f-stack/dpdk/kernel/linux/kni/ethtool/ixgbe/ixgbe_common.c

4068 lines
111 KiB
C

// SPDX-License-Identifier: GPL-2.0
/*******************************************************************************
Intel 10 Gigabit PCI Express Linux driver
Copyright(c) 1999 - 2012 Intel Corporation.
Contact Information:
e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
*******************************************************************************/
#include "ixgbe_common.h"
#include "ixgbe_phy.h"
#include "ixgbe_api.h"
static s32 ixgbe_acquire_eeprom(struct ixgbe_hw *hw);
static s32 ixgbe_get_eeprom_semaphore(struct ixgbe_hw *hw);
static void ixgbe_release_eeprom_semaphore(struct ixgbe_hw *hw);
static s32 ixgbe_ready_eeprom(struct ixgbe_hw *hw);
static void ixgbe_standby_eeprom(struct ixgbe_hw *hw);
static void ixgbe_shift_out_eeprom_bits(struct ixgbe_hw *hw, u16 data,
u16 count);
static u16 ixgbe_shift_in_eeprom_bits(struct ixgbe_hw *hw, u16 count);
static void ixgbe_raise_eeprom_clk(struct ixgbe_hw *hw, u32 *eec);
static void ixgbe_lower_eeprom_clk(struct ixgbe_hw *hw, u32 *eec);
static void ixgbe_release_eeprom(struct ixgbe_hw *hw);
static s32 ixgbe_mta_vector(struct ixgbe_hw *hw, u8 *mc_addr);
static s32 ixgbe_get_san_mac_addr_offset(struct ixgbe_hw *hw,
u16 *san_mac_offset);
static s32 ixgbe_read_eeprom_buffer_bit_bang(struct ixgbe_hw *hw, u16 offset,
u16 words, u16 *data);
static s32 ixgbe_write_eeprom_buffer_bit_bang(struct ixgbe_hw *hw, u16 offset,
u16 words, u16 *data);
static s32 ixgbe_detect_eeprom_page_size_generic(struct ixgbe_hw *hw,
u16 offset);
/**
* ixgbe_init_ops_generic - Inits function ptrs
* @hw: pointer to the hardware structure
*
* Initialize the function pointers.
**/
s32 ixgbe_init_ops_generic(struct ixgbe_hw *hw)
{
struct ixgbe_eeprom_info *eeprom = &hw->eeprom;
struct ixgbe_mac_info *mac = &hw->mac;
u32 eec = IXGBE_READ_REG(hw, IXGBE_EEC);
/* EEPROM */
eeprom->ops.init_params = &ixgbe_init_eeprom_params_generic;
/* If EEPROM is valid (bit 8 = 1), use EERD otherwise use bit bang */
if (eec & IXGBE_EEC_PRES) {
eeprom->ops.read = &ixgbe_read_eerd_generic;
eeprom->ops.read_buffer = &ixgbe_read_eerd_buffer_generic;
} else {
eeprom->ops.read = &ixgbe_read_eeprom_bit_bang_generic;
eeprom->ops.read_buffer =
&ixgbe_read_eeprom_buffer_bit_bang_generic;
}
eeprom->ops.write = &ixgbe_write_eeprom_generic;
eeprom->ops.write_buffer = &ixgbe_write_eeprom_buffer_bit_bang_generic;
eeprom->ops.validate_checksum =
&ixgbe_validate_eeprom_checksum_generic;
eeprom->ops.update_checksum = &ixgbe_update_eeprom_checksum_generic;
eeprom->ops.calc_checksum = &ixgbe_calc_eeprom_checksum_generic;
/* MAC */
mac->ops.init_hw = &ixgbe_init_hw_generic;
mac->ops.reset_hw = NULL;
mac->ops.start_hw = &ixgbe_start_hw_generic;
mac->ops.clear_hw_cntrs = &ixgbe_clear_hw_cntrs_generic;
mac->ops.get_media_type = NULL;
mac->ops.get_supported_physical_layer = NULL;
mac->ops.enable_rx_dma = &ixgbe_enable_rx_dma_generic;
mac->ops.get_mac_addr = &ixgbe_get_mac_addr_generic;
mac->ops.stop_adapter = &ixgbe_stop_adapter_generic;
mac->ops.get_bus_info = &ixgbe_get_bus_info_generic;
mac->ops.set_lan_id = &ixgbe_set_lan_id_multi_port_pcie;
mac->ops.acquire_swfw_sync = &ixgbe_acquire_swfw_sync;
mac->ops.release_swfw_sync = &ixgbe_release_swfw_sync;
/* LEDs */
mac->ops.led_on = &ixgbe_led_on_generic;
mac->ops.led_off = &ixgbe_led_off_generic;
mac->ops.blink_led_start = &ixgbe_blink_led_start_generic;
mac->ops.blink_led_stop = &ixgbe_blink_led_stop_generic;
/* RAR, Multicast, VLAN */
mac->ops.set_rar = &ixgbe_set_rar_generic;
mac->ops.clear_rar = &ixgbe_clear_rar_generic;
mac->ops.insert_mac_addr = NULL;
mac->ops.set_vmdq = NULL;
mac->ops.clear_vmdq = NULL;
mac->ops.init_rx_addrs = &ixgbe_init_rx_addrs_generic;
mac->ops.update_uc_addr_list = &ixgbe_update_uc_addr_list_generic;
mac->ops.update_mc_addr_list = &ixgbe_update_mc_addr_list_generic;
mac->ops.enable_mc = &ixgbe_enable_mc_generic;
mac->ops.disable_mc = &ixgbe_disable_mc_generic;
mac->ops.clear_vfta = NULL;
mac->ops.set_vfta = NULL;
mac->ops.set_vlvf = NULL;
mac->ops.init_uta_tables = NULL;
/* Flow Control */
mac->ops.fc_enable = &ixgbe_fc_enable_generic;
/* Link */
mac->ops.get_link_capabilities = NULL;
mac->ops.setup_link = NULL;
mac->ops.check_link = NULL;
return 0;
}
/**
* ixgbe_device_supports_autoneg_fc - Check if phy supports autoneg flow
* control
* @hw: pointer to hardware structure
*
* There are several phys that do not support autoneg flow control. This
* function check the device id to see if the associated phy supports
* autoneg flow control.
**/
static s32 ixgbe_device_supports_autoneg_fc(struct ixgbe_hw *hw)
{
switch (hw->device_id) {
case IXGBE_DEV_ID_X540T:
return 0;
case IXGBE_DEV_ID_82599_T3_LOM:
return 0;
default:
return IXGBE_ERR_FC_NOT_SUPPORTED;
}
}
/**
* ixgbe_setup_fc - Set up flow control
* @hw: pointer to hardware structure
*
* Called at init time to set up flow control.
**/
static s32 ixgbe_setup_fc(struct ixgbe_hw *hw)
{
s32 ret_val = 0;
u32 reg = 0, reg_bp = 0;
u16 reg_cu = 0;
/*
* Validate the requested mode. Strict IEEE mode does not allow
* ixgbe_fc_rx_pause because it will cause us to fail at UNH.
*/
if (hw->fc.strict_ieee && hw->fc.requested_mode == ixgbe_fc_rx_pause) {
hw_dbg(hw, "ixgbe_fc_rx_pause not valid in strict IEEE mode\n");
ret_val = IXGBE_ERR_INVALID_LINK_SETTINGS;
goto out;
}
/*
* 10gig parts do not have a word in the EEPROM to determine the
* default flow control setting, so we explicitly set it to full.
*/
if (hw->fc.requested_mode == ixgbe_fc_default)
hw->fc.requested_mode = ixgbe_fc_full;
/*
* Set up the 1G and 10G flow control advertisement registers so the
* HW will be able to do fc autoneg once the cable is plugged in. If
* we link at 10G, the 1G advertisement is harmless and vice versa.
*/
switch (hw->phy.media_type) {
case ixgbe_media_type_fiber:
case ixgbe_media_type_backplane:
reg = IXGBE_READ_REG(hw, IXGBE_PCS1GANA);
reg_bp = IXGBE_READ_REG(hw, IXGBE_AUTOC);
break;
case ixgbe_media_type_copper:
hw->phy.ops.read_reg(hw, IXGBE_MDIO_AUTO_NEG_ADVT,
IXGBE_MDIO_AUTO_NEG_DEV_TYPE, &reg_cu);
break;
default:
break;
}
/*
* The possible values of fc.requested_mode are:
* 0: Flow control is completely disabled
* 1: Rx flow control is enabled (we can receive pause frames,
* but not send pause frames).
* 2: Tx flow control is enabled (we can send pause frames but
* we do not support receiving pause frames).
* 3: Both Rx and Tx flow control (symmetric) are enabled.
* other: Invalid.
*/
switch (hw->fc.requested_mode) {
case ixgbe_fc_none:
/* Flow control completely disabled by software override. */
reg &= ~(IXGBE_PCS1GANA_SYM_PAUSE | IXGBE_PCS1GANA_ASM_PAUSE);
if (hw->phy.media_type == ixgbe_media_type_backplane)
reg_bp &= ~(IXGBE_AUTOC_SYM_PAUSE |
IXGBE_AUTOC_ASM_PAUSE);
else if (hw->phy.media_type == ixgbe_media_type_copper)
reg_cu &= ~(IXGBE_TAF_SYM_PAUSE | IXGBE_TAF_ASM_PAUSE);
break;
case ixgbe_fc_tx_pause:
/*
* Tx Flow control is enabled, and Rx Flow control is
* disabled by software override.
*/
reg |= IXGBE_PCS1GANA_ASM_PAUSE;
reg &= ~IXGBE_PCS1GANA_SYM_PAUSE;
if (hw->phy.media_type == ixgbe_media_type_backplane) {
reg_bp |= IXGBE_AUTOC_ASM_PAUSE;
reg_bp &= ~IXGBE_AUTOC_SYM_PAUSE;
} else if (hw->phy.media_type == ixgbe_media_type_copper) {
reg_cu |= IXGBE_TAF_ASM_PAUSE;
reg_cu &= ~IXGBE_TAF_SYM_PAUSE;
}
break;
case ixgbe_fc_rx_pause:
/*
* Rx Flow control is enabled and Tx Flow control is
* disabled by software override. Since there really
* isn't a way to advertise that we are capable of RX
* Pause ONLY, we will advertise that we support both
* symmetric and asymmetric Rx PAUSE, as such we fall
* through to the fc_full statement. Later, we will
* disable the adapter's ability to send PAUSE frames.
*/
case ixgbe_fc_full:
/* Flow control (both Rx and Tx) is enabled by SW override. */
reg |= IXGBE_PCS1GANA_SYM_PAUSE | IXGBE_PCS1GANA_ASM_PAUSE;
if (hw->phy.media_type == ixgbe_media_type_backplane)
reg_bp |= IXGBE_AUTOC_SYM_PAUSE |
IXGBE_AUTOC_ASM_PAUSE;
else if (hw->phy.media_type == ixgbe_media_type_copper)
reg_cu |= IXGBE_TAF_SYM_PAUSE | IXGBE_TAF_ASM_PAUSE;
break;
default:
hw_dbg(hw, "Flow control param set incorrectly\n");
ret_val = IXGBE_ERR_CONFIG;
goto out;
break;
}
if (hw->mac.type != ixgbe_mac_X540) {
/*
* Enable auto-negotiation between the MAC & PHY;
* the MAC will advertise clause 37 flow control.
*/
IXGBE_WRITE_REG(hw, IXGBE_PCS1GANA, reg);
reg = IXGBE_READ_REG(hw, IXGBE_PCS1GLCTL);
/* Disable AN timeout */
if (hw->fc.strict_ieee)
reg &= ~IXGBE_PCS1GLCTL_AN_1G_TIMEOUT_EN;
IXGBE_WRITE_REG(hw, IXGBE_PCS1GLCTL, reg);
hw_dbg(hw, "Set up FC; PCS1GLCTL = 0x%08X\n", reg);
}
/*
* AUTOC restart handles negotiation of 1G and 10G on backplane
* and copper. There is no need to set the PCS1GCTL register.
*
*/
if (hw->phy.media_type == ixgbe_media_type_backplane) {
reg_bp |= IXGBE_AUTOC_AN_RESTART;
IXGBE_WRITE_REG(hw, IXGBE_AUTOC, reg_bp);
} else if ((hw->phy.media_type == ixgbe_media_type_copper) &&
(ixgbe_device_supports_autoneg_fc(hw) == 0)) {
hw->phy.ops.write_reg(hw, IXGBE_MDIO_AUTO_NEG_ADVT,
IXGBE_MDIO_AUTO_NEG_DEV_TYPE, reg_cu);
}
hw_dbg(hw, "Set up FC; IXGBE_AUTOC = 0x%08X\n", reg);
out:
return ret_val;
}
/**
* ixgbe_start_hw_generic - Prepare hardware for Tx/Rx
* @hw: pointer to hardware structure
*
* Starts the hardware by filling the bus info structure and media type, clears
* all on chip counters, initializes receive address registers, multicast
* table, VLAN filter table, calls routine to set up link and flow control
* settings, and leaves transmit and receive units disabled and uninitialized
**/
s32 ixgbe_start_hw_generic(struct ixgbe_hw *hw)
{
s32 ret_val;
u32 ctrl_ext;
/* Set the media type */
hw->phy.media_type = hw->mac.ops.get_media_type(hw);
/* PHY ops initialization must be done in reset_hw() */
/* Clear the VLAN filter table */
hw->mac.ops.clear_vfta(hw);
/* Clear statistics registers */
hw->mac.ops.clear_hw_cntrs(hw);
/* Set No Snoop Disable */
ctrl_ext = IXGBE_READ_REG(hw, IXGBE_CTRL_EXT);
ctrl_ext |= IXGBE_CTRL_EXT_NS_DIS;
IXGBE_WRITE_REG(hw, IXGBE_CTRL_EXT, ctrl_ext);
IXGBE_WRITE_FLUSH(hw);
/* Setup flow control */
ret_val = ixgbe_setup_fc(hw);
if (ret_val != 0)
goto out;
/* Clear adapter stopped flag */
hw->adapter_stopped = false;
out:
return ret_val;
}
/**
* ixgbe_start_hw_gen2 - Init sequence for common device family
* @hw: pointer to hw structure
*
* Performs the init sequence common to the second generation
* of 10 GbE devices.
* Devices in the second generation:
* 82599
* X540
**/
s32 ixgbe_start_hw_gen2(struct ixgbe_hw *hw)
{
u32 i;
u32 regval;
/* Clear the rate limiters */
for (i = 0; i < hw->mac.max_tx_queues; i++) {
IXGBE_WRITE_REG(hw, IXGBE_RTTDQSEL, i);
IXGBE_WRITE_REG(hw, IXGBE_RTTBCNRC, 0);
}
IXGBE_WRITE_FLUSH(hw);
/* Disable relaxed ordering */
for (i = 0; i < hw->mac.max_tx_queues; i++) {
regval = IXGBE_READ_REG(hw, IXGBE_DCA_TXCTRL_82599(i));
regval &= ~IXGBE_DCA_TXCTRL_DESC_WRO_EN;
IXGBE_WRITE_REG(hw, IXGBE_DCA_TXCTRL_82599(i), regval);
}
for (i = 0; i < hw->mac.max_rx_queues; i++) {
regval = IXGBE_READ_REG(hw, IXGBE_DCA_RXCTRL(i));
regval &= ~(IXGBE_DCA_RXCTRL_DATA_WRO_EN |
IXGBE_DCA_RXCTRL_HEAD_WRO_EN);
IXGBE_WRITE_REG(hw, IXGBE_DCA_RXCTRL(i), regval);
}
return 0;
}
/**
* ixgbe_init_hw_generic - Generic hardware initialization
* @hw: pointer to hardware structure
*
* Initialize the hardware by resetting the hardware, filling the bus info
* structure and media type, clears all on chip counters, initializes receive
* address registers, multicast table, VLAN filter table, calls routine to set
* up link and flow control settings, and leaves transmit and receive units
* disabled and uninitialized
**/
s32 ixgbe_init_hw_generic(struct ixgbe_hw *hw)
{
s32 status;
/* Reset the hardware */
status = hw->mac.ops.reset_hw(hw);
if (status == 0) {
/* Start the HW */
status = hw->mac.ops.start_hw(hw);
}
return status;
}
/**
* ixgbe_clear_hw_cntrs_generic - Generic clear hardware counters
* @hw: pointer to hardware structure
*
* Clears all hardware statistics counters by reading them from the hardware
* Statistics counters are clear on read.
