f-stack/dpdk/kernel/linux/kni/ethtool/ixgbe/ixgbe_x540.c

923 lines
25 KiB
C

// SPDX-License-Identifier: GPL-2.0
/*******************************************************************************
Intel 10 Gigabit PCI Express Linux driver
Copyright(c) 1999 - 2012 Intel Corporation.
Contact Information:
e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
*******************************************************************************/
#include "ixgbe_x540.h"
#include "ixgbe_type.h"
#include "ixgbe_api.h"
#include "ixgbe_common.h"
#include "ixgbe_phy.h"
static s32 ixgbe_update_flash_X540(struct ixgbe_hw *hw);
static s32 ixgbe_poll_flash_update_done_X540(struct ixgbe_hw *hw);
static s32 ixgbe_get_swfw_sync_semaphore(struct ixgbe_hw *hw);
static void ixgbe_release_swfw_sync_semaphore(struct ixgbe_hw *hw);
/**
* ixgbe_init_ops_X540 - Inits func ptrs and MAC type
* @hw: pointer to hardware structure
*
* Initialize the function pointers and assign the MAC type for X540.
* Does not touch the hardware.
**/
s32 ixgbe_init_ops_X540(struct ixgbe_hw *hw)
{
struct ixgbe_mac_info *mac = &hw->mac;
struct ixgbe_phy_info *phy = &hw->phy;
struct ixgbe_eeprom_info *eeprom = &hw->eeprom;
s32 ret_val;
ret_val = ixgbe_init_phy_ops_generic(hw);
ret_val = ixgbe_init_ops_generic(hw);
/* EEPROM */
eeprom->ops.init_params = &ixgbe_init_eeprom_params_X540;
eeprom->ops.read = &ixgbe_read_eerd_X540;
eeprom->ops.read_buffer = &ixgbe_read_eerd_buffer_X540;
eeprom->ops.write = &ixgbe_write_eewr_X540;
eeprom->ops.write_buffer = &ixgbe_write_eewr_buffer_X540;
eeprom->ops.update_checksum = &ixgbe_update_eeprom_checksum_X540;
eeprom->ops.validate_checksum = &ixgbe_validate_eeprom_checksum_X540;
eeprom->ops.calc_checksum = &ixgbe_calc_eeprom_checksum_X540;
/* PHY */
phy->ops.init = &ixgbe_init_phy_ops_generic;
phy->ops.reset = NULL;
/* MAC */
mac->ops.reset_hw = &ixgbe_reset_hw_X540;
mac->ops.get_media_type = &ixgbe_get_media_type_X540;
mac->ops.get_supported_physical_layer =
&ixgbe_get_supported_physical_layer_X540;
mac->ops.read_analog_reg8 = NULL;
mac->ops.write_analog_reg8 = NULL;
mac->ops.start_hw = &ixgbe_start_hw_X540;
mac->ops.get_san_mac_addr = &ixgbe_get_san_mac_addr_generic;
mac->ops.set_san_mac_addr = &ixgbe_set_san_mac_addr_generic;
mac->ops.get_device_caps = &ixgbe_get_device_caps_generic;
mac->ops.get_wwn_prefix = &ixgbe_get_wwn_prefix_generic;
mac->ops.get_fcoe_boot_status = &ixgbe_get_fcoe_boot_status_generic;
mac->ops.acquire_swfw_sync = &ixgbe_acquire_swfw_sync_X540;
mac->ops.release_swfw_sync = &ixgbe_release_swfw_sync_X540;
mac->ops.disable_sec_rx_path = &ixgbe_disable_sec_rx_path_generic;
mac->ops.enable_sec_rx_path = &ixgbe_enable_sec_rx_path_generic;
/* RAR, Multicast, VLAN */
mac->ops.set_vmdq = &ixgbe_set_vmdq_generic;
mac->ops.set_vmdq_san_mac = &ixgbe_set_vmdq_san_mac_generic;
mac->ops.clear_vmdq = &ixgbe_clear_vmdq_generic;
mac->ops.insert_mac_addr = &ixgbe_insert_mac_addr_generic;
mac->rar_highwater = 1;
mac->ops.set_vfta = &ixgbe_set_vfta_generic;
mac->ops.set_vlvf = &ixgbe_set_vlvf_generic;
mac->ops.clear_vfta = &ixgbe_clear_vfta_generic;
mac->ops.init_uta_tables = &ixgbe_init_uta_tables_generic;
mac->ops.set_mac_anti_spoofing = &ixgbe_set_mac_anti_spoofing;
mac->ops.set_vlan_anti_spoofing = &ixgbe_set_vlan_anti_spoofing;
/* Link */
mac->ops.get_link_capabilities =
&ixgbe_get_copper_link_capabilities_generic;
mac->ops.setup_link = &ixgbe_setup_mac_link_X540;
mac->ops.setup_rxpba = &ixgbe_set_rxpba_generic;
mac->ops.check_link = &ixgbe_check_mac_link_generic;
mac->mcft_size = 128;
mac->vft_size = 128;
mac->num_rar_entries = 128;
mac->rx_pb_size = 384;
mac->max_tx_queues = 128;
mac->max_rx_queues = 128;
mac->max_msix_vectors = ixgbe_get_pcie_msix_count_generic(hw);
/*
* FWSM register
* ARC supported; valid only if manageability features are
* enabled.
