
void
kni_net_init(struct net_device *dev)
{
struct kni_dev *kni = netdev_priv(dev);
init_waitqueue_head(&kni->wq);
mutex_init(&kni->sync_lock);
ether_setup(dev); /* assign some of the fields */
dev->netdev_ops = &kni_net_netdev_ops;
dev->header_ops = &kni_net_header_ops;
dev->watchdog_timeo = WD_TIMEOUT;
}
void
kni_net_config_lo_mode(char *lo_str)
{
if (!lo_str) {
pr_debug("loopback disabled");
return;
}
if (!strcmp(lo_str, "lo_mode_none"))
pr_debug("loopback disabled");
else if (!strcmp(lo_str, "lo_mode_fifo")) {
pr_debug("loopback mode=lo_mode_fifo enabled");
kni_net_rx_func = kni_net_rx_lo_fifo;
} else if (!strcmp(lo_str, "lo_mode_fifo_skb")) {
pr_debug("loopback mode=lo_mode_fifo_skb enabled");
kni_net_rx_func = kni_net_rx_lo_fifo_skb;
} else {
pr_debug("Unknown loopback parameter, disabled");
}
}