**/
s32 ixgbe_clear_hw_cntrs_generic(struct ixgbe_hw *hw)
{
u16 i = 0;
IXGBE_READ_REG(hw, IXGBE_CRCERRS);
IXGBE_READ_REG(hw, IXGBE_ILLERRC);
IXGBE_READ_REG(hw, IXGBE_ERRBC);
IXGBE_READ_REG(hw, IXGBE_MSPDC);
for (i = 0; i < 8; i++)
IXGBE_READ_REG(hw, IXGBE_MPC(i));
IXGBE_READ_REG(hw, IXGBE_MLFC);
IXGBE_READ_REG(hw, IXGBE_MRFC);
IXGBE_READ_REG(hw, IXGBE_RLEC);
IXGBE_READ_REG(hw, IXGBE_LXONTXC);
IXGBE_READ_REG(hw, IXGBE_LXOFFTXC);
if (hw->mac.type >= ixgbe_mac_82599EB) {
IXGBE_READ_REG(hw, IXGBE_LXONRXCNT);
IXGBE_READ_REG(hw, IXGBE_LXOFFRXCNT);
} else {
IXGBE_READ_REG(hw, IXGBE_LXONRXC);
IXGBE_READ_REG(hw, IXGBE_LXOFFRXC);
}
for (i = 0; i < 8; i++) {
IXGBE_READ_REG(hw, IXGBE_PXONTXC(i));
IXGBE_READ_REG(hw, IXGBE_PXOFFTXC(i));
if (hw->mac.type >= ixgbe_mac_82599EB) {
IXGBE_READ_REG(hw, IXGBE_PXONRXCNT(i));
IXGBE_READ_REG(hw, IXGBE_PXOFFRXCNT(i));
} else {
IXGBE_READ_REG(hw, IXGBE_PXONRXC(i));
IXGBE_READ_REG(hw, IXGBE_PXOFFRXC(i));
}
}
if (hw->mac.type >= ixgbe_mac_82599EB)
for (i = 0; i < 8; i++)
IXGBE_READ_REG(hw, IXGBE_PXON2OFFCNT(i));
IXGBE_READ_REG(hw, IXGBE_PRC64);
IXGBE_READ_REG(hw, IXGBE_PRC127);
IXGBE_READ_REG(hw, IXGBE_PRC255);
IXGBE_READ_REG(hw, IXGBE_PRC511);
IXGBE_READ_REG(hw, IXGBE_PRC1023);
IXGBE_READ_REG(hw, IXGBE_PRC1522);
IXGBE_READ_REG(hw, IXGBE_GPRC);
IXGBE_READ_REG(hw, IXGBE_BPRC);
IXGBE_READ_REG(hw, IXGBE_MPRC);
IXGBE_READ_REG(hw, IXGBE_GPTC);
IXGBE_READ_REG(hw, IXGBE_GORCL);
IXGBE_READ_REG(hw, IXGBE_GORCH);
IXGBE_READ_REG(hw, IXGBE_GOTCL);
IXGBE_READ_REG(hw, IXGBE_GOTCH);
if (hw->mac.type == ixgbe_mac_82598EB)
for (i = 0; i < 8; i++)
IXGBE_READ_REG(hw, IXGBE_RNBC(i));
IXGBE_READ_REG(hw, IXGBE_RUC);
IXGBE_READ_REG(hw, IXGBE_RFC);
IXGBE_READ_REG(hw, IXGBE_ROC);
IXGBE_READ_REG(hw, IXGBE_RJC);
IXGBE_READ_REG(hw, IXGBE_MNGPRC);
IXGBE_READ_REG(hw, IXGBE_MNGPDC);
IXGBE_READ_REG(hw, IXGBE_MNGPTC);
IXGBE_READ_REG(hw, IXGBE_TORL);
IXGBE_READ_REG(hw, IXGBE_TORH);
IXGBE_READ_REG(hw, IXGBE_TPR);
IXGBE_READ_REG(hw, IXGBE_TPT);
IXGBE_READ_REG(hw, IXGBE_PTC64);
IXGBE_READ_REG(hw, IXGBE_PTC127);
IXGBE_READ_REG(hw, IXGBE_PTC255);
IXGBE_READ_REG(hw, IXGBE_PTC511);
IXGBE_READ_REG(hw, IXGBE_PTC1023);
IXGBE_READ_REG(hw, IXGBE_PTC1522);
IXGBE_READ_REG(hw, IXGBE_MPTC);
IXGBE_READ_REG(hw, IXGBE_BPTC);
for (i = 0; i < 16; i++) {
IXGBE_READ_REG(hw, IXGBE_QPRC(i));
IXGBE_READ_REG(hw, IXGBE_QPTC(i));
if (hw->mac.type >= ixgbe_mac_82599EB) {
IXGBE_READ_REG(hw, IXGBE_QBRC_L(i));
IXGBE_READ_REG(hw, IXGBE_QBRC_H(i));
IXGBE_READ_REG(hw, IXGBE_QBTC_L(i));
IXGBE_READ_REG(hw, IXGBE_QBTC_H(i));
IXGBE_READ_REG(hw, IXGBE_QPRDC(i));
} else {
IXGBE_READ_REG(hw, IXGBE_QBRC(i));
IXGBE_READ_REG(hw, IXGBE_QBTC(i));
}
}
if (hw->mac.type == ixgbe_mac_X540) {
if (hw->phy.id == 0)
ixgbe_identify_phy(hw);
hw->phy.ops.read_reg(hw, IXGBE_PCRC8ECL,
IXGBE_MDIO_PCS_DEV_TYPE, &i);
hw->phy.ops.read_reg(hw, IXGBE_PCRC8ECH,
IXGBE_MDIO_PCS_DEV_TYPE, &i);
hw->phy.ops.read_reg(hw, IXGBE_LDPCECL,
IXGBE_MDIO_PCS_DEV_TYPE, &i);
hw->phy.ops.read_reg(hw, IXGBE_LDPCECH,
IXGBE_MDIO_PCS_DEV_TYPE, &i);
}
return 0;
}
/**
* ixgbe_read_pba_string_generic - Reads part number string from EEPROM
* @hw: pointer to hardware structure
* @pba_num: stores the part number string from the EEPROM
* @pba_num_size: part number string buffer length
*
* Reads the part number string from the EEPROM.
**/
s32 ixgbe_read_pba_string_generic(struct ixgbe_hw *hw, u8 *pba_num,
u32 pba_num_size)
{
s32 ret_val;
u16 data;
u16 pba_ptr;
u16 offset;
u16 length;
if (pba_num == NULL) {
hw_dbg(hw, "PBA string buffer was null\n");
return IXGBE_ERR_INVALID_ARGUMENT;
}
ret_val = hw->eeprom.ops.read(hw, IXGBE_PBANUM0_PTR, &data);
if (ret_val) {
hw_dbg(hw, "NVM Read Error\n");
return ret_val;
}
ret_val = hw->eeprom.ops.read(hw, IXGBE_PBANUM1_PTR, &pba_ptr);
if (ret_val) {
hw_dbg(hw, "NVM Read Error\n");
return ret_val;
}
/*
* if data is not ptr guard the PBA must be in legacy format which
* means pba_ptr is actually our second data word for the PBA number
* and we can decode it into an ascii string
*/
if (data != IXGBE_PBANUM_PTR_GUARD) {
hw_dbg(hw, "NVM PBA number is not stored as string\n");
/* we will need 11 characters to store the PBA */
if (pba_num_size < 11) {
hw_dbg(hw, "PBA string buffer too small\n");
return IXGBE_ERR_NO_SPACE;
}
/* extract hex string from data and pba_ptr */
pba_num[0] = (data >> 12) & 0xF;
pba_num[1] = (data >> 8) & 0xF;
pba_num[2] = (data >> 4) & 0xF;
pba_num[3] = data & 0xF;
pba_num[4] = (pba_ptr >> 12) & 0xF;
pba_num[5] = (pba_ptr >> 8) & 0xF;
pba_num[6] = '-';
pba_num[7] = 0;
pba_num[8] = (pba_ptr >> 4) & 0xF;
pba_num[9] = pba_ptr & 0xF;
/* put a null character on the end of our string */
pba_num[10] = '\0';
/* switch all the data but the '-' to hex char */
for (offset = 0; offset < 10; offset++) {
if (pba_num[offset] < 0xA)
pba_num[offset] += '0';
else if (pba_num[offset] < 0x10)
pba_num[offset] += 'A' - 0xA;
}
return 0;
}
ret_val = hw->eeprom.ops.read(hw, pba_ptr, &length);
if (ret_val) {
hw_dbg(hw, "NVM Read Error\n");
return ret_val;
}
if (length == 0xFFFF || length == 0) {
hw_dbg(hw, "NVM PBA number section invalid length\n");
return IXGBE_ERR_PBA_SECTION;
}
/* check if pba_num buffer is big enough */
if (pba_num_size < (((u32)length * 2) - 1)) {
hw_dbg(hw, "PBA string buffer too small\n");
return IXGBE_ERR_NO_SPACE;
}
/* trim pba length from start of string */
pba_ptr++;
length--;
for (offset = 0; offset < length; offset++) {
ret_val = hw->eeprom.ops.read(hw, pba_ptr + offset, &data);
if (ret_val) {
hw_dbg(hw, "NVM Read Error\n");
return ret_val;
}
pba_num[offset * 2] = (u8)(data >> 8);
pba_num[(offset * 2) + 1] = (u8)(data & 0xFF);
}
pba_num[offset * 2] = '\0';
return 0;
}
/**
* ixgbe_get_mac_addr_generic - Generic get MAC address
* @hw: pointer to hardware structure
* @mac_addr: Adapter MAC address
*
* Reads the adapter's MAC address from first Receive Address Register (RAR0)
* A reset of the adapter must be performed prior to calling this function
* in order for the MAC address to have been loaded from the EEPROM into RAR0
**/
s32 ixgbe_get_mac_addr_generic(struct ixgbe_hw *hw, u8 *mac_addr)
{
u32 rar_high;
u32 rar_low;
u16 i;
rar_high = IXGBE_READ_REG(hw, IXGBE_RAH(0));
rar_low = IXGBE_READ_REG(hw, IXGBE_RAL(0));
for (i = 0; i < 4; i++)
mac_addr[i] = (u8)(rar_low >> (i*8));
for (i = 0; i < 2; i++)
mac_addr[i+4] = (u8)(rar_high >> (i*8));
return 0;
}
/**
* ixgbe_get_bus_info_generic - Generic set PCI bus info
* @hw: pointer to hardware structure
*
* Sets the PCI bus info (speed, width, type) within the ixgbe_hw structure
**/
s32 ixgbe_get_bus_info_generic(struct ixgbe_hw *hw)
{
struct ixgbe_mac_info *mac = &hw->mac;
u16 link_status;
hw->bus.type = ixgbe_bus_type_pci_express;
/* Get the negotiated link width and speed from PCI config space */
link_status = IXGBE_READ_PCIE_WORD(hw, IXGBE_PCI_LINK_STATUS);
switch (link_status & IXGBE_PCI_LINK_WIDTH) {
case IXGBE_PCI_LINK_WIDTH_1:
hw->bus.width = ixgbe_bus_width_pcie_x1;
break;
case IXGBE_PCI_LINK_WIDTH_2:
hw->bus.width = ixgbe_bus_width_pcie_x2;
break;
case IXGBE_PCI_LINK_WIDTH_4:
hw->bus.width = ixgbe_bus_width_pcie_x4;
break;
case IXGBE_PCI_LINK_WIDTH_8:
hw->bus.width = ixgbe_bus_width_pcie_x8;
break;
default:
hw->bus.width = ixgbe_bus_width_unknown;
break;
}
switch (link_status & IXGBE_PCI_LINK_SPEED) {
case IXGBE_PCI_LINK_SPEED_2500:
hw->bus.speed = ixgbe_bus_speed_2500;
break;
case IXGBE_PCI_LINK_SPEED_5000:
hw->bus.speed = ixgbe_bus_speed_5000;
break;
case IXGBE_PCI_LINK_SPEED_8000:
hw->bus.speed = ixgbe_bus_speed_8000;
break;
default:
hw->bus.speed = ixgbe_bus_speed_unknown;
break;
}
mac->ops.set_lan_id(hw);
return 0;
}
/**
* ixgbe_set_lan_id_multi_port_pcie - Set LAN id for PCIe multiple port devices
* @hw: pointer to the HW structure
*
* Determines the LAN function id by reading memory-mapped registers
* and swaps the port value if requested.
**/
void ixgbe_set_lan_id_multi_port_pcie(struct ixgbe_hw *hw)
{
struct ixgbe_bus_info *bus = &hw->bus;
u32 reg;
reg = IXGBE_READ_REG(hw, IXGBE_STATUS);
bus->func = (reg & IXGBE_STATUS_LAN_ID) >> IXGBE_STATUS_LAN_ID_SHIFT;
bus->lan_id = bus->func;
/* check for a port swap */
reg = IXGBE_READ_REG(hw, IXGBE_FACTPS);
if (reg & IXGBE_FACTPS_LFS)
bus->func ^= 0x1;
}
/**
* ixgbe_stop_adapter_generic - Generic stop Tx/Rx units
* @hw: pointer to hardware structure
*
* Sets the adapter_stopped flag within ixgbe_hw struct. Clears interrupts,
* disables transmit and receive units. The adapter_stopped flag is used by
* the shared code and drivers to determine if the adapter is in a stopped
* state and should not touch the hardware.
**/
s32 ixgbe_stop_adapter_generic(struct ixgbe_hw *hw)
{
u32 reg_val;
u16 i;
/*
* Set the adapter_stopped flag so other driver functions stop touching
* the hardware
*/
hw->adapter_stopped = true;
/* Disable the receive unit */
IXGBE_WRITE_REG(hw, IXGBE_RXCTRL, 0);
/* Clear interrupt mask to stop interrupts from being generated */
IXGBE_WRITE_REG(hw, IXGBE_EIMC, IXGBE_IRQ_CLEAR_MASK);
/* Clear any pending interrupts, flush previous writes */
IXGBE_READ_REG(hw, IXGBE_EICR);
/* Disable the transmit unit. Each queue must be disabled. */
for (i = 0; i < hw->mac.max_tx_queues; i++)
IXGBE_WRITE_REG(hw, IXGBE_TXDCTL(i), IXGBE_TXDCTL_SWFLSH);
/* Disable the receive unit by stopping each queue */
for (i = 0; i < hw->mac.max_rx_queues; i++) {
reg_val = IXGBE_READ_REG(hw, IXGBE_RXDCTL(i));
reg_val &= ~IXGBE_RXDCTL_ENABLE;
reg_val |= IXGBE_RXDCTL_SWFLSH;
IXGBE_WRITE_REG(hw, IXGBE_RXDCTL(i), reg_val);
}
/* flush all queues disables */
IXGBE_WRITE_FLUSH(hw);
msleep(2);
/*
* Prevent the PCI-E bus from from hanging by disabling PCI-E master
* access and verify no pending requests
*/
return ixgbe_disable_pcie_master(hw);
}
/**
* ixgbe_led_on_generic - Turns on the software controllable LEDs.