*/
mac->arc_subsystem_valid = (IXGBE_READ_REG(hw, IXGBE_FWSM) &
IXGBE_FWSM_MODE_MASK) ? true : false;
//hw->mbx.ops.init_params = ixgbe_init_mbx_params_pf;
/* LEDs */
mac->ops.blink_led_start = ixgbe_blink_led_start_X540;
mac->ops.blink_led_stop = ixgbe_blink_led_stop_X540;
/* Manageability interface */
mac->ops.set_fw_drv_ver = &ixgbe_set_fw_drv_ver_generic;
return ret_val;
}
/**
* ixgbe_get_link_capabilities_X540 - Determines link capabilities
* @hw: pointer to hardware structure
* @speed: pointer to link speed
* @autoneg: true when autoneg or autotry is enabled
*
* Determines the link capabilities by reading the AUTOC register.
**/
s32 ixgbe_get_link_capabilities_X540(struct ixgbe_hw *hw,
ixgbe_link_speed *speed,
bool *autoneg)
{
ixgbe_get_copper_link_capabilities_generic(hw, speed, autoneg);
return 0;
}
/**
* ixgbe_get_media_type_X540 - Get media type
* @hw: pointer to hardware structure
*
* Returns the media type (fiber, copper, backplane)
**/
enum ixgbe_media_type ixgbe_get_media_type_X540(struct ixgbe_hw *hw)
{
return ixgbe_media_type_copper;
}
/**
* ixgbe_setup_mac_link_X540 - Sets the auto advertised capabilities
* @hw: pointer to hardware structure
* @speed: new link speed
* @autoneg: true if autonegotiation enabled
* @autoneg_wait_to_complete: true when waiting for completion is needed
**/
s32 ixgbe_setup_mac_link_X540(struct ixgbe_hw *hw,
ixgbe_link_speed speed, bool autoneg,
bool autoneg_wait_to_complete)
{
return hw->phy.ops.setup_link_speed(hw, speed, autoneg,
autoneg_wait_to_complete);
}
/**
* ixgbe_reset_hw_X540 - Perform hardware reset
* @hw: pointer to hardware structure
*
* Resets the hardware by resetting the transmit and receive units, masks
* and clears all interrupts, and perform a reset.
**/
s32 ixgbe_reset_hw_X540(struct ixgbe_hw *hw)
{
s32 status = 0;
/*
* Userland DPDK takes the ownershiop of device
* Kernel driver here used as the simple path for ethtool only
* Won't real reset device anyway
*/
#if 0
u32 ctrl, i;
/* Call adapter stop to disable tx/rx and clear interrupts */
status = hw->mac.ops.stop_adapter(hw);
if (status != 0)
goto reset_hw_out;
/* flush pending Tx transactions */
ixgbe_clear_tx_pending(hw);
mac_reset_top:
ctrl = IXGBE_CTRL_RST;
ctrl |= IXGBE_READ_REG(hw, IXGBE_CTRL);
IXGBE_WRITE_REG(hw, IXGBE_CTRL, ctrl);
IXGBE_WRITE_FLUSH(hw);
/* Poll for reset bit to self-clear indicating reset is complete */
for (i = 0; i < 10; i++) {
udelay(1);
ctrl = IXGBE_READ_REG(hw, IXGBE_CTRL);
if (!(ctrl & IXGBE_CTRL_RST_MASK))
break;
}
if (ctrl & IXGBE_CTRL_RST_MASK) {
status = IXGBE_ERR_RESET_FAILED;
hw_dbg(hw, "Reset polling failed to complete.\n");
}
msleep(100);
/*
* Double resets are required for recovery from certain error
* conditions. Between resets, it is necessary to stall to allow time
* for any pending HW events to complete.