* @hw: pointer to hardware structure
* @index: led number to turn on
**/
s32 ixgbe_led_on_generic(struct ixgbe_hw *hw, u32 index)
{
u32 led_reg = IXGBE_READ_REG(hw, IXGBE_LEDCTL);
/* To turn on the LED, set mode to ON. */
led_reg &= ~IXGBE_LED_MODE_MASK(index);
led_reg |= IXGBE_LED_ON << IXGBE_LED_MODE_SHIFT(index);
IXGBE_WRITE_REG(hw, IXGBE_LEDCTL, led_reg);
IXGBE_WRITE_FLUSH(hw);
return 0;
}
/**
* ixgbe_led_off_generic - Turns off the software controllable LEDs.
* @hw: pointer to hardware structure
* @index: led number to turn off
**/
s32 ixgbe_led_off_generic(struct ixgbe_hw *hw, u32 index)
{
u32 led_reg = IXGBE_READ_REG(hw, IXGBE_LEDCTL);
/* To turn off the LED, set mode to OFF. */
led_reg &= ~IXGBE_LED_MODE_MASK(index);
led_reg |= IXGBE_LED_OFF << IXGBE_LED_MODE_SHIFT(index);
IXGBE_WRITE_REG(hw, IXGBE_LEDCTL, led_reg);
IXGBE_WRITE_FLUSH(hw);
return 0;
}
/**
* ixgbe_init_eeprom_params_generic - Initialize EEPROM params
* @hw: pointer to hardware structure
*
* Initializes the EEPROM parameters ixgbe_eeprom_info within the
* ixgbe_hw struct in order to set up EEPROM access.
**/
s32 ixgbe_init_eeprom_params_generic(struct ixgbe_hw *hw)
{
struct ixgbe_eeprom_info *eeprom = &hw->eeprom;
u32 eec;
u16 eeprom_size;
if (eeprom->type == ixgbe_eeprom_uninitialized) {
eeprom->type = ixgbe_eeprom_none;
/* Set default semaphore delay to 10ms which is a well
* tested value */
eeprom->semaphore_delay = 10;
/* Clear EEPROM page size, it will be initialized as needed */
eeprom->word_page_size = 0;
/*
* Check for EEPROM present first.
* If not present leave as none
*/
eec = IXGBE_READ_REG(hw, IXGBE_EEC);
if (eec & IXGBE_EEC_PRES) {
eeprom->type = ixgbe_eeprom_spi;
/*
* SPI EEPROM is assumed here. This code would need to
* change if a future EEPROM is not SPI.
*/
eeprom_size = (u16)((eec & IXGBE_EEC_SIZE) >>
IXGBE_EEC_SIZE_SHIFT);
eeprom->word_size = 1 << (eeprom_size +
IXGBE_EEPROM_WORD_SIZE_SHIFT);
}
if (eec & IXGBE_EEC_ADDR_SIZE)
eeprom->address_bits = 16;
else
eeprom->address_bits = 8;
hw_dbg(hw, "Eeprom params: type = %d, size = %d, address bits: "
"%d\n", eeprom->type, eeprom->word_size,
eeprom->address_bits);
}
return 0;
}
/**
* ixgbe_write_eeprom_buffer_bit_bang_generic - Write EEPROM using bit-bang
* @hw: pointer to hardware structure
* @offset: offset within the EEPROM to write
* @words: number of word(s)
* @data: 16 bit word(s) to write to EEPROM
*
* Reads 16 bit word(s) from EEPROM through bit-bang method
**/
s32 ixgbe_write_eeprom_buffer_bit_bang_generic(struct ixgbe_hw *hw, u16 offset,
u16 words, u16 *data)
{
s32 status = 0;
u16 i, count;
hw->eeprom.ops.init_params(hw);
if (words == 0) {
status = IXGBE_ERR_INVALID_ARGUMENT;
goto out;
}
if (offset + words > hw->eeprom.word_size) {
status = IXGBE_ERR_EEPROM;
goto out;
}
/*
* The EEPROM page size cannot be queried from the chip. We do lazy
* initialization. It is worth to do that when we write large buffer.
*/
if ((hw->eeprom.word_page_size == 0) &&
(words > IXGBE_EEPROM_PAGE_SIZE_MAX))
ixgbe_detect_eeprom_page_size_generic(hw, offset);
/*
* We cannot hold synchronization semaphores for too long
* to avoid other entity starvation. However it is more efficient
* to read in bursts than synchronizing access for each word.
*/
for (i = 0; i < words; i += IXGBE_EEPROM_RD_BUFFER_MAX_COUNT) {
count = (words - i) / IXGBE_EEPROM_RD_BUFFER_MAX_COUNT > 0 ?
IXGBE_EEPROM_RD_BUFFER_MAX_COUNT : (words - i);
status = ixgbe_write_eeprom_buffer_bit_bang(hw, offset + i,
count, &data[i]);
if (status != 0)
break;
}
out:
return status;
}
/**
* ixgbe_write_eeprom_buffer_bit_bang - Writes 16 bit word(s) to EEPROM
* @hw: pointer to hardware structure
* @offset: offset within the EEPROM to be written to
* @words: number of word(s)
* @data: 16 bit word(s) to be written to the EEPROM
*
* If ixgbe_eeprom_update_checksum is not called after this function, the
* EEPROM will most likely contain an invalid checksum.
**/
static s32 ixgbe_write_eeprom_buffer_bit_bang(struct ixgbe_hw *hw, u16 offset,
u16 words, u16 *data)
{
s32 status;
u16 word;
u16 page_size;
u16 i;
u8 write_opcode = IXGBE_EEPROM_WRITE_OPCODE_SPI;
/* Prepare the EEPROM for writing */
status = ixgbe_acquire_eeprom(hw);
if (status == 0) {
if (ixgbe_ready_eeprom(hw) != 0) {
ixgbe_release_eeprom(hw);
status = IXGBE_ERR_EEPROM;
}
}
if (status == 0) {
for (i = 0; i < words; i++) {
ixgbe_standby_eeprom(hw);
/* Send the WRITE ENABLE command (8 bit opcode ) */
ixgbe_shift_out_eeprom_bits(hw,
IXGBE_EEPROM_WREN_OPCODE_SPI,
IXGBE_EEPROM_OPCODE_BITS);
ixgbe_standby_eeprom(hw);
/*
* Some SPI eeproms use the 8th address bit embedded
* in the opcode
*/
if ((hw->eeprom.address_bits == 8) &&
((offset + i) >= 128))
write_opcode |= IXGBE_EEPROM_A8_OPCODE_SPI;
/* Send the Write command (8-bit opcode + addr) */
ixgbe_shift_out_eeprom_bits(hw, write_opcode,
IXGBE_EEPROM_OPCODE_BITS);
ixgbe_shift_out_eeprom_bits(hw, (u16)((offset + i) * 2),
hw->eeprom.address_bits);
page_size = hw->eeprom.word_page_size;
/* Send the data in burst via SPI*/
do {
word = data[i];
word = (word >> 8) | (word << 8);
ixgbe_shift_out_eeprom_bits(hw, word, 16);
if (page_size == 0)
break;
/* do not wrap around page */
if (((offset + i) & (page_size - 1)) ==
(page_size - 1))
break;
} while (++i < words);
ixgbe_standby_eeprom(hw);
msleep(10);
}
/* Done with writing - release the EEPROM */
ixgbe_release_eeprom(hw);
}
return status;
}
/**
* ixgbe_write_eeprom_generic - Writes 16 bit value to EEPROM
* @hw: pointer to hardware structure
* @offset: offset within the EEPROM to be written to
* @data: 16 bit word to be written to the EEPROM
*
* If ixgbe_eeprom_update_checksum is not called after this function, the
* EEPROM will most likely contain an invalid checksum.
**/
s32 ixgbe_write_eeprom_generic(struct ixgbe_hw *hw, u16 offset, u16 data)
{
s32 status;
hw->eeprom.ops.init_params(hw);
if (offset >= hw->eeprom.word_size) {
status = IXGBE_ERR_EEPROM;
goto out;
}
status = ixgbe_write_eeprom_buffer_bit_bang(hw, offset, 1, &data);
out:
return status;
}
/**
* ixgbe_read_eeprom_buffer_bit_bang_generic - Read EEPROM using bit-bang
* @hw: pointer to hardware structure
* @offset: offset within the EEPROM to be read
* @data: read 16 bit words(s) from EEPROM
* @words: number of word(s)
*
* Reads 16 bit word(s) from EEPROM through bit-bang method
**/
s32 ixgbe_read_eeprom_buffer_bit_bang_generic(struct ixgbe_hw *hw, u16 offset,
u16 words, u16 *data)
{
s32 status = 0;
u16 i, count;
hw->eeprom.ops.init_params(hw);
if (words == 0) {
status = IXGBE_ERR_INVALID_ARGUMENT;
goto out;
}
if (offset + words > hw->eeprom.word_size) {
status = IXGBE_ERR_EEPROM;
goto out;
}
/*
* We cannot hold synchronization semaphores for too long
* to avoid other entity starvation. However it is more efficient
* to read in bursts than synchronizing access for each word.
*/
for (i = 0; i < words; i += IXGBE_EEPROM_RD_BUFFER_MAX_COUNT) {
count = (words - i) / IXGBE_EEPROM_RD_BUFFER_MAX_COUNT > 0 ?
IXGBE_EEPROM_RD_BUFFER_MAX_COUNT : (words - i);
status = ixgbe_read_eeprom_buffer_bit_bang(hw, offset + i,
count, &data[i]);
if (status != 0)
break;
}
out:
return status;
}
/**
* ixgbe_read_eeprom_buffer_bit_bang - Read EEPROM using bit-bang
* @hw: pointer to hardware structure
* @offset: offset within the EEPROM to be read
* @words: number of word(s)
* @data: read 16 bit word(s) from EEPROM
*
* Reads 16 bit word(s) from EEPROM through bit-bang method
**/
static s32 ixgbe_read_eeprom_buffer_bit_bang(struct ixgbe_hw *hw, u16 offset,
u16 words, u16 *data)
{
s32 status;
u16 word_in;
u8 read_opcode = IXGBE_EEPROM_READ_OPCODE_SPI;
u16 i;
/* Prepare the EEPROM for reading */
status = ixgbe_acquire_eeprom(hw);
if (status == 0) {
if (ixgbe_ready_eeprom(hw) != 0) {
ixgbe_release_eeprom(hw);
status = IXGBE_ERR_EEPROM;
}
}
if (status == 0) {
for (i = 0; i < words; i++) {
ixgbe_standby_eeprom(hw);
/*
* Some SPI eeproms use the 8th address bit embedded
* in the opcode
*/
if ((hw->eeprom.address_bits == 8) &&
((offset + i) >= 128))
read_opcode |= IXGBE_EEPROM_A8_OPCODE_SPI;
/* Send the READ command (opcode + addr) */
ixgbe_shift_out_eeprom_bits(hw, read_opcode,
IXGBE_EEPROM_OPCODE_BITS);
ixgbe_shift_out_eeprom_bits(hw, (u16)((offset + i) * 2),
hw->eeprom.address_bits);
/* Read the data. */
word_in = ixgbe_shift_in_eeprom_bits(hw, 16);
data[i] = (word_in >> 8) | (word_in << 8);
}
/* End this read operation */
ixgbe_release_eeprom(hw);
}
return status;
}
/**
* ixgbe_read_eeprom_bit_bang_generic - Read EEPROM word using bit-bang
* @hw: pointer to hardware structure
* @offset: offset within the EEPROM to be read
* @data: read 16 bit value from EEPROM
*
* Reads 16 bit value from EEPROM through bit-bang method
**/
s32 ixgbe_read_eeprom_bit_bang_generic(struct ixgbe_hw *hw, u16 offset,
u16 *data)
{
s32 status;
hw->eeprom.ops.init_params(hw);
if (offset >= hw->eeprom.word_size) {
status = IXGBE_ERR_EEPROM;
goto out;
}
status = ixgbe_read_eeprom_buffer_bit_bang(hw, offset, 1, data);
out:
return status;
}
/**
* ixgbe_read_eerd_buffer_generic - Read EEPROM word(s) using EERD
* @hw: pointer to hardware structure
* @offset: offset of word in the EEPROM to read
* @words: number of word(s)
* @data: 16 bit word(s) from the EEPROM
*
* Reads a 16 bit word(s) from the EEPROM using the EERD register.
**/
s32 ixgbe_read_eerd_buffer_generic(struct ixgbe_hw *hw, u16 offset,
u16 words, u16 *data)
{
u32 eerd;
s32 status = 0;
u32 i;
hw->eeprom.ops.init_params(hw);
if (words == 0) {
status = IXGBE_ERR_INVALID_ARGUMENT;
goto out;
}
if (offset >= hw->eeprom.word_size) {
status = IXGBE_ERR_EEPROM;
goto out;
}
for (i = 0; i < words; i++) {
eerd = ((offset + i) << IXGBE_EEPROM_RW_ADDR_SHIFT) +
IXGBE_EEPROM_RW_REG_START;
IXGBE_WRITE_REG(hw, IXGBE_EERD, eerd);
status = ixgbe_poll_eerd_eewr_done(hw, IXGBE_NVM_POLL_READ);
if (status == 0) {
data[i] = (IXGBE_READ_REG(hw, IXGBE_EERD) >>
IXGBE_EEPROM_RW_REG_DATA);
} else {
hw_dbg(hw, "Eeprom read timed out\n");
goto out;
}
}
out:
return status;
}
/**
* ixgbe_detect_eeprom_page_size_generic - Detect EEPROM page size
* @hw: pointer to hardware structure
* @offset: offset within the EEPROM to be used as a scratch pad
*
* Discover EEPROM page size by writing marching data at given offset.
* This function is called only when we are writing a new large buffer
* at given offset so the data would be overwritten anyway.
**/
static s32 ixgbe_detect_eeprom_page_size_generic(struct ixgbe_hw *hw,
u16 offset)
{
u16 data[IXGBE_EEPROM_PAGE_SIZE_MAX];
s32 status = 0;
u16 i;
for (i = 0; i < IXGBE_EEPROM_PAGE_SIZE_MAX; i++)
data[i] = i;
hw->eeprom.word_page_size = IXGBE_EEPROM_PAGE_SIZE_MAX;
status = ixgbe_write_eeprom_buffer_bit_bang(hw, offset,
IXGBE_EEPROM_PAGE_SIZE_MAX, data);
hw->eeprom.word_page_size = 0;
if (status != 0)
goto out;
status = ixgbe_read_eeprom_buffer_bit_bang(hw, offset, 1, data);
if (status != 0)
goto out;
/*
* When writing in burst more than the actual page size
* EEPROM address wraps around current page.
*/
hw->eeprom.word_page_size = IXGBE_EEPROM_PAGE_SIZE_MAX - data[0];
hw_dbg(hw, "Detected EEPROM page size = %d words.",
hw->eeprom.word_page_size);
out:
return status;
}
/**
* ixgbe_read_eerd_generic - Read EEPROM word using EERD
* @hw: pointer to hardware structure
* @offset: offset of word in the EEPROM to read
* @data: word read from the EEPROM
*
* Reads a 16 bit word from the EEPROM using the EERD register.
**/
s32 ixgbe_read_eerd_generic(struct ixgbe_hw *hw, u16 offset, u16 *data)
{
return ixgbe_read_eerd_buffer_generic(hw, offset, 1, data);
}
/**
* ixgbe_write_eewr_buffer_generic - Write EEPROM word(s) using EEWR
* @hw: pointer to hardware structure
* @offset: offset of word in the EEPROM to write
* @words: number of word(s)
* @data: word(s) write to the EEPROM
*
* Write a 16 bit word(s) to the EEPROM using the EEWR register.
**/
s32 ixgbe_write_eewr_buffer_generic(struct ixgbe_hw *hw, u16 offset,
u16 words, u16 *data)
{
u32 eewr;
s32 status = 0;
u16 i;
hw->eeprom.ops.init_params(hw);
if (words == 0) {
status = IXGBE_ERR_INVALID_ARGUMENT;
goto out;
}
if (offset >= hw->eeprom.word_size) {
status = IXGBE_ERR_EEPROM;
goto out;
}
for (i = 0; i < words; i++) {
eewr = ((offset + i) << IXGBE_EEPROM_RW_ADDR_SHIFT) |
(data[i] << IXGBE_EEPROM_RW_REG_DATA) |
IXGBE_EEPROM_RW_REG_START;
status = ixgbe_poll_eerd_eewr_done(hw, IXGBE_NVM_POLL_WRITE);
if (status != 0) {
hw_dbg(hw, "Eeprom write EEWR timed out\n");
goto out;
}
IXGBE_WRITE_REG(hw, IXGBE_EEWR, eewr);
status = ixgbe_poll_eerd_eewr_done(hw, IXGBE_NVM_POLL_WRITE);
if (status != 0) {
hw_dbg(hw, "Eeprom write EEWR timed out\n");
goto out;
}
}
out:
return status;
}
/**
* ixgbe_write_eewr_generic - Write EEPROM word using EEWR
* @hw: pointer to hardware structure
* @offset: offset of word in the EEPROM to write
* @data: word write to the EEPROM
*
* Write a 16 bit word to the EEPROM using the EEWR register.
**/
s32 ixgbe_write_eewr_generic(struct ixgbe_hw *hw, u16 offset, u16 data)
{
return ixgbe_write_eewr_buffer_generic(hw, offset, 1, &data);
}
/**
* ixgbe_poll_eerd_eewr_done - Poll EERD read or EEWR write status
* @hw: pointer to hardware structure
* @ee_reg: EEPROM flag for polling
*
* Polls the status bit (bit 1) of the EERD or EEWR to determine when the
* read or write is done respectively.
**/
s32 ixgbe_poll_eerd_eewr_done(struct ixgbe_hw *hw, u32 ee_reg)
{
u32 i;
u32 reg;
s32 status = IXGBE_ERR_EEPROM;
for (i = 0; i < IXGBE_EERD_EEWR_ATTEMPTS; i++) {
if (ee_reg == IXGBE_NVM_POLL_READ)
reg = IXGBE_READ_REG(hw, IXGBE_EERD);
else
reg = IXGBE_READ_REG(hw, IXGBE_EEWR);
if (reg & IXGBE_EEPROM_RW_REG_DONE) {
status = 0;
break;
}
udelay(5);
}
return status;
}
/**
* ixgbe_acquire_eeprom - Acquire EEPROM using bit-bang
* @hw: pointer to hardware structure
*
* Prepares EEPROM for access using bit-bang method. This function should
* be called before issuing a command to the EEPROM.
**/
static s32 ixgbe_acquire_eeprom(struct ixgbe_hw *hw)
{
s32 status = 0;
u32 eec;
u32 i;
if (hw->mac.ops.acquire_swfw_sync(hw, IXGBE_GSSR_EEP_SM)
!= 0)
status = IXGBE_ERR_SWFW_SYNC;
if (status == 0) {
eec = IXGBE_READ_REG(hw, IXGBE_EEC);
/* Request EEPROM Access */
eec |= IXGBE_EEC_REQ;
IXGBE_WRITE_REG(hw, IXGBE_EEC, eec);
for (i = 0; i < IXGBE_EEPROM_GRANT_ATTEMPTS; i++) {
eec = IXGBE_READ_REG(hw, IXGBE_EEC);
if (eec & IXGBE_EEC_GNT)
break;
udelay(5);
}
/* Release if grant not acquired */
if (!(eec & IXGBE_EEC_GNT)) {
eec &= ~IXGBE_EEC_REQ;
IXGBE_WRITE_REG(hw, IXGBE_EEC, eec);
hw_dbg(hw, "Could not acquire EEPROM grant\n");
hw->mac.ops.release_swfw_sync(hw, IXGBE_GSSR_EEP_SM);
status = IXGBE_ERR_EEPROM;
}
/* Setup EEPROM for Read/Write */
if (status == 0) {
/* Clear CS and SK */
eec &= ~(IXGBE_EEC_CS | IXGBE_EEC_SK);
IXGBE_WRITE_REG(hw, IXGBE_EEC, eec);
IXGBE_WRITE_FLUSH(hw);
udelay(1);
}
}
return status;
}
/**
* ixgbe_get_eeprom_semaphore - Get hardware semaphore
* @hw: pointer to hardware structure
*
* Sets the hardware semaphores so EEPROM access can occur for bit-bang method
**/
static s32 ixgbe_get_eeprom_semaphore(struct ixgbe_hw *hw)
{
s32 status = IXGBE_ERR_EEPROM;
u32 timeout = 2000;
u32 i;
u32 swsm;
/* Get SMBI software semaphore between device drivers first */
for (i = 0; i < timeout; i++) {
/*
* If the SMBI bit is 0 when we read it, then the bit will be
* set and we have the semaphore
*/
swsm = IXGBE_READ_REG(hw, IXGBE_SWSM);
if (!(swsm & IXGBE_SWSM_SMBI)) {
status = 0;
break;
}
udelay(50);
}
if (i == timeout) {
hw_dbg(hw, "Driver can't access the Eeprom - SMBI Semaphore "
"not granted.\n");
/*
* this release is particularly important because our attempts
* above to get the semaphore may have succeeded, and if there
* was a timeout, we should unconditionally clear the semaphore
* bits to free the driver to make progress
*/
ixgbe_release_eeprom_semaphore(hw);
udelay(50);
/*
* one last try
* If the SMBI bit is 0 when we read it, then the bit will be
* set and we have the semaphore
*/
swsm = IXGBE_READ_REG(hw, IXGBE_SWSM);
if (!(swsm & IXGBE_SWSM_SMBI))
status = 0;
}
/* Now get the semaphore between SW/FW through the SWESMBI bit */
if (status == 0) {
for (i = 0; i < timeout; i++) {
swsm = IXGBE_READ_REG(hw, IXGBE_SWSM);
/* Set the SW EEPROM semaphore bit to request access */
swsm |= IXGBE_SWSM_SWESMBI;
IXGBE_WRITE_REG(hw, IXGBE_SWSM, swsm);
/*
* If we set the bit successfully then we got the
* semaphore.
*/
swsm = IXGBE_READ_REG(hw, IXGBE_SWSM);
if (swsm & IXGBE_SWSM_SWESMBI)
break;
udelay(50);
}
/*
* Release semaphores and return error if SW EEPROM semaphore
* was not granted because we don't have access to the EEPROM
*/
if (i >= timeout) {
hw_dbg(hw, "SWESMBI Software EEPROM semaphore "
"not granted.\n");
ixgbe_release_eeprom_semaphore(hw);
status = IXGBE_ERR_EEPROM;
}
} else {
hw_dbg(hw, "Software semaphore SMBI between device drivers "
"not granted.\n");
}
return status;
}
/**
* ixgbe_release_eeprom_semaphore - Release hardware semaphore
* @hw: pointer to hardware structure
*
* This function clears hardware semaphore bits.
**/
static void ixgbe_release_eeprom_semaphore(struct ixgbe_hw *hw)
{
u32 swsm;
swsm = IXGBE_READ_REG(hw, IXGBE_SWSM);
/* Release both semaphores by writing 0 to the bits SWESMBI and SMBI */
swsm &= ~(IXGBE_SWSM_SWESMBI | IXGBE_SWSM_SMBI);
IXGBE_WRITE_REG(hw, IXGBE_SWSM, swsm);
IXGBE_WRITE_FLUSH(hw);
}
/**
* ixgbe_ready_eeprom - Polls for EEPROM ready
* @hw: pointer to hardware structure
**/
static s32 ixgbe_ready_eeprom(struct ixgbe_hw *hw)
{
s32 status = 0;
u16 i;
u8 spi_stat_reg;
/*
* Read "Status Register" repeatedly until the LSB is cleared. The
* EEPROM will signal that the command has been completed by clearing
* bit 0 of the internal status register. If it's not cleared within
* 5 milliseconds, then error out.
*/
for (i = 0; i < IXGBE_EEPROM_MAX_RETRY_SPI; i += 5) {
ixgbe_shift_out_eeprom_bits(hw, IXGBE_EEPROM_RDSR_OPCODE_SPI,
IXGBE_EEPROM_OPCODE_BITS);
spi_stat_reg = (u8)ixgbe_shift_in_eeprom_bits(hw, 8);
if (!(spi_stat_reg & IXGBE_EEPROM_STATUS_RDY_SPI))
break;
udelay(5);
ixgbe_standby_eeprom(hw);
};
/*
* On some parts, SPI write time could vary from 0-20mSec on 3.3V
* devices (and only 0-5mSec on 5V devices)
*/
if (i >= IXGBE_EEPROM_MAX_RETRY_SPI) {
hw_dbg(hw, "SPI EEPROM Status error\n");
status = IXGBE_ERR_EEPROM;
}
return status;
}
/**
* ixgbe_standby_eeprom - Returns EEPROM to a "standby" state
* @hw: pointer to hardware structure
**/
static void ixgbe_standby_eeprom(struct ixgbe_hw *hw)
{
u32 eec;
eec = IXGBE_READ_REG(hw, IXGBE_EEC);
/* Toggle CS to flush commands */
eec |= IXGBE_EEC_CS;
IXGBE_WRITE_REG(hw, IXGBE_EEC, eec);
IXGBE_WRITE_FLUSH(hw);
udelay(1);
eec &= ~IXGBE_EEC_CS;
IXGBE_WRITE_REG(hw, IXGBE_EEC, eec);
IXGBE_WRITE_FLUSH(hw);
udelay(1);
}
/**
* ixgbe_shift_out_eeprom_bits - Shift data bits out to the EEPROM.
* @hw: pointer to hardware structure
* @data: data to send to the EEPROM
* @count: number of bits to shift out
**/
static void ixgbe_shift_out_eeprom_bits(struct ixgbe_hw *hw, u16 data,
u16 count)
{
u32 eec;
u32 mask;
u32 i;
eec = IXGBE_READ_REG(hw, IXGBE_EEC);
/*
* Mask is used to shift "count" bits of "data" out to the EEPROM
* one bit at a time. Determine the starting bit based on count
*/
mask = 0x01 << (count - 1);
for (i = 0; i < count; i++) {
/*
* A "1" is shifted out to the EEPROM by setting bit "DI" to a
* "1", and then raising and then lowering the clock (the SK
* bit controls the clock input to the EEPROM). A "0" is
* shifted out to the EEPROM by setting "DI" to "0" and then
* raising and then lowering the clock.
*/
if (data & mask)
eec |= IXGBE_EEC_DI;
else
eec &= ~IXGBE_EEC_DI;
IXGBE_WRITE_REG(hw, IXGBE_EEC, eec);
IXGBE_WRITE_FLUSH(hw);
udelay(1);
ixgbe_raise_eeprom_clk(hw, &eec);
ixgbe_lower_eeprom_clk(hw, &eec);
/*
* Shift mask to signify next bit of data to shift in to the
* EEPROM
*/
mask = mask >> 1;
};
/* We leave the "DI" bit set to "0" when we leave this routine. */
eec &= ~IXGBE_EEC_DI;
IXGBE_WRITE_REG(hw, IXGBE_EEC, eec);
IXGBE_WRITE_FLUSH(hw);
}
/**
* ixgbe_shift_in_eeprom_bits - Shift data bits in from the EEPROM
* @hw: pointer to hardware structure
**/
static u16 ixgbe_shift_in_eeprom_bits(struct ixgbe_hw *hw, u16 count)
{
u32 eec;
u32 i;
u16 data = 0;
/*
* In order to read a register from the EEPROM, we need to shift
* 'count' bits in from the EEPROM. Bits are "shifted in" by raising
* the clock input to the EEPROM (setting the SK bit), and then reading
* the value of the "DO" bit. During this "shifting in" process the
* "DI" bit should always be clear.
*/
eec = IXGBE_READ_REG(hw, IXGBE_EEC);
eec &= ~(IXGBE_EEC_DO | IXGBE_EEC_DI);
for (i = 0; i < count; i++) {
data = data << 1;
ixgbe_raise_eeprom_clk(hw, &eec);
eec = IXGBE_READ_REG(hw, IXGBE_EEC);
eec &= ~(IXGBE_EEC_DI);
if (eec & IXGBE_EEC_DO)
data |= 1;
ixgbe_lower_eeprom_clk(hw, &eec);
}
return data;
}
/**
* ixgbe_raise_eeprom_clk - Raises the EEPROM's clock input.
* @hw: pointer to hardware structure
* @eec: EEC register's current value
**/
static void ixgbe_raise_eeprom_clk(struct ixgbe_hw *hw, u32 *eec)
{
/*
* Raise the clock input to the EEPROM
* (setting the SK bit), then delay
*/
*eec = *eec | IXGBE_EEC_SK;
IXGBE_WRITE_REG(hw, IXGBE_EEC, *eec);
IXGBE_WRITE_FLUSH(hw);
udelay(1);
}
/**
* ixgbe_lower_eeprom_clk - Lowers the EEPROM's clock input.
* @hw: pointer to hardware structure
* @eecd: EECD's current value
**/
static void ixgbe_lower_eeprom_clk(struct ixgbe_hw *hw, u32 *eec)
{
/*
* Lower the clock input to the EEPROM (clearing the SK bit), then
* delay
*/
*eec = *eec & ~IXGBE_EEC_SK;
IXGBE_WRITE_REG(hw, IXGBE_EEC, *eec);
IXGBE_WRITE_FLUSH(hw);
udelay(1);
}
/**
* ixgbe_release_eeprom - Release EEPROM, release semaphores
* @hw: pointer to hardware structure
**/
static void ixgbe_release_eeprom(struct ixgbe_hw *hw)
{
u32 eec;
eec = IXGBE_READ_REG(hw, IXGBE_EEC);
eec |= IXGBE_EEC_CS; /* Pull CS high */
eec &= ~IXGBE_EEC_SK; /* Lower SCK */
IXGBE_WRITE_REG(hw, IXGBE_EEC, eec);
IXGBE_WRITE_FLUSH(hw);
udelay(1);
/* Stop requesting EEPROM access */
eec &= ~IXGBE_EEC_REQ;
IXGBE_WRITE_REG(hw, IXGBE_EEC, eec);
hw->mac.ops.release_swfw_sync(hw, IXGBE_GSSR_EEP_SM);
/* Delay before attempt to obtain semaphore again to allow FW access */
msleep(hw->eeprom.semaphore_delay);
}
/**
* ixgbe_calc_eeprom_checksum_generic - Calculates and returns the checksum
* @hw: pointer to hardware structure
**/
u16 ixgbe_calc_eeprom_checksum_generic(struct ixgbe_hw *hw)
{
u16 i;
u16 j;
u16 checksum = 0;
u16 length = 0;
u16 pointer = 0;
u16 word = 0;
/* Include 0x0-0x3F in the checksum */
for (i = 0; i < IXGBE_EEPROM_CHECKSUM; i++) {
if (hw->eeprom.ops.read(hw, i, &word) != 0) {
hw_dbg(hw, "EEPROM read failed\n");
break;
}
checksum += word;
}
/* Include all data from pointers except for the fw pointer */
for (i = IXGBE_PCIE_ANALOG_PTR; i < IXGBE_FW_PTR; i++) {
hw->eeprom.ops.read(hw, i, &pointer);
/* Make sure the pointer seems valid */
if (pointer != 0xFFFF && pointer != 0) {
hw->eeprom.ops.read(hw, pointer, &length);
if (length != 0xFFFF && length != 0) {
for (j = pointer+1; j <= pointer+length; j++) {
hw->eeprom.ops.read(hw, j, &word);
checksum += word;
}
}
}
}
checksum = (u16)IXGBE_EEPROM_SUM - checksum;
return checksum;
}
/**
* ixgbe_validate_eeprom_checksum_generic - Validate EEPROM checksum
* @hw: pointer to hardware structure
* @checksum_val: calculated checksum
*
* Performs checksum calculation and validates the EEPROM checksum. If the
* caller does not need checksum_val, the value can be NULL.