*/
if (hw->mac.flags & IXGBE_FLAGS_DOUBLE_RESET_REQUIRED) {
hw->mac.flags &= ~IXGBE_FLAGS_DOUBLE_RESET_REQUIRED;
goto mac_reset_top;
}
/* Set the Rx packet buffer size. */
IXGBE_WRITE_REG(hw, IXGBE_RXPBSIZE(0), 384 << IXGBE_RXPBSIZE_SHIFT);
#endif
/* Store the permanent mac address */
hw->mac.ops.get_mac_addr(hw, hw->mac.perm_addr);
/*
* Store MAC address from RAR0, clear receive address registers, and
* clear the multicast table. Also reset num_rar_entries to 128,
* since we modify this value when programming the SAN MAC address.
*/
hw->mac.num_rar_entries = 128;
hw->mac.ops.init_rx_addrs(hw);
/* Store the permanent SAN mac address */
hw->mac.ops.get_san_mac_addr(hw, hw->mac.san_addr);
/* Add the SAN MAC address to the RAR only if it's a valid address */
if (ixgbe_validate_mac_addr(hw->mac.san_addr) == 0) {
hw->mac.ops.set_rar(hw, hw->mac.num_rar_entries - 1,
hw->mac.san_addr, 0, IXGBE_RAH_AV);
/* Save the SAN MAC RAR index */
hw->mac.san_mac_rar_index = hw->mac.num_rar_entries - 1;
/* Reserve the last RAR for the SAN MAC address */
hw->mac.num_rar_entries--;
}
/* Store the alternative WWNN/WWPN prefix */
hw->mac.ops.get_wwn_prefix(hw, &hw->mac.wwnn_prefix,
&hw->mac.wwpn_prefix);
//reset_hw_out:
return status;
}
/**
* ixgbe_start_hw_X540 - Prepare hardware for Tx/Rx
* @hw: pointer to hardware structure
*
* Starts the hardware using the generic start_hw function
* and the generation start_hw function.
* Then performs revision-specific operations, if any.
**/
s32 ixgbe_start_hw_X540(struct ixgbe_hw *hw)
{
s32 ret_val = 0;
ret_val = ixgbe_start_hw_generic(hw);
if (ret_val != 0)
goto out;
ret_val = ixgbe_start_hw_gen2(hw);
out:
return ret_val;
}
/**
* ixgbe_get_supported_physical_layer_X540 - Returns physical layer type
* @hw: pointer to hardware structure
*
* Determines physical layer capabilities of the current configuration.
**/
u32 ixgbe_get_supported_physical_layer_X540(struct ixgbe_hw *hw)
{
u32 physical_layer = IXGBE_PHYSICAL_LAYER_UNKNOWN;
u16 ext_ability = 0;
hw->phy.ops.read_reg(hw, IXGBE_MDIO_PHY_EXT_ABILITY,
IXGBE_MDIO_PMA_PMD_DEV_TYPE, &ext_ability);
if (ext_ability & IXGBE_MDIO_PHY_10GBASET_ABILITY)
physical_layer |= IXGBE_PHYSICAL_LAYER_10GBASE_T;
if (ext_ability & IXGBE_MDIO_PHY_1000BASET_ABILITY)
physical_layer |= IXGBE_PHYSICAL_LAYER_1000BASE_T;
if (ext_ability & IXGBE_MDIO_PHY_100BASETX_ABILITY)
physical_layer |= IXGBE_PHYSICAL_LAYER_100BASE_TX;
return physical_layer;
}
/**
* ixgbe_init_eeprom_params_X540 - Initialize EEPROM params
* @hw: pointer to hardware structure
*
* Initializes the EEPROM parameters ixgbe_eeprom_info within the
* ixgbe_hw struct in order to set up EEPROM access.