**/
s32 ixgbe_validate_eeprom_checksum_generic(struct ixgbe_hw *hw,
u16 *checksum_val)
{
s32 status;
u16 checksum;
u16 read_checksum = 0;
/*
* Read the first word from the EEPROM. If this times out or fails, do
* not continue or we could be in for a very long wait while every
* EEPROM read fails
*/
status = hw->eeprom.ops.read(hw, 0, &checksum);
if (status == 0) {
checksum = hw->eeprom.ops.calc_checksum(hw);
hw->eeprom.ops.read(hw, IXGBE_EEPROM_CHECKSUM, &read_checksum);
/*
* Verify read checksum from EEPROM is the same as
* calculated checksum
*/
if (read_checksum != checksum)
status = IXGBE_ERR_EEPROM_CHECKSUM;
/* If the user cares, return the calculated checksum */
if (checksum_val)
*checksum_val = checksum;
} else {
hw_dbg(hw, "EEPROM read failed\n");
}
return status;
}
/**
* ixgbe_update_eeprom_checksum_generic - Updates the EEPROM checksum
* @hw: pointer to hardware structure
**/
s32 ixgbe_update_eeprom_checksum_generic(struct ixgbe_hw *hw)
{
s32 status;
u16 checksum;
/*
* Read the first word from the EEPROM. If this times out or fails, do
* not continue or we could be in for a very long wait while every
* EEPROM read fails
*/
status = hw->eeprom.ops.read(hw, 0, &checksum);
if (status == 0) {
checksum = hw->eeprom.ops.calc_checksum(hw);
status = hw->eeprom.ops.write(hw, IXGBE_EEPROM_CHECKSUM,
checksum);
} else {
hw_dbg(hw, "EEPROM read failed\n");
}
return status;
}
/**
* ixgbe_validate_mac_addr - Validate MAC address
* @mac_addr: pointer to MAC address.
*
* Tests a MAC address to ensure it is a valid Individual Address
**/
s32 ixgbe_validate_mac_addr(u8 *mac_addr)
{
s32 status = 0;
/* Make sure it is not a multicast address */
if (IXGBE_IS_MULTICAST(mac_addr)) {
hw_dbg(hw, "MAC address is multicast\n");
status = IXGBE_ERR_INVALID_MAC_ADDR;
/* Not a broadcast address */
} else if (IXGBE_IS_BROADCAST(mac_addr)) {
hw_dbg(hw, "MAC address is broadcast\n");
status = IXGBE_ERR_INVALID_MAC_ADDR;
/* Reject the zero address */
} else if (mac_addr[0] == 0 && mac_addr[1] == 0 && mac_addr[2] == 0 &&
mac_addr[3] == 0 && mac_addr[4] == 0 && mac_addr[5] == 0) {
hw_dbg(hw, "MAC address is all zeros\n");
status = IXGBE_ERR_INVALID_MAC_ADDR;
}
return status;
}
/**
* ixgbe_set_rar_generic - Set Rx address register
* @hw: pointer to hardware structure
* @index: Receive address register to write
* @addr: Address to put into receive address register
* @vmdq: VMDq "set" or "pool" index
* @enable_addr: set flag that address is active
*
* Puts an ethernet address into a receive address register.
**/
s32 ixgbe_set_rar_generic(struct ixgbe_hw *hw, u32 index, u8 *addr, u32 vmdq,
u32 enable_addr)
{
u32 rar_low, rar_high;
u32 rar_entries = hw->mac.num_rar_entries;
/* Make sure we are using a valid rar index range */
if (index >= rar_entries) {
hw_dbg(hw, "RAR index %d is out of range.\n", index);
return IXGBE_ERR_INVALID_ARGUMENT;
}
/* setup VMDq pool selection before this RAR gets enabled */
hw->mac.ops.set_vmdq(hw, index, vmdq);
/*
* HW expects these in little endian so we reverse the byte
* order from network order (big endian) to little endian
*/
rar_low = ((u32)addr[0] |
((u32)addr[1] << 8) |
((u32)addr[2] << 16) |
((u32)addr[3] << 24));
/*
* Some parts put the VMDq setting in the extra RAH bits,
* so save everything except the lower 16 bits that hold part
* of the address and the address valid bit.
*/
rar_high = IXGBE_READ_REG(hw, IXGBE_RAH(index));
rar_high &= ~(0x0000FFFF | IXGBE_RAH_AV);
rar_high |= ((u32)addr[4] | ((u32)addr[5] << 8));
if (enable_addr != 0)
rar_high |= IXGBE_RAH_AV;
IXGBE_WRITE_REG(hw, IXGBE_RAL(index), rar_low);
IXGBE_WRITE_REG(hw, IXGBE_RAH(index), rar_high);
return 0;
}
/**
* ixgbe_clear_rar_generic - Remove Rx address register
* @hw: pointer to hardware structure
* @index: Receive address register to write
*
* Clears an ethernet address from a receive address register.
**/
s32 ixgbe_clear_rar_generic(struct ixgbe_hw *hw, u32 index)
{
u32 rar_high;
u32 rar_entries = hw->mac.num_rar_entries;
/* Make sure we are using a valid rar index range */
if (index >= rar_entries) {
hw_dbg(hw, "RAR index %d is out of range.\n", index);
return IXGBE_ERR_INVALID_ARGUMENT;
}
/*
* Some parts put the VMDq setting in the extra RAH bits,
* so save everything except the lower 16 bits that hold part
* of the address and the address valid bit.
*/
rar_high = IXGBE_READ_REG(hw, IXGBE_RAH(index));
rar_high &= ~(0x0000FFFF | IXGBE_RAH_AV);
IXGBE_WRITE_REG(hw, IXGBE_RAL(index), 0);
IXGBE_WRITE_REG(hw, IXGBE_RAH(index), rar_high);
/* clear VMDq pool/queue selection for this RAR */
hw->mac.ops.clear_vmdq(hw, index, IXGBE_CLEAR_VMDQ_ALL);
return 0;
}
/**
* ixgbe_init_rx_addrs_generic - Initializes receive address filters.
* @hw: pointer to hardware structure
*
* Places the MAC address in receive address register 0 and clears the rest
* of the receive address registers. Clears the multicast table. Assumes
* the receiver is in reset when the routine is called.
**/
s32 ixgbe_init_rx_addrs_generic(struct ixgbe_hw *hw)
{
u32 i;
u32 rar_entries = hw->mac.num_rar_entries;
/*
* If the current mac address is valid, assume it is a software override
* to the permanent address.
* Otherwise, use the permanent address from the eeprom.
*/
if (ixgbe_validate_mac_addr(hw->mac.addr) ==
IXGBE_ERR_INVALID_MAC_ADDR) {
/* Get the MAC address from the RAR0 for later reference */
hw->mac.ops.get_mac_addr(hw, hw->mac.addr);
hw_dbg(hw, " Keeping Current RAR0 Addr =%.2X %.2X %.2X ",
hw->mac.addr[0], hw->mac.addr[1],
hw->mac.addr[2]);
hw_dbg(hw, "%.2X %.2X %.2X\n", hw->mac.addr[3],
hw->mac.addr[4], hw->mac.addr[5]);
} else {
/* Setup the receive address. */
hw_dbg(hw, "Overriding MAC Address in RAR[0]\n");
hw_dbg(hw, " New MAC Addr =%.2X %.2X %.2X ",
hw->mac.addr[0], hw->mac.addr[1],
hw->mac.addr[2]);
hw_dbg(hw, "%.2X %.2X %.2X\n", hw->mac.addr[3],
hw->mac.addr[4], hw->mac.addr[5]);
hw->mac.ops.set_rar(hw, 0, hw->mac.addr, 0, IXGBE_RAH_AV);
/* clear VMDq pool/queue selection for RAR 0 */
hw->mac.ops.clear_vmdq(hw, 0, IXGBE_CLEAR_VMDQ_ALL);
}
hw->addr_ctrl.overflow_promisc = 0;
hw->addr_ctrl.rar_used_count = 1;
/* Zero out the other receive addresses. */
hw_dbg(hw, "Clearing RAR[1-%d]\n", rar_entries - 1);
for (i = 1; i < rar_entries; i++) {
IXGBE_WRITE_REG(hw, IXGBE_RAL(i), 0);
IXGBE_WRITE_REG(hw, IXGBE_RAH(i), 0);
}
/* Clear the MTA */
hw->addr_ctrl.mta_in_use = 0;
IXGBE_WRITE_REG(hw, IXGBE_MCSTCTRL, hw->mac.mc_filter_type);
hw_dbg(hw, " Clearing MTA\n");
for (i = 0; i < hw->mac.mcft_size; i++)
IXGBE_WRITE_REG(hw, IXGBE_MTA(i), 0);
ixgbe_init_uta_tables(hw);
return 0;
}
/**
* ixgbe_add_uc_addr - Adds a secondary unicast address.
* @hw: pointer to hardware structure
* @addr: new address
*
* Adds it to unused receive address register or goes into promiscuous mode.
**/
void ixgbe_add_uc_addr(struct ixgbe_hw *hw, u8 *addr, u32 vmdq)
{
u32 rar_entries = hw->mac.num_rar_entries;
u32 rar;
hw_dbg(hw, " UC Addr = %.2X %.2X %.2X %.2X %.2X %.2X\n",
addr[0], addr[1], addr[2], addr[3], addr[4], addr[5]);
/*
* Place this address in the RAR if there is room,
* else put the controller into promiscuous mode
*/
if (hw->addr_ctrl.rar_used_count < rar_entries) {
rar = hw->addr_ctrl.rar_used_count;
hw->mac.ops.set_rar(hw, rar, addr, vmdq, IXGBE_RAH_AV);
hw_dbg(hw, "Added a secondary address to RAR[%d]\n", rar);
hw->addr_ctrl.rar_used_count++;
} else {
hw->addr_ctrl.overflow_promisc++;
}
hw_dbg(hw, "ixgbe_add_uc_addr Complete\n");
}
/**
* ixgbe_update_uc_addr_list_generic - Updates MAC list of secondary addresses
* @hw: pointer to hardware structure
* @addr_list: the list of new addresses
* @addr_count: number of addresses
* @next: iterator function to walk the address list
*
* The given list replaces any existing list. Clears the secondary addrs from
* receive address registers. Uses unused receive address registers for the
* first secondary addresses, and falls back to promiscuous mode as needed.
*
* Drivers using secondary unicast addresses must set user_set_promisc when
* manually putting the device into promiscuous mode.
**/
s32 ixgbe_update_uc_addr_list_generic(struct ixgbe_hw *hw, u8 *addr_list,
u32 addr_count, ixgbe_mc_addr_itr next)
{
u8 *addr;
u32 i;
u32 old_promisc_setting = hw->addr_ctrl.overflow_promisc;
u32 uc_addr_in_use;
u32 fctrl;
u32 vmdq;
/*
* Clear accounting of old secondary address list,
* don't count RAR[0]
*/
uc_addr_in_use = hw->addr_ctrl.rar_used_count - 1;
hw->addr_ctrl.rar_used_count -= uc_addr_in_use;
hw->addr_ctrl.overflow_promisc = 0;
/* Zero out the other receive addresses */
hw_dbg(hw, "Clearing RAR[1-%d]\n", uc_addr_in_use+1);
for (i = 0; i < uc_addr_in_use; i++) {
IXGBE_WRITE_REG(hw, IXGBE_RAL(1+i), 0);
IXGBE_WRITE_REG(hw, IXGBE_RAH(1+i), 0);
}
/* Add the new addresses */
for (i = 0; i < addr_count; i++) {
hw_dbg(hw, " Adding the secondary addresses:\n");
addr = next(hw, &addr_list, &vmdq);
ixgbe_add_uc_addr(hw, addr, vmdq);
}
if (hw->addr_ctrl.overflow_promisc) {
/* enable promisc if not already in overflow or set by user */
if (!old_promisc_setting && !hw->addr_ctrl.user_set_promisc) {
hw_dbg(hw, " Entering address overflow promisc mode\n");
fctrl = IXGBE_READ_REG(hw, IXGBE_FCTRL);
fctrl |= IXGBE_FCTRL_UPE;
IXGBE_WRITE_REG(hw, IXGBE_FCTRL, fctrl);
}
} else {
/* only disable if set by overflow, not by user */
if (old_promisc_setting && !hw->addr_ctrl.user_set_promisc) {
hw_dbg(hw, " Leaving address overflow promisc mode\n");
fctrl = IXGBE_READ_REG(hw, IXGBE_FCTRL);
fctrl &= ~IXGBE_FCTRL_UPE;
IXGBE_WRITE_REG(hw, IXGBE_FCTRL, fctrl);
}
}
hw_dbg(hw, "ixgbe_update_uc_addr_list_generic Complete\n");
return 0;
}
/**
* ixgbe_mta_vector - Determines bit-vector in multicast table to set
* @hw: pointer to hardware structure
* @mc_addr: the multicast address
*
* Extracts the 12 bits, from a multicast address, to determine which
* bit-vector to set in the multicast table. The hardware uses 12 bits, from
* incoming rx multicast addresses, to determine the bit-vector to check in
* the MTA. Which of the 4 combination, of 12-bits, the hardware uses is set
* by the MO field of the MCSTCTRL. The MO field is set during initialization
* to mc_filter_type.
**/
static s32 ixgbe_mta_vector(struct ixgbe_hw *hw, u8 *mc_addr)
{
u32 vector = 0;
switch (hw->mac.mc_filter_type) {
case 0: /* use bits [47:36] of the address */
vector = ((mc_addr[4] >> 4) | (((u16)mc_addr[5]) << 4));
break;
case 1: /* use bits [46:35] of the address */
vector = ((mc_addr[4] >> 3) | (((u16)mc_addr[5]) << 5));
break;
case 2: /* use bits [45:34] of the address */
vector = ((mc_addr[4] >> 2) | (((u16)mc_addr[5]) << 6));
break;
case 3: /* use bits [43:32] of the address */
vector = ((mc_addr[4]) | (((u16)mc_addr[5]) << 8));
break;
default: /* Invalid mc_filter_type */
hw_dbg(hw, "MC filter type param set incorrectly\n");
break;
}
/* vector can only be 12-bits or boundary will be exceeded */
vector &= 0xFFF;
return vector;
}
/**
* ixgbe_set_mta - Set bit-vector in multicast table
* @hw: pointer to hardware structure
* @hash_value: Multicast address hash value
*
* Sets the bit-vector in the multicast table.
**/
void ixgbe_set_mta(struct ixgbe_hw *hw, u8 *mc_addr)
{
u32 vector;
u32 vector_bit;
u32 vector_reg;
hw->addr_ctrl.mta_in_use++;
vector = ixgbe_mta_vector(hw, mc_addr);
hw_dbg(hw, " bit-vector = 0x%03X\n", vector);
/*
* The MTA is a register array of 128 32-bit registers. It is treated
* like an array of 4096 bits. We want to set bit
* BitArray[vector_value]. So we figure out what register the bit is
* in, read it, OR in the new bit, then write back the new value. The
* register is determined by the upper 7 bits of the vector value and
* the bit within that register are determined by the lower 5 bits of
* the value.