**/
s32 ixgbe_init_eeprom_params_X540(struct ixgbe_hw *hw)
{
struct ixgbe_eeprom_info *eeprom = &hw->eeprom;
u32 eec;
u16 eeprom_size;
if (eeprom->type == ixgbe_eeprom_uninitialized) {
eeprom->semaphore_delay = 10;
eeprom->type = ixgbe_flash;
eec = IXGBE_READ_REG(hw, IXGBE_EEC);
eeprom_size = (u16)((eec & IXGBE_EEC_SIZE) >>
IXGBE_EEC_SIZE_SHIFT);
eeprom->word_size = 1 << (eeprom_size +
IXGBE_EEPROM_WORD_SIZE_SHIFT);
hw_dbg(hw, "Eeprom params: type = %d, size = %d\n",
eeprom->type, eeprom->word_size);
}
return 0;
}
/**
* ixgbe_read_eerd_X540- Read EEPROM word using EERD
* @hw: pointer to hardware structure
* @offset: offset of word in the EEPROM to read
* @data: word read from the EEPROM
*
* Reads a 16 bit word from the EEPROM using the EERD register.
**/
s32 ixgbe_read_eerd_X540(struct ixgbe_hw *hw, u16 offset, u16 *data)
{
s32 status = 0;
if (hw->mac.ops.acquire_swfw_sync(hw, IXGBE_GSSR_EEP_SM) ==
0)
status = ixgbe_read_eerd_generic(hw, offset, data);
else
status = IXGBE_ERR_SWFW_SYNC;
hw->mac.ops.release_swfw_sync(hw, IXGBE_GSSR_EEP_SM);
return status;
}
/**
* ixgbe_read_eerd_buffer_X540- Read EEPROM word(s) using EERD
* @hw: pointer to hardware structure
* @offset: offset of word in the EEPROM to read
* @words: number of words
* @data: word(s) read from the EEPROM
*
* Reads a 16 bit word(s) from the EEPROM using the EERD register.
**/
s32 ixgbe_read_eerd_buffer_X540(struct ixgbe_hw *hw,
u16 offset, u16 words, u16 *data)
{
s32 status = 0;
if (hw->mac.ops.acquire_swfw_sync(hw, IXGBE_GSSR_EEP_SM) ==
0)
status = ixgbe_read_eerd_buffer_generic(hw, offset,
words, data);
else
status = IXGBE_ERR_SWFW_SYNC;
hw->mac.ops.release_swfw_sync(hw, IXGBE_GSSR_EEP_SM);
return status;
}
/**
* ixgbe_write_eewr_X540 - Write EEPROM word using EEWR
* @hw: pointer to hardware structure
* @offset: offset of word in the EEPROM to write
* @data: word write to the EEPROM
*
* Write a 16 bit word to the EEPROM using the EEWR register.
**/
s32 ixgbe_write_eewr_X540(struct ixgbe_hw *hw, u16 offset, u16 data)
{
s32 status = 0;
if (hw->mac.ops.acquire_swfw_sync(hw, IXGBE_GSSR_EEP_SM) ==
0)
status = ixgbe_write_eewr_generic(hw, offset, data);
else
status = IXGBE_ERR_SWFW_SYNC;
hw->mac.ops.release_swfw_sync(hw, IXGBE_GSSR_EEP_SM);
return status;
}
/**
* ixgbe_write_eewr_buffer_X540 - Write EEPROM word(s) using EEWR
* @hw: pointer to hardware structure
* @offset: offset of word in the EEPROM to write
* @words: number of words
* @data: word(s) write to the EEPROM
*
* Write a 16 bit word(s) to the EEPROM using the EEWR register.