*/
vector_reg = (vector >> 5) & 0x7F;
vector_bit = vector & 0x1F;
hw->mac.mta_shadow[vector_reg] |= (1 << vector_bit);
}
/**
* ixgbe_update_mc_addr_list_generic - Updates MAC list of multicast addresses
* @hw: pointer to hardware structure
* @mc_addr_list: the list of new multicast addresses
* @mc_addr_count: number of addresses
* @next: iterator function to walk the multicast address list
* @clear: flag, when set clears the table beforehand
*
* When the clear flag is set, the given list replaces any existing list.
* Hashes the given addresses into the multicast table.
**/
s32 ixgbe_update_mc_addr_list_generic(struct ixgbe_hw *hw, u8 *mc_addr_list,
u32 mc_addr_count, ixgbe_mc_addr_itr next,
bool clear)
{
u32 i;
u32 vmdq;
/*
* Set the new number of MC addresses that we are being requested to
* use.
*/
hw->addr_ctrl.num_mc_addrs = mc_addr_count;
hw->addr_ctrl.mta_in_use = 0;
/* Clear mta_shadow */
if (clear) {
hw_dbg(hw, " Clearing MTA\n");
memset(&hw->mac.mta_shadow, 0, sizeof(hw->mac.mta_shadow));
}
/* Update mta_shadow */
for (i = 0; i < mc_addr_count; i++) {
hw_dbg(hw, " Adding the multicast addresses:\n");
ixgbe_set_mta(hw, next(hw, &mc_addr_list, &vmdq));
}
/* Enable mta */
for (i = 0; i < hw->mac.mcft_size; i++)
IXGBE_WRITE_REG_ARRAY(hw, IXGBE_MTA(0), i,
hw->mac.mta_shadow[i]);
if (hw->addr_ctrl.mta_in_use > 0)
IXGBE_WRITE_REG(hw, IXGBE_MCSTCTRL,
IXGBE_MCSTCTRL_MFE | hw->mac.mc_filter_type);
hw_dbg(hw, "ixgbe_update_mc_addr_list_generic Complete\n");
return 0;
}
/**
* ixgbe_enable_mc_generic - Enable multicast address in RAR
* @hw: pointer to hardware structure
*
* Enables multicast address in RAR and the use of the multicast hash table.
**/
s32 ixgbe_enable_mc_generic(struct ixgbe_hw *hw)
{
struct ixgbe_addr_filter_info *a = &hw->addr_ctrl;
if (a->mta_in_use > 0)
IXGBE_WRITE_REG(hw, IXGBE_MCSTCTRL, IXGBE_MCSTCTRL_MFE |
hw->mac.mc_filter_type);
return 0;
}
/**
* ixgbe_disable_mc_generic - Disable multicast address in RAR
* @hw: pointer to hardware structure
*
* Disables multicast address in RAR and the use of the multicast hash table.
**/
s32 ixgbe_disable_mc_generic(struct ixgbe_hw *hw)
{
struct ixgbe_addr_filter_info *a = &hw->addr_ctrl;
if (a->mta_in_use > 0)
IXGBE_WRITE_REG(hw, IXGBE_MCSTCTRL, hw->mac.mc_filter_type);
return 0;
}
/**
* ixgbe_fc_enable_generic - Enable flow control
* @hw: pointer to hardware structure
*
* Enable flow control according to the current settings.
**/
s32 ixgbe_fc_enable_generic(struct ixgbe_hw *hw)
{
s32 ret_val = 0;
u32 mflcn_reg, fccfg_reg;
u32 reg;
u32 fcrtl, fcrth;
int i;
/* Validate the water mark configuration */
if (!hw->fc.pause_time) {
ret_val = IXGBE_ERR_INVALID_LINK_SETTINGS;
goto out;
}
/* Low water mark of zero causes XOFF floods */
for (i = 0; i < IXGBE_DCB_MAX_TRAFFIC_CLASS; i++) {
if ((hw->fc.current_mode & ixgbe_fc_tx_pause) &&
hw->fc.high_water[i]) {
if (!hw->fc.low_water[i] ||
hw->fc.low_water[i] >= hw->fc.high_water[i]) {
hw_dbg(hw, "Invalid water mark configuration\n");
ret_val = IXGBE_ERR_INVALID_LINK_SETTINGS;
goto out;
}
}
}
/* Negotiate the fc mode to use */
ixgbe_fc_autoneg(hw);
/* Disable any previous flow control settings */
mflcn_reg = IXGBE_READ_REG(hw, IXGBE_MFLCN);
mflcn_reg &= ~(IXGBE_MFLCN_RPFCE_MASK | IXGBE_MFLCN_RFCE);
fccfg_reg = IXGBE_READ_REG(hw, IXGBE_FCCFG);
fccfg_reg &= ~(IXGBE_FCCFG_TFCE_802_3X | IXGBE_FCCFG_TFCE_PRIORITY);
/*
* The possible values of fc.current_mode are:
* 0: Flow control is completely disabled
* 1: Rx flow control is enabled (we can receive pause frames,
* but not send pause frames).
* 2: Tx flow control is enabled (we can send pause frames but
* we do not support receiving pause frames).
* 3: Both Rx and Tx flow control (symmetric) are enabled.
* other: Invalid.
*/
switch (hw->fc.current_mode) {
case ixgbe_fc_none:
/*
* Flow control is disabled by software override or autoneg.
* The code below will actually disable it in the HW.
*/
break;
case ixgbe_fc_rx_pause:
/*
* Rx Flow control is enabled and Tx Flow control is
* disabled by software override. Since there really
* isn't a way to advertise that we are capable of RX
* Pause ONLY, we will advertise that we support both
* symmetric and asymmetric Rx PAUSE. Later, we will
* disable the adapter's ability to send PAUSE frames.
*/
mflcn_reg |= IXGBE_MFLCN_RFCE;
break;
case ixgbe_fc_tx_pause:
/*
* Tx Flow control is enabled, and Rx Flow control is
* disabled by software override.
*/
fccfg_reg |= IXGBE_FCCFG_TFCE_802_3X;
break;
case ixgbe_fc_full:
/* Flow control (both Rx and Tx) is enabled by SW override. */
mflcn_reg |= IXGBE_MFLCN_RFCE;
fccfg_reg |= IXGBE_FCCFG_TFCE_802_3X;
break;
default:
hw_dbg(hw, "Flow control param set incorrectly\n");
ret_val = IXGBE_ERR_CONFIG;
goto out;
break;
}
/* Set 802.3x based flow control settings. */
mflcn_reg |= IXGBE_MFLCN_DPF;
IXGBE_WRITE_REG(hw, IXGBE_MFLCN, mflcn_reg);
IXGBE_WRITE_REG(hw, IXGBE_FCCFG, fccfg_reg);
/* Set up and enable Rx high/low water mark thresholds, enable XON. */
for (i = 0; i < IXGBE_DCB_MAX_TRAFFIC_CLASS; i++) {
if ((hw->fc.current_mode & ixgbe_fc_tx_pause) &&
hw->fc.high_water[i]) {
fcrtl = (hw->fc.low_water[i] << 10) | IXGBE_FCRTL_XONE;
IXGBE_WRITE_REG(hw, IXGBE_FCRTL_82599(i), fcrtl);
fcrth = (hw->fc.high_water[i] << 10) | IXGBE_FCRTH_FCEN;
} else {
IXGBE_WRITE_REG(hw, IXGBE_FCRTL_82599(i), 0);
/*
* In order to prevent Tx hangs when the internal Tx
* switch is enabled we must set the high water mark
* to the maximum FCRTH value. This allows the Tx
* switch to function even under heavy Rx workloads.
*/
fcrth = IXGBE_READ_REG(hw, IXGBE_RXPBSIZE(i)) - 32;
}
IXGBE_WRITE_REG(hw, IXGBE_FCRTH_82599(i), fcrth);
}
/* Configure pause time (2 TCs per register) */
reg = hw->fc.pause_time * 0x00010001;
for (i = 0; i < (IXGBE_DCB_MAX_TRAFFIC_CLASS / 2); i++)
IXGBE_WRITE_REG(hw, IXGBE_FCTTV(i), reg);
/* Configure flow control refresh threshold value */
IXGBE_WRITE_REG(hw, IXGBE_FCRTV, hw->fc.pause_time / 2);
out:
return ret_val;
}
/**
* ixgbe_negotiate_fc - Negotiate flow control
* @hw: pointer to hardware structure
* @adv_reg: flow control advertised settings
* @lp_reg: link partner's flow control settings
* @adv_sym: symmetric pause bit in advertisement
* @adv_asm: asymmetric pause bit in advertisement
* @lp_sym: symmetric pause bit in link partner advertisement
* @lp_asm: asymmetric pause bit in link partner advertisement
*
* Find the intersection between advertised settings and link partner's
* advertised settings
**/
static s32 ixgbe_negotiate_fc(struct ixgbe_hw *hw, u32 adv_reg, u32 lp_reg,
u32 adv_sym, u32 adv_asm, u32 lp_sym, u32 lp_asm)
{
if (!adv_reg || !lp_reg)
return IXGBE_ERR_FC_NOT_NEGOTIATED;
if ((adv_reg & adv_sym) && (lp_reg & lp_sym)) {
/*
* Now we need to check if the user selected Rx ONLY
* of pause frames. In this case, we had to advertise
* FULL flow control because we could not advertise RX
* ONLY. Hence, we must now check to see if we need to
* turn OFF the TRANSMISSION of PAUSE frames.
*/
if (hw->fc.requested_mode == ixgbe_fc_full) {
hw->fc.current_mode = ixgbe_fc_full;
hw_dbg(hw, "Flow Control = FULL.\n");
} else {
hw->fc.current_mode = ixgbe_fc_rx_pause;
hw_dbg(hw, "Flow Control=RX PAUSE frames only\n");
}
} else if (!(adv_reg & adv_sym) && (adv_reg & adv_asm) &&
(lp_reg & lp_sym) && (lp_reg & lp_asm)) {
hw->fc.current_mode = ixgbe_fc_tx_pause;
hw_dbg(hw, "Flow Control = TX PAUSE frames only.\n");
} else if ((adv_reg & adv_sym) && (adv_reg & adv_asm) &&
!(lp_reg & lp_sym) && (lp_reg & lp_asm)) {
hw->fc.current_mode = ixgbe_fc_rx_pause;
hw_dbg(hw, "Flow Control = RX PAUSE frames only.\n");
} else {
hw->fc.current_mode = ixgbe_fc_none;
hw_dbg(hw, "Flow Control = NONE.\n");
}
return 0;
}
/**
* ixgbe_fc_autoneg_fiber - Enable flow control on 1 gig fiber
* @hw: pointer to hardware structure
*
* Enable flow control according on 1 gig fiber.
**/
static s32 ixgbe_fc_autoneg_fiber(struct ixgbe_hw *hw)
{
u32 pcs_anadv_reg, pcs_lpab_reg, linkstat;
s32 ret_val = IXGBE_ERR_FC_NOT_NEGOTIATED;
/*
* On multispeed fiber at 1g, bail out if
* - link is up but AN did not complete, or if
* - link is up and AN completed but timed out
*/
linkstat = IXGBE_READ_REG(hw, IXGBE_PCS1GLSTA);
if ((!!(linkstat & IXGBE_PCS1GLSTA_AN_COMPLETE) == 0) ||
(!!(linkstat & IXGBE_PCS1GLSTA_AN_TIMED_OUT) == 1))
goto out;
pcs_anadv_reg = IXGBE_READ_REG(hw, IXGBE_PCS1GANA);
pcs_lpab_reg = IXGBE_READ_REG(hw, IXGBE_PCS1GANLP);
ret_val = ixgbe_negotiate_fc(hw, pcs_anadv_reg,
pcs_lpab_reg, IXGBE_PCS1GANA_SYM_PAUSE,
IXGBE_PCS1GANA_ASM_PAUSE,
IXGBE_PCS1GANA_SYM_PAUSE,
IXGBE_PCS1GANA_ASM_PAUSE);
out:
return ret_val;
}
/**
* ixgbe_fc_autoneg_backplane - Enable flow control IEEE clause 37
* @hw: pointer to hardware structure
*
* Enable flow control according to IEEE clause 37.
**/
static s32 ixgbe_fc_autoneg_backplane(struct ixgbe_hw *hw)
{
u32 links2, anlp1_reg, autoc_reg, links;
s32 ret_val = IXGBE_ERR_FC_NOT_NEGOTIATED;
/*
* On backplane, bail out if
* - backplane autoneg was not completed, or if
* - we are 82599 and link partner is not AN enabled
*/
links = IXGBE_READ_REG(hw, IXGBE_LINKS);
if ((links & IXGBE_LINKS_KX_AN_COMP) == 0)
goto out;
if (hw->mac.type == ixgbe_mac_82599EB) {
links2 = IXGBE_READ_REG(hw, IXGBE_LINKS2);
if ((links2 & IXGBE_LINKS2_AN_SUPPORTED) == 0)
goto out;
}
/*
* Read the 10g AN autoc and LP ability registers and resolve
* local flow control settings accordingly
*/
autoc_reg = IXGBE_READ_REG(hw, IXGBE_AUTOC);
anlp1_reg = IXGBE_READ_REG(hw, IXGBE_ANLP1);
ret_val = ixgbe_negotiate_fc(hw, autoc_reg,
anlp1_reg, IXGBE_AUTOC_SYM_PAUSE, IXGBE_AUTOC_ASM_PAUSE,
IXGBE_ANLP1_SYM_PAUSE, IXGBE_ANLP1_ASM_PAUSE);
out:
return ret_val;
}
/**
* ixgbe_fc_autoneg_copper - Enable flow control IEEE clause 37
* @hw: pointer to hardware structure
*
* Enable flow control according to IEEE clause 37.
**/
static s32 ixgbe_fc_autoneg_copper(struct ixgbe_hw *hw)
{
u16 technology_ability_reg = 0;
u16 lp_technology_ability_reg = 0;
hw->phy.ops.read_reg(hw, IXGBE_MDIO_AUTO_NEG_ADVT,
IXGBE_MDIO_AUTO_NEG_DEV_TYPE,
&technology_ability_reg);
hw->phy.ops.read_reg(hw, IXGBE_MDIO_AUTO_NEG_LP,
IXGBE_MDIO_AUTO_NEG_DEV_TYPE,
&lp_technology_ability_reg);
return ixgbe_negotiate_fc(hw, (u32)technology_ability_reg,
(u32)lp_technology_ability_reg,
IXGBE_TAF_SYM_PAUSE, IXGBE_TAF_ASM_PAUSE,
IXGBE_TAF_SYM_PAUSE, IXGBE_TAF_ASM_PAUSE);
}
/**
* ixgbe_fc_autoneg - Configure flow control
* @hw: pointer to hardware structure
*
* Compares our advertised flow control capabilities to those advertised by
* our link partner, and determines the proper flow control mode to use.
**/
void ixgbe_fc_autoneg(struct ixgbe_hw *hw)
{
s32 ret_val = IXGBE_ERR_FC_NOT_NEGOTIATED;
ixgbe_link_speed speed;
bool link_up;
/*
* AN should have completed when the cable was plugged in.
* Look for reasons to bail out. Bail out if:
* - FC autoneg is disabled, or if
* - link is not up.
*/
if (hw->fc.disable_fc_autoneg)
goto out;
hw->mac.ops.check_link(hw, &speed, &link_up, false);
if (!link_up)
goto out;
switch (hw->phy.media_type) {
/* Autoneg flow control on fiber adapters */
case ixgbe_media_type_fiber:
if (speed == IXGBE_LINK_SPEED_1GB_FULL)
ret_val = ixgbe_fc_autoneg_fiber(hw);
break;
/* Autoneg flow control on backplane adapters */
case ixgbe_media_type_backplane:
ret_val = ixgbe_fc_autoneg_backplane(hw);
break;
/* Autoneg flow control on copper adapters */
case ixgbe_media_type_copper:
if (ixgbe_device_supports_autoneg_fc(hw) == 0)
ret_val = ixgbe_fc_autoneg_copper(hw);
break;
default:
break;
}
out:
if (ret_val == 0) {
hw->fc.fc_was_autonegged = true;
} else {
hw->fc.fc_was_autonegged = false;
hw->fc.current_mode = hw->fc.requested_mode;
}
}
/**
* ixgbe_disable_pcie_master - Disable PCI-express master access
* @hw: pointer to hardware structure
*
* Disables PCI-Express master access and verifies there are no pending
* requests. IXGBE_ERR_MASTER_REQUESTS_PENDING is returned if master disable
* bit hasn't caused the master requests to be disabled, else 0
* is returned signifying master requests disabled.