**/
s32 ixgbe_write_eewr_buffer_X540(struct ixgbe_hw *hw,
u16 offset, u16 words, u16 *data)
{
s32 status = 0;
if (hw->mac.ops.acquire_swfw_sync(hw, IXGBE_GSSR_EEP_SM) ==
0)
status = ixgbe_write_eewr_buffer_generic(hw, offset,
words, data);
else
status = IXGBE_ERR_SWFW_SYNC;
hw->mac.ops.release_swfw_sync(hw, IXGBE_GSSR_EEP_SM);
return status;
}
/**
* ixgbe_calc_eeprom_checksum_X540 - Calculates and returns the checksum
*
* This function does not use synchronization for EERD and EEWR. It can
* be used internally by function which utilize ixgbe_acquire_swfw_sync_X540.
*
* @hw: pointer to hardware structure
**/
u16 ixgbe_calc_eeprom_checksum_X540(struct ixgbe_hw *hw)
{
u16 i;
u16 j;
u16 checksum = 0;
u16 length = 0;
u16 pointer = 0;
u16 word = 0;
/*
* Do not use hw->eeprom.ops.read because we do not want to take
* the synchronization semaphores here. Instead use
* ixgbe_read_eerd_generic
*/
/* Include 0x0-0x3F in the checksum */
for (i = 0; i < IXGBE_EEPROM_CHECKSUM; i++) {
if (ixgbe_read_eerd_generic(hw, i, &word) != 0) {
hw_dbg(hw, "EEPROM read failed\n");
break;
}
checksum += word;
}
/*
* Include all data from pointers 0x3, 0x6-0xE. This excludes the
* FW, PHY module, and PCIe Expansion/Option ROM pointers.
*/
for (i = IXGBE_PCIE_ANALOG_PTR; i < IXGBE_FW_PTR; i++) {
if (i == IXGBE_PHY_PTR || i == IXGBE_OPTION_ROM_PTR)
continue;
if (ixgbe_read_eerd_generic(hw, i, &pointer) != 0) {
hw_dbg(hw, "EEPROM read failed\n");
break;
}
/* Skip pointer section if the pointer is invalid. */
if (pointer == 0xFFFF || pointer == 0 ||
pointer >= hw->eeprom.word_size)
continue;
if (ixgbe_read_eerd_generic(hw, pointer, &length) !=
0) {
hw_dbg(hw, "EEPROM read failed\n");
break;
}
/* Skip pointer section if length is invalid. */
if (length == 0xFFFF || length == 0 ||
(pointer + length) >= hw->eeprom.word_size)
continue;
for (j = pointer+1; j <= pointer+length; j++) {
if (ixgbe_read_eerd_generic(hw, j, &word) !=
0) {
hw_dbg(hw, "EEPROM read failed\n");
break;
}
checksum += word;
}
}
checksum = (u16)IXGBE_EEPROM_SUM - checksum;
return checksum;
}
/**
* ixgbe_validate_eeprom_checksum_X540 - Validate EEPROM checksum
* @hw: pointer to hardware structure
* @checksum_val: calculated checksum
*
* Performs checksum calculation and validates the EEPROM checksum. If the
* caller does not need checksum_val, the value can be NULL.
**/
s32 ixgbe_validate_eeprom_checksum_X540(struct ixgbe_hw *hw,
u16 *checksum_val)
{
s32 status;
u16 checksum;
u16 read_checksum = 0;
/*
* Read the first word from the EEPROM. If this times out or fails, do
* not continue or we could be in for a very long wait while every
* EEPROM read fails
*/
status = hw->eeprom.ops.read(hw, 0, &checksum);
if (status != 0) {
hw_dbg(hw, "EEPROM read failed\n");
goto out;
}
if (hw->mac.ops.acquire_swfw_sync(hw, IXGBE_GSSR_EEP_SM) ==
0) {
checksum = hw->eeprom.ops.calc_checksum(hw);
/*
* Do not use hw->eeprom.ops.read because we do not want to take
* the synchronization semaphores twice here.
*/
ixgbe_read_eerd_generic(hw, IXGBE_EEPROM_CHECKSUM,
&read_checksum);
/*
* Verify read checksum from EEPROM is the same as
* calculated checksum
*/
if (read_checksum != checksum)
status = IXGBE_ERR_EEPROM_CHECKSUM;
/* If the user cares, return the calculated checksum */
if (checksum_val)
*checksum_val = checksum;
} else {
status = IXGBE_ERR_SWFW_SYNC;
}
hw->mac.ops.release_swfw_sync(hw, IXGBE_GSSR_EEP_SM);
out:
return status;
}
/**
* ixgbe_update_eeprom_checksum_X540 - Updates the EEPROM checksum and flash
* @hw: pointer to hardware structure
*
* After writing EEPROM to shadow RAM using EEWR register, software calculates
* checksum and updates the EEPROM and instructs the hardware to update
* the flash.
**/
s32 ixgbe_update_eeprom_checksum_X540(struct ixgbe_hw *hw)
{
s32 status;
u16 checksum;
/*
* Read the first word from the EEPROM. If this times out or fails, do
* not continue or we could be in for a very long wait while every
* EEPROM read fails
*/
status = hw->eeprom.ops.read(hw, 0, &checksum);
if (status != 0)
hw_dbg(hw, "EEPROM read failed\n");
if (hw->mac.ops.acquire_swfw_sync(hw, IXGBE_GSSR_EEP_SM) ==
0) {
checksum = hw->eeprom.ops.calc_checksum(hw);
/*
* Do not use hw->eeprom.ops.write because we do not want to
* take the synchronization semaphores twice here.
*/
status = ixgbe_write_eewr_generic(hw, IXGBE_EEPROM_CHECKSUM,
checksum);
if (status == 0)
status = ixgbe_update_flash_X540(hw);
else
status = IXGBE_ERR_SWFW_SYNC;
}
hw->mac.ops.release_swfw_sync(hw, IXGBE_GSSR_EEP_SM);
return status;
}
/**
* ixgbe_update_flash_X540 - Instruct HW to copy EEPROM to Flash device
* @hw: pointer to hardware structure
*
* Set FLUP (bit 23) of the EEC register to instruct Hardware to copy
* EEPROM from shadow RAM to the flash device.
**/
static s32 ixgbe_update_flash_X540(struct ixgbe_hw *hw)
{
u32 flup;
s32 status = IXGBE_ERR_EEPROM;
status = ixgbe_poll_flash_update_done_X540(hw);
if (status == IXGBE_ERR_EEPROM) {
hw_dbg(hw, "Flash update time out\n");
goto out;
}
flup = IXGBE_READ_REG(hw, IXGBE_EEC) | IXGBE_EEC_FLUP;
IXGBE_WRITE_REG(hw, IXGBE_EEC, flup);
status = ixgbe_poll_flash_update_done_X540(hw);
if (status == 0)
hw_dbg(hw, "Flash update complete\n");
else
hw_dbg(hw, "Flash update time out\n");
if (hw->revision_id == 0) {
flup = IXGBE_READ_REG(hw, IXGBE_EEC);
if (flup & IXGBE_EEC_SEC1VAL) {
flup |= IXGBE_EEC_FLUP;
IXGBE_WRITE_REG(hw, IXGBE_EEC, flup);
}
status = ixgbe_poll_flash_update_done_X540(hw);
if (status == 0)
hw_dbg(hw, "Flash update complete\n");
else
hw_dbg(hw, "Flash update time out\n");
}
out:
return status;
}
/**
* ixgbe_poll_flash_update_done_X540 - Poll flash update status
* @hw: pointer to hardware structure
*
* Polls the FLUDONE (bit 26) of the EEC Register to determine when the
* flash update is done.