**/
s32 ixgbe_disable_pcie_master(struct ixgbe_hw *hw)
{
s32 status = 0;
u32 i;
/* Always set this bit to ensure any future transactions are blocked */
IXGBE_WRITE_REG(hw, IXGBE_CTRL, IXGBE_CTRL_GIO_DIS);
/* Exit if master requets are blocked */
if (!(IXGBE_READ_REG(hw, IXGBE_STATUS) & IXGBE_STATUS_GIO))
goto out;
/* Poll for master request bit to clear */
for (i = 0; i < IXGBE_PCI_MASTER_DISABLE_TIMEOUT; i++) {
udelay(100);
if (!(IXGBE_READ_REG(hw, IXGBE_STATUS) & IXGBE_STATUS_GIO))
goto out;
}
/*
* Two consecutive resets are required via CTRL.RST per datasheet
* 5.2.5.3.2 Master Disable. We set a flag to inform the reset routine
* of this need. The first reset prevents new master requests from
* being issued by our device. We then must wait 1usec or more for any
* remaining completions from the PCIe bus to trickle in, and then reset
* again to clear out any effects they may have had on our device.
*/
hw_dbg(hw, "GIO Master Disable bit didn't clear - requesting resets\n");
hw->mac.flags |= IXGBE_FLAGS_DOUBLE_RESET_REQUIRED;
/*
* Before proceeding, make sure that the PCIe block does not have
* transactions pending.
*/
for (i = 0; i < IXGBE_PCI_MASTER_DISABLE_TIMEOUT; i++) {
udelay(100);
if (!(IXGBE_READ_PCIE_WORD(hw, IXGBE_PCI_DEVICE_STATUS) &
IXGBE_PCI_DEVICE_STATUS_TRANSACTION_PENDING))
goto out;
}
hw_dbg(hw, "PCIe transaction pending bit also did not clear.\n");
status = IXGBE_ERR_MASTER_REQUESTS_PENDING;
out:
return status;
}
/**
* ixgbe_acquire_swfw_sync - Acquire SWFW semaphore
* @hw: pointer to hardware structure
* @mask: Mask to specify which semaphore to acquire
*
* Acquires the SWFW semaphore through the GSSR register for the specified
* function (CSR, PHY0, PHY1, EEPROM, Flash)
**/
s32 ixgbe_acquire_swfw_sync(struct ixgbe_hw *hw, u16 mask)
{
u32 gssr;
u32 swmask = mask;
u32 fwmask = mask << 5;
s32 timeout = 200;
while (timeout) {
/*
* SW EEPROM semaphore bit is used for access to all
* SW_FW_SYNC/GSSR bits (not just EEPROM)
*/
if (ixgbe_get_eeprom_semaphore(hw))
return IXGBE_ERR_SWFW_SYNC;
gssr = IXGBE_READ_REG(hw, IXGBE_GSSR);
if (!(gssr & (fwmask | swmask)))
break;
/*
* Firmware currently using resource (fwmask) or other software
* thread currently using resource (swmask)
*/
ixgbe_release_eeprom_semaphore(hw);
msleep(5);
timeout--;
}
if (!timeout) {
hw_dbg(hw, "Driver can't access resource, SW_FW_SYNC timeout.\n");
return IXGBE_ERR_SWFW_SYNC;
}
gssr |= swmask;
IXGBE_WRITE_REG(hw, IXGBE_GSSR, gssr);
ixgbe_release_eeprom_semaphore(hw);
return 0;
}
/**
* ixgbe_release_swfw_sync - Release SWFW semaphore
* @hw: pointer to hardware structure
* @mask: Mask to specify which semaphore to release
*
* Releases the SWFW semaphore through the GSSR register for the specified
* function (CSR, PHY0, PHY1, EEPROM, Flash)
**/
void ixgbe_release_swfw_sync(struct ixgbe_hw *hw, u16 mask)
{
u32 gssr;
u32 swmask = mask;
ixgbe_get_eeprom_semaphore(hw);
gssr = IXGBE_READ_REG(hw, IXGBE_GSSR);
gssr &= ~swmask;
IXGBE_WRITE_REG(hw, IXGBE_GSSR, gssr);
ixgbe_release_eeprom_semaphore(hw);
}
/**
* ixgbe_disable_sec_rx_path_generic - Stops the receive data path
* @hw: pointer to hardware structure
*
* Stops the receive data path and waits for the HW to internally empty
* the Rx security block
**/
s32 ixgbe_disable_sec_rx_path_generic(struct ixgbe_hw *hw)
{
#define IXGBE_MAX_SECRX_POLL 40
int i;
int secrxreg;
secrxreg = IXGBE_READ_REG(hw, IXGBE_SECRXCTRL);
secrxreg |= IXGBE_SECRXCTRL_RX_DIS;
IXGBE_WRITE_REG(hw, IXGBE_SECRXCTRL, secrxreg);
for (i = 0; i < IXGBE_MAX_SECRX_POLL; i++) {
secrxreg = IXGBE_READ_REG(hw, IXGBE_SECRXSTAT);
if (secrxreg & IXGBE_SECRXSTAT_SECRX_RDY)
break;
else
/* Use interrupt-safe sleep just in case */
udelay(1000);
}
/* For informational purposes only */
if (i >= IXGBE_MAX_SECRX_POLL)
hw_dbg(hw, "Rx unit being enabled before security "
"path fully disabled. Continuing with init.\n");
return 0;
}
/**
* ixgbe_enable_sec_rx_path_generic - Enables the receive data path
* @hw: pointer to hardware structure
*
* Enables the receive data path.
**/
s32 ixgbe_enable_sec_rx_path_generic(struct ixgbe_hw *hw)
{
int secrxreg;
secrxreg = IXGBE_READ_REG(hw, IXGBE_SECRXCTRL);
secrxreg &= ~IXGBE_SECRXCTRL_RX_DIS;
IXGBE_WRITE_REG(hw, IXGBE_SECRXCTRL, secrxreg);
IXGBE_WRITE_FLUSH(hw);
return 0;
}
/**
* ixgbe_enable_rx_dma_generic - Enable the Rx DMA unit
* @hw: pointer to hardware structure
* @regval: register value to write to RXCTRL
*
* Enables the Rx DMA unit
**/
s32 ixgbe_enable_rx_dma_generic(struct ixgbe_hw *hw, u32 regval)
{
IXGBE_WRITE_REG(hw, IXGBE_RXCTRL, regval);
return 0;
}
/**
* ixgbe_blink_led_start_generic - Blink LED based on index.
* @hw: pointer to hardware structure
* @index: led number to blink
**/
s32 ixgbe_blink_led_start_generic(struct ixgbe_hw *hw, u32 index)
{
ixgbe_link_speed speed = 0;
bool link_up = 0;
u32 autoc_reg = IXGBE_READ_REG(hw, IXGBE_AUTOC);
u32 led_reg = IXGBE_READ_REG(hw, IXGBE_LEDCTL);
/*
* Link must be up to auto-blink the LEDs;
* Force it if link is down.
*/
hw->mac.ops.check_link(hw, &speed, &link_up, false);
if (!link_up) {
autoc_reg |= IXGBE_AUTOC_AN_RESTART;
autoc_reg |= IXGBE_AUTOC_FLU;
IXGBE_WRITE_REG(hw, IXGBE_AUTOC, autoc_reg);
IXGBE_WRITE_FLUSH(hw);
msleep(10);
}
led_reg &= ~IXGBE_LED_MODE_MASK(index);
led_reg |= IXGBE_LED_BLINK(index);
IXGBE_WRITE_REG(hw, IXGBE_LEDCTL, led_reg);
IXGBE_WRITE_FLUSH(hw);
return 0;
}
/**
* ixgbe_blink_led_stop_generic - Stop blinking LED based on index.
* @hw: pointer to hardware structure
* @index: led number to stop blinking
**/
s32 ixgbe_blink_led_stop_generic(struct ixgbe_hw *hw, u32 index)
{
u32 autoc_reg = IXGBE_READ_REG(hw, IXGBE_AUTOC);
u32 led_reg = IXGBE_READ_REG(hw, IXGBE_LEDCTL);
autoc_reg &= ~IXGBE_AUTOC_FLU;
autoc_reg |= IXGBE_AUTOC_AN_RESTART;
IXGBE_WRITE_REG(hw, IXGBE_AUTOC, autoc_reg);
led_reg &= ~IXGBE_LED_MODE_MASK(index);
led_reg &= ~IXGBE_LED_BLINK(index);
led_reg |= IXGBE_LED_LINK_ACTIVE << IXGBE_LED_MODE_SHIFT(index);
IXGBE_WRITE_REG(hw, IXGBE_LEDCTL, led_reg);
IXGBE_WRITE_FLUSH(hw);
return 0;
}
/**
* ixgbe_get_san_mac_addr_offset - Get SAN MAC address offset from the EEPROM
* @hw: pointer to hardware structure
* @san_mac_offset: SAN MAC address offset
*
* This function will read the EEPROM location for the SAN MAC address
* pointer, and returns the value at that location. This is used in both
* get and set mac_addr routines.
**/
static s32 ixgbe_get_san_mac_addr_offset(struct ixgbe_hw *hw,
u16 *san_mac_offset)
{
/*
* First read the EEPROM pointer to see if the MAC addresses are
* available.
*/
hw->eeprom.ops.read(hw, IXGBE_SAN_MAC_ADDR_PTR, san_mac_offset);
return 0;
}
/**
* ixgbe_get_san_mac_addr_generic - SAN MAC address retrieval from the EEPROM
* @hw: pointer to hardware structure
* @san_mac_addr: SAN MAC address
*
* Reads the SAN MAC address from the EEPROM, if it's available. This is
* per-port, so set_lan_id() must be called before reading the addresses.
* set_lan_id() is called by identify_sfp(), but this cannot be relied
* upon for non-SFP connections, so we must call it here.
**/
s32 ixgbe_get_san_mac_addr_generic(struct ixgbe_hw *hw, u8 *san_mac_addr)
{
u16 san_mac_data, san_mac_offset;
u8 i;
/*
* First read the EEPROM pointer to see if the MAC addresses are
* available. If they're not, no point in calling set_lan_id() here.
*/
ixgbe_get_san_mac_addr_offset(hw, &san_mac_offset);
if ((san_mac_offset == 0) || (san_mac_offset == 0xFFFF)) {
/*
* No addresses available in this EEPROM. It's not an
* error though, so just wipe the local address and return.
*/
for (i = 0; i < 6; i++)
san_mac_addr[i] = 0xFF;
goto san_mac_addr_out;
}
/* make sure we know which port we need to program */
hw->mac.ops.set_lan_id(hw);
/* apply the port offset to the address offset */
(hw->bus.func) ? (san_mac_offset += IXGBE_SAN_MAC_ADDR_PORT1_OFFSET) :
(san_mac_offset += IXGBE_SAN_MAC_ADDR_PORT0_OFFSET);
for (i = 0; i < 3; i++) {
hw->eeprom.ops.read(hw, san_mac_offset, &san_mac_data);
san_mac_addr[i * 2] = (u8)(san_mac_data);
san_mac_addr[i * 2 + 1] = (u8)(san_mac_data >> 8);
san_mac_offset++;
}
san_mac_addr_out:
return 0;
}
/**
* ixgbe_set_san_mac_addr_generic - Write the SAN MAC address to the EEPROM
* @hw: pointer to hardware structure
* @san_mac_addr: SAN MAC address
*
* Write a SAN MAC address to the EEPROM.
**/
s32 ixgbe_set_san_mac_addr_generic(struct ixgbe_hw *hw, u8 *san_mac_addr)
{
s32 status = 0;
u16 san_mac_data, san_mac_offset;
u8 i;
/* Look for SAN mac address pointer. If not defined, return */
ixgbe_get_san_mac_addr_offset(hw, &san_mac_offset);
if ((san_mac_offset == 0) || (san_mac_offset == 0xFFFF)) {
status = IXGBE_ERR_NO_SAN_ADDR_PTR;
goto san_mac_addr_out;
}
/* Make sure we know which port we need to write */
hw->mac.ops.set_lan_id(hw);
/* Apply the port offset to the address offset */
(hw->bus.func) ? (san_mac_offset += IXGBE_SAN_MAC_ADDR_PORT1_OFFSET) :
(san_mac_offset += IXGBE_SAN_MAC_ADDR_PORT0_OFFSET);
for (i = 0; i < 3; i++) {
san_mac_data = (u16)((u16)(san_mac_addr[i * 2 + 1]) << 8);
san_mac_data |= (u16)(san_mac_addr[i * 2]);
hw->eeprom.ops.write(hw, san_mac_offset, san_mac_data);
san_mac_offset++;
}
san_mac_addr_out:
return status;
}
/**
* ixgbe_get_pcie_msix_count_generic - Gets MSI-X vector count
* @hw: pointer to hardware structure
*
* Read PCIe configuration space, and get the MSI-X vector count from
* the capabilities table.
**/
u16 ixgbe_get_pcie_msix_count_generic(struct ixgbe_hw *hw)
{
u16 msix_count = 1;
u16 max_msix_count;
u16 pcie_offset;
switch (hw->mac.type) {
case ixgbe_mac_82598EB:
pcie_offset = IXGBE_PCIE_MSIX_82598_CAPS;
max_msix_count = IXGBE_MAX_MSIX_VECTORS_82598;
break;
case ixgbe_mac_82599EB:
case ixgbe_mac_X540:
pcie_offset = IXGBE_PCIE_MSIX_82599_CAPS;
max_msix_count = IXGBE_MAX_MSIX_VECTORS_82599;
break;
default:
return msix_count;
}
msix_count = IXGBE_READ_PCIE_WORD(hw, pcie_offset);
msix_count &= IXGBE_PCIE_MSIX_TBL_SZ_MASK;
/* MSI-X count is zero-based in HW */
msix_count++;
if (msix_count > max_msix_count)
msix_count = max_msix_count;
return msix_count;
}
/**
* ixgbe_insert_mac_addr_generic - Find a RAR for this mac address
* @hw: pointer to hardware structure
* @addr: Address to put into receive address register
* @vmdq: VMDq pool to assign
*
* Puts an ethernet address into a receive address register, or
* finds the rar that it is already in; adds to the pool list
**/
s32 ixgbe_insert_mac_addr_generic(struct ixgbe_hw *hw, u8 *addr, u32 vmdq)
{
static const u32 NO_EMPTY_RAR_FOUND = 0xFFFFFFFF;
u32 first_empty_rar = NO_EMPTY_RAR_FOUND;
u32 rar;
u32 rar_low, rar_high;
u32 addr_low, addr_high;
/* swap bytes for HW little endian */
addr_low = addr[0] | (addr[1] << 8)
| (addr[2] << 16)
| (addr[3] << 24);
addr_high = addr[4] | (addr[5] << 8);
/*
* Either find the mac_id in rar or find the first empty space.
* rar_highwater points to just after the highest currently used
* rar in order to shorten the search. It grows when we add a new
* rar to the top.