**/
static s32 ixgbe_poll_flash_update_done_X540(struct ixgbe_hw *hw)
{
u32 i;
u32 reg;
s32 status = IXGBE_ERR_EEPROM;
for (i = 0; i < IXGBE_FLUDONE_ATTEMPTS; i++) {
reg = IXGBE_READ_REG(hw, IXGBE_EEC);
if (reg & IXGBE_EEC_FLUDONE) {
status = 0;
break;
}
udelay(5);
}
return status;
}
/**
* ixgbe_acquire_swfw_sync_X540 - Acquire SWFW semaphore
* @hw: pointer to hardware structure
* @mask: Mask to specify which semaphore to acquire
*
* Acquires the SWFW semaphore thought the SW_FW_SYNC register for
* the specified function (CSR, PHY0, PHY1, NVM, Flash)
**/
s32 ixgbe_acquire_swfw_sync_X540(struct ixgbe_hw *hw, u16 mask)
{
u32 swfw_sync;
u32 swmask = mask;
u32 fwmask = mask << 5;
u32 hwmask = 0;
u32 timeout = 200;
u32 i;
s32 ret_val = 0;
if (swmask == IXGBE_GSSR_EEP_SM)
hwmask = IXGBE_GSSR_FLASH_SM;
/* SW only mask doesn't have FW bit pair */
if (swmask == IXGBE_GSSR_SW_MNG_SM)
fwmask = 0;
for (i = 0; i < timeout; i++) {
/*
* SW NVM semaphore bit is used for access to all
* SW_FW_SYNC bits (not just NVM)
*/
if (ixgbe_get_swfw_sync_semaphore(hw)) {
ret_val = IXGBE_ERR_SWFW_SYNC;
goto out;
}
swfw_sync = IXGBE_READ_REG(hw, IXGBE_SWFW_SYNC);
if (!(swfw_sync & (fwmask | swmask | hwmask))) {
swfw_sync |= swmask;
IXGBE_WRITE_REG(hw, IXGBE_SWFW_SYNC, swfw_sync);
ixgbe_release_swfw_sync_semaphore(hw);
msleep(5);
goto out;
} else {
/*
* Firmware currently using resource (fwmask), hardware
* currently using resource (hwmask), or other software
* thread currently using resource (swmask)
*/
ixgbe_release_swfw_sync_semaphore(hw);
msleep(5);
}
}
/* Failed to get SW only semaphore */
if (swmask == IXGBE_GSSR_SW_MNG_SM) {
ret_val = IXGBE_ERR_SWFW_SYNC;
goto out;
}
/* If the resource is not released by the FW/HW the SW can assume that
* the FW/HW malfunctions. In that case the SW should sets the SW bit(s)
* of the requested resource(s) while ignoring the corresponding FW/HW
* bits in the SW_FW_SYNC register.
*/
swfw_sync = IXGBE_READ_REG(hw, IXGBE_SWFW_SYNC);
if (swfw_sync & (fwmask | hwmask)) {
if (ixgbe_get_swfw_sync_semaphore(hw)) {
ret_val = IXGBE_ERR_SWFW_SYNC;
goto out;
}
swfw_sync |= swmask;
IXGBE_WRITE_REG(hw, IXGBE_SWFW_SYNC, swfw_sync);
ixgbe_release_swfw_sync_semaphore(hw);
msleep(5);
}
out:
return ret_val;
}
/**
* ixgbe_release_swfw_sync_X540 - Release SWFW semaphore
* @hw: pointer to hardware structure
* @mask: Mask to specify which semaphore to release
*
* Releases the SWFW semaphore through the SW_FW_SYNC register
* for the specified function (CSR, PHY0, PHY1, EVM, Flash)
**/
void ixgbe_release_swfw_sync_X540(struct ixgbe_hw *hw, u16 mask)
{
u32 swfw_sync;
u32 swmask = mask;
ixgbe_get_swfw_sync_semaphore(hw);
swfw_sync = IXGBE_READ_REG(hw, IXGBE_SWFW_SYNC);
swfw_sync &= ~swmask;
IXGBE_WRITE_REG(hw, IXGBE_SWFW_SYNC, swfw_sync);
ixgbe_release_swfw_sync_semaphore(hw);
msleep(5);
}
/**
* ixgbe_get_nvm_semaphore - Get hardware semaphore
* @hw: pointer to hardware structure
*
* Sets the hardware semaphores so SW/FW can gain control of shared resources
**/
static s32 ixgbe_get_swfw_sync_semaphore(struct ixgbe_hw *hw)
{
s32 status = IXGBE_ERR_EEPROM;
u32 timeout = 2000;
u32 i;
u32 swsm;
/* Get SMBI software semaphore between device drivers first */
for (i = 0; i < timeout; i++) {
/*
* If the SMBI bit is 0 when we read it, then the bit will be
* set and we have the semaphore
*/
swsm = IXGBE_READ_REG(hw, IXGBE_SWSM);
if (!(swsm & IXGBE_SWSM_SMBI)) {
status = 0;
break;
}
udelay(50);
}
/* Now get the semaphore between SW/FW through the REGSMP bit */
if (status == 0) {
for (i = 0; i < timeout; i++) {
swsm = IXGBE_READ_REG(hw, IXGBE_SWFW_SYNC);
if (!(swsm & IXGBE_SWFW_REGSMP))
break;
udelay(50);
}
/*
* Release semaphores and return error if SW NVM semaphore
* was not granted because we don't have access to the EEPROM
*/
if (i >= timeout) {
hw_dbg(hw, "REGSMP Software NVM semaphore not "
"granted.\n");
ixgbe_release_swfw_sync_semaphore(hw);
status = IXGBE_ERR_EEPROM;
}
} else {
hw_dbg(hw, "Software semaphore SMBI between device drivers "
"not granted.\n");
}
return status;
}
/**
* ixgbe_release_nvm_semaphore - Release hardware semaphore
* @hw: pointer to hardware structure
*
* This function clears hardware semaphore bits.