*/
for (rar = 0; rar < hw->mac.rar_highwater; rar++) {
rar_high = IXGBE_READ_REG(hw, IXGBE_RAH(rar));
if (((IXGBE_RAH_AV & rar_high) == 0)
&& first_empty_rar == NO_EMPTY_RAR_FOUND) {
first_empty_rar = rar;
} else if ((rar_high & 0xFFFF) == addr_high) {
rar_low = IXGBE_READ_REG(hw, IXGBE_RAL(rar));
if (rar_low == addr_low)
break; /* found it already in the rars */
}
}
if (rar < hw->mac.rar_highwater) {
/* already there so just add to the pool bits */
ixgbe_set_vmdq(hw, rar, vmdq);
} else if (first_empty_rar != NO_EMPTY_RAR_FOUND) {
/* stick it into first empty RAR slot we found */
rar = first_empty_rar;
ixgbe_set_rar(hw, rar, addr, vmdq, IXGBE_RAH_AV);
} else if (rar == hw->mac.rar_highwater) {
/* add it to the top of the list and inc the highwater mark */
ixgbe_set_rar(hw, rar, addr, vmdq, IXGBE_RAH_AV);
hw->mac.rar_highwater++;
} else if (rar >= hw->mac.num_rar_entries) {
return IXGBE_ERR_INVALID_MAC_ADDR;
}
/*
* If we found rar[0], make sure the default pool bit (we use pool 0)
* remains cleared to be sure default pool packets will get delivered
*/
if (rar == 0)
ixgbe_clear_vmdq(hw, rar, 0);
return rar;
}
/**
* ixgbe_clear_vmdq_generic - Disassociate a VMDq pool index from a rx address
* @hw: pointer to hardware struct
* @rar: receive address register index to disassociate
* @vmdq: VMDq pool index to remove from the rar
**/
s32 ixgbe_clear_vmdq_generic(struct ixgbe_hw *hw, u32 rar, u32 vmdq)
{
u32 mpsar_lo, mpsar_hi;
u32 rar_entries = hw->mac.num_rar_entries;
/* Make sure we are using a valid rar index range */
if (rar >= rar_entries) {
hw_dbg(hw, "RAR index %d is out of range.\n", rar);
return IXGBE_ERR_INVALID_ARGUMENT;
}
mpsar_lo = IXGBE_READ_REG(hw, IXGBE_MPSAR_LO(rar));
mpsar_hi = IXGBE_READ_REG(hw, IXGBE_MPSAR_HI(rar));
if (!mpsar_lo && !mpsar_hi)
goto done;
if (vmdq == IXGBE_CLEAR_VMDQ_ALL) {
if (mpsar_lo) {
IXGBE_WRITE_REG(hw, IXGBE_MPSAR_LO(rar), 0);
mpsar_lo = 0;
}
if (mpsar_hi) {
IXGBE_WRITE_REG(hw, IXGBE_MPSAR_HI(rar), 0);
mpsar_hi = 0;
}
} else if (vmdq < 32) {
mpsar_lo &= ~(1 << vmdq);
IXGBE_WRITE_REG(hw, IXGBE_MPSAR_LO(rar), mpsar_lo);
} else {
mpsar_hi &= ~(1 << (vmdq - 32));
IXGBE_WRITE_REG(hw, IXGBE_MPSAR_HI(rar), mpsar_hi);
}
/* was that the last pool using this rar? */
if (mpsar_lo == 0 && mpsar_hi == 0 && rar != 0)
hw->mac.ops.clear_rar(hw, rar);
done:
return 0;
}
/**
* ixgbe_set_vmdq_generic - Associate a VMDq pool index with a rx address
* @hw: pointer to hardware struct
* @rar: receive address register index to associate with a VMDq index
* @vmdq: VMDq pool index
**/
s32 ixgbe_set_vmdq_generic(struct ixgbe_hw *hw, u32 rar, u32 vmdq)
{
u32 mpsar;
u32 rar_entries = hw->mac.num_rar_entries;
/* Make sure we are using a valid rar index range */
if (rar >= rar_entries) {
hw_dbg(hw, "RAR index %d is out of range.\n", rar);
return IXGBE_ERR_INVALID_ARGUMENT;
}
if (vmdq < 32) {
mpsar = IXGBE_READ_REG(hw, IXGBE_MPSAR_LO(rar));
mpsar |= 1 << vmdq;
IXGBE_WRITE_REG(hw, IXGBE_MPSAR_LO(rar), mpsar);
} else {
mpsar = IXGBE_READ_REG(hw, IXGBE_MPSAR_HI(rar));
mpsar |= 1 << (vmdq - 32);
IXGBE_WRITE_REG(hw, IXGBE_MPSAR_HI(rar), mpsar);
}
return 0;
}
/**
* This function should only be involved in the IOV mode.
* In IOV mode, Default pool is next pool after the number of
* VFs advertized and not 0.
* MPSAR table needs to be updated for SAN_MAC RAR [hw->mac.san_mac_rar_index]
*
* ixgbe_set_vmdq_san_mac - Associate default VMDq pool index with a rx address
* @hw: pointer to hardware struct
* @vmdq: VMDq pool index
**/
s32 ixgbe_set_vmdq_san_mac_generic(struct ixgbe_hw *hw, u32 vmdq)
{
u32 mpsar;
u32 rar = hw->mac.san_mac_rar_index;
if (vmdq < 32) {
mpsar = IXGBE_READ_REG(hw, IXGBE_MPSAR_LO(rar));
mpsar |= 1 << vmdq;
IXGBE_WRITE_REG(hw, IXGBE_MPSAR_LO(rar), mpsar);
} else {
mpsar = IXGBE_READ_REG(hw, IXGBE_MPSAR_HI(rar));
mpsar |= 1 << (vmdq - 32);
IXGBE_WRITE_REG(hw, IXGBE_MPSAR_HI(rar), mpsar);
}
return 0;
}
/**
* ixgbe_init_uta_tables_generic - Initialize the Unicast Table Array
* @hw: pointer to hardware structure
**/
s32 ixgbe_init_uta_tables_generic(struct ixgbe_hw *hw)
{
int i;
hw_dbg(hw, " Clearing UTA\n");
for (i = 0; i < 128; i++)
IXGBE_WRITE_REG(hw, IXGBE_UTA(i), 0);
return 0;
}
/**
* ixgbe_find_vlvf_slot - find the vlanid or the first empty slot
* @hw: pointer to hardware structure
* @vlan: VLAN id to write to VLAN filter
*
* return the VLVF index where this VLAN id should be placed
*
**/
s32 ixgbe_find_vlvf_slot(struct ixgbe_hw *hw, u32 vlan)
{
u32 bits = 0;
u32 first_empty_slot = 0;
s32 regindex;
/* short cut the special case */
if (vlan == 0)
return 0;
/*
* Search for the vlan id in the VLVF entries. Save off the first empty
* slot found along the way
*/
for (regindex = 1; regindex < IXGBE_VLVF_ENTRIES; regindex++) {
bits = IXGBE_READ_REG(hw, IXGBE_VLVF(regindex));
if (!bits && !(first_empty_slot))
first_empty_slot = regindex;
else if ((bits & 0x0FFF) == vlan)
break;
}
/*
* If regindex is less than IXGBE_VLVF_ENTRIES, then we found the vlan
* in the VLVF. Else use the first empty VLVF register for this
* vlan id.
*/
if (regindex >= IXGBE_VLVF_ENTRIES) {
if (first_empty_slot)
regindex = first_empty_slot;
else {
hw_dbg(hw, "No space in VLVF.\n");
regindex = IXGBE_ERR_NO_SPACE;
}
}
return regindex;
}
/**
* ixgbe_set_vfta_generic - Set VLAN filter table
* @hw: pointer to hardware structure
* @vlan: VLAN id to write to VLAN filter
* @vind: VMDq output index that maps queue to VLAN id in VFVFB
* @vlan_on: boolean flag to turn on/off VLAN in VFVF
*
* Turn on/off specified VLAN in the VLAN filter table.
**/
s32 ixgbe_set_vfta_generic(struct ixgbe_hw *hw, u32 vlan, u32 vind,
bool vlan_on)
{
s32 regindex;
u32 bitindex;
u32 vfta;
u32 targetbit;
s32 ret_val = 0;
bool vfta_changed = false;
if (vlan > 4095)
return IXGBE_ERR_PARAM;
/*
* this is a 2 part operation - first the VFTA, then the
* VLVF and VLVFB if VT Mode is set
* We don't write the VFTA until we know the VLVF part succeeded.
*/
/* Part 1
* The VFTA is a bitstring made up of 128 32-bit registers
* that enable the particular VLAN id, much like the MTA:
* bits[11-5]: which register
* bits[4-0]: which bit in the register
*/
regindex = (vlan >> 5) & 0x7F;
bitindex = vlan & 0x1F;
targetbit = (1 << bitindex);
vfta = IXGBE_READ_REG(hw, IXGBE_VFTA(regindex));
if (vlan_on) {
if (!(vfta & targetbit)) {
vfta |= targetbit;
vfta_changed = true;
}
} else {
if (vfta & targetbit) {
vfta &= ~targetbit;
vfta_changed = true;
}
}
/* Part 2
* Call ixgbe_set_vlvf_generic to set VLVFB and VLVF
*/
ret_val = ixgbe_set_vlvf_generic(hw, vlan, vind, vlan_on,
&vfta_changed);
if (ret_val != 0)
return ret_val;
if (vfta_changed)
IXGBE_WRITE_REG(hw, IXGBE_VFTA(regindex), vfta);
return 0;
}
/**
* ixgbe_set_vlvf_generic - Set VLAN Pool Filter
* @hw: pointer to hardware structure
* @vlan: VLAN id to write to VLAN filter
* @vind: VMDq output index that maps queue to VLAN id in VFVFB
* @vlan_on: boolean flag to turn on/off VLAN in VFVF
* @vfta_changed: pointer to boolean flag which indicates whether VFTA
* should be changed
*
* Turn on/off specified bit in VLVF table.
**/
s32 ixgbe_set_vlvf_generic(struct ixgbe_hw *hw, u32 vlan, u32 vind,
bool vlan_on, bool *vfta_changed)
{
u32 vt;
if (vlan > 4095)
return IXGBE_ERR_PARAM;
/* If VT Mode is set
* Either vlan_on
* make sure the vlan is in VLVF
* set the vind bit in the matching VLVFB
* Or !vlan_on
* clear the pool bit and possibly the vind
*/
vt = IXGBE_READ_REG(hw, IXGBE_VT_CTL);
if (vt & IXGBE_VT_CTL_VT_ENABLE) {
s32 vlvf_index;
u32 bits;
vlvf_index = ixgbe_find_vlvf_slot(hw, vlan);
if (vlvf_index < 0)
return vlvf_index;
if (vlan_on) {
/* set the pool bit */
if (vind < 32) {
bits = IXGBE_READ_REG(hw,
IXGBE_VLVFB(vlvf_index * 2));
bits |= (1 << vind);
IXGBE_WRITE_REG(hw,
IXGBE_VLVFB(vlvf_index * 2),
bits);
} else {
bits = IXGBE_READ_REG(hw,
IXGBE_VLVFB((vlvf_index * 2) + 1));
bits |= (1 << (vind - 32));
IXGBE_WRITE_REG(hw,
IXGBE_VLVFB((vlvf_index * 2) + 1),
bits);
}
} else {
/* clear the pool bit */
if (vind < 32) {
bits = IXGBE_READ_REG(hw,
IXGBE_VLVFB(vlvf_index * 2));
bits &= ~(1 << vind);
IXGBE_WRITE_REG(hw,
IXGBE_VLVFB(vlvf_index * 2),
bits);
bits |= IXGBE_READ_REG(hw,
IXGBE_VLVFB((vlvf_index * 2) + 1));
} else {
bits = IXGBE_READ_REG(hw,
IXGBE_VLVFB((vlvf_index * 2) + 1));
bits &= ~(1 << (vind - 32));
IXGBE_WRITE_REG(hw,
IXGBE_VLVFB((vlvf_index * 2) + 1),
bits);
bits |= IXGBE_READ_REG(hw,
IXGBE_VLVFB(vlvf_index * 2));
}
}
/*
* If there are still bits set in the VLVFB registers
* for the VLAN ID indicated we need to see if the
* caller is requesting that we clear the VFTA entry bit.
* If the caller has requested that we clear the VFTA
* entry bit but there are still pools/VFs using this VLAN
* ID entry then ignore the request. We're not worried
* about the case where we're turning the VFTA VLAN ID
* entry bit on, only when requested to turn it off as
* there may be multiple pools and/or VFs using the
* VLAN ID entry. In that case we cannot clear the
* VFTA bit until all pools/VFs using that VLAN ID have also
* been cleared. This will be indicated by "bits" being
* zero.
*/
if (bits) {
IXGBE_WRITE_REG(hw, IXGBE_VLVF(vlvf_index),
(IXGBE_VLVF_VIEN | vlan));
if (!vlan_on && (vfta_changed != NULL)) {
/* someone wants to clear the vfta entry
* but some pools/VFs are still using it.
* Ignore it. */
*vfta_changed = false;
}
} else
IXGBE_WRITE_REG(hw, IXGBE_VLVF(vlvf_index), 0);
}
return 0;
}
/**
* ixgbe_clear_vfta_generic - Clear VLAN filter table
* @hw: pointer to hardware structure
*
* Clears the VLAN filer table, and the VMDq index associated with the filter
**/
s32 ixgbe_clear_vfta_generic(struct ixgbe_hw *hw)
{
u32 offset;
for (offset = 0; offset < hw->mac.vft_size; offset++)
IXGBE_WRITE_REG(hw, IXGBE_VFTA(offset), 0);
for (offset = 0; offset < IXGBE_VLVF_ENTRIES; offset++) {
IXGBE_WRITE_REG(hw, IXGBE_VLVF(offset), 0);
IXGBE_WRITE_REG(hw, IXGBE_VLVFB(offset * 2), 0);
IXGBE_WRITE_REG(hw, IXGBE_VLVFB((offset * 2) + 1), 0);
}
return 0;
}
/**
* ixgbe_check_mac_link_generic - Determine link and speed status
* @hw: pointer to hardware structure
* @speed: pointer to link speed
* @link_up: true when link is up
* @link_up_wait_to_complete: bool used to wait for link up or not
*
* Reads the links register to determine if link is up and the current speed
**/
s32 ixgbe_check_mac_link_generic(struct ixgbe_hw *hw, ixgbe_link_speed *speed,
bool *link_up, bool link_up_wait_to_complete)
{
u32 links_reg, links_orig;
u32 i;
/* clear the old state */
links_orig = IXGBE_READ_REG(hw, IXGBE_LINKS);
links_reg = IXGBE_READ_REG(hw, IXGBE_LINKS);
if (links_orig != links_reg) {
hw_dbg(hw, "LINKS changed from %08X to %08X\n",
links_orig, links_reg);
}
if (link_up_wait_to_complete) {
for (i = 0; i < IXGBE_LINK_UP_TIME; i++) {
if (links_reg & IXGBE_LINKS_UP) {
*link_up = true;
break;
} else {
*link_up = false;
}
msleep(100);
links_reg = IXGBE_READ_REG(hw, IXGBE_LINKS);
}
} else {
if (links_reg & IXGBE_LINKS_UP)
*link_up = true;
else
*link_up = false;
}
if ((links_reg & IXGBE_LINKS_SPEED_82599) ==
IXGBE_LINKS_SPEED_10G_82599)
*speed = IXGBE_LINK_SPEED_10GB_FULL;
else if ((links_reg & IXGBE_LINKS_SPEED_82599) ==
IXGBE_LINKS_SPEED_1G_82599)
*speed = IXGBE_LINK_SPEED_1GB_FULL;
else if ((links_reg & IXGBE_LINKS_SPEED_82599) ==
IXGBE_LINKS_SPEED_100_82599)
*speed = IXGBE_LINK_SPEED_100_FULL;
else
*speed = IXGBE_LINK_