**/
static void ixgbe_release_swfw_sync_semaphore(struct ixgbe_hw *hw)
{
u32 swsm;
/* Release both semaphores by writing 0 to the bits REGSMP and SMBI */
swsm = IXGBE_READ_REG(hw, IXGBE_SWSM);
swsm &= ~IXGBE_SWSM_SMBI;
IXGBE_WRITE_REG(hw, IXGBE_SWSM, swsm);
swsm = IXGBE_READ_REG(hw, IXGBE_SWFW_SYNC);
swsm &= ~IXGBE_SWFW_REGSMP;
IXGBE_WRITE_REG(hw, IXGBE_SWFW_SYNC, swsm);
IXGBE_WRITE_FLUSH(hw);
}
/**
* ixgbe_blink_led_start_X540 - Blink LED based on index.
* @hw: pointer to hardware structure
* @index: led number to blink
*
* Devices that implement the version 2 interface:
* X540
**/
s32 ixgbe_blink_led_start_X540(struct ixgbe_hw *hw, u32 index)
{
u32 macc_reg;
u32 ledctl_reg;
ixgbe_link_speed speed;
bool link_up;
/*
* Link should be up in order for the blink bit in the LED control
* register to work. Force link and speed in the MAC if link is down.
* This will be reversed when we stop the blinking.
*/
hw->mac.ops.check_link(hw, &speed, &link_up, false);
if (link_up == false) {
macc_reg = IXGBE_READ_REG(hw, IXGBE_MACC);
macc_reg |= IXGBE_MACC_FLU | IXGBE_MACC_FSV_10G | IXGBE_MACC_FS;
IXGBE_WRITE_REG(hw, IXGBE_MACC, macc_reg);
}
/* Set the LED to LINK_UP + BLINK. */
ledctl_reg = IXGBE_READ_REG(hw, IXGBE_LEDCTL);
ledctl_reg &= ~IXGBE_LED_MODE_MASK(index);
ledctl_reg |= IXGBE_LED_BLINK(index);
IXGBE_WRITE_REG(hw, IXGBE_LEDCTL, ledctl_reg);
IXGBE_WRITE_FLUSH(hw);
return 0;
}
/**
* ixgbe_blink_led_stop_X540 - Stop blinking LED based on index.
* @hw: pointer to hardware structure
* @index: led number to stop blinking
*
* Devices that implement the version 2 interface:
* X540
**/
s32 ixgbe_blink_led_stop_X540(struct ixgbe_hw *hw, u32 index)
{
u32 macc_reg;
u32 ledctl_reg;
/* Restore the LED to its default value. */
ledctl_reg = IXGBE_READ_REG(hw, IXGBE_LEDCTL);
ledctl_reg &= ~IXGBE_LED_MODE_MASK(index);
ledctl_reg |= IXGBE_LED_LINK_ACTIVE << IXGBE_LED_MODE_SHIFT(index);
ledctl_reg &= ~IXGBE_LED_BLINK(index);
IXGBE_WRITE_REG(hw, IXGBE_LEDCTL, ledctl_reg);
/* Unforce link and speed in the MAC. */
macc_reg = IXGBE_READ_REG(hw, IXGBE_MACC);
macc_reg &= ~(IXGBE_MACC_FLU | IXGBE_MACC_FSV_10G | IXGBE_MACC_FS);
IXGBE_WRITE_REG(hw, IXGBE_MACC, macc_reg);
IXGBE_WRITE_FLUSH(hw);
return 0;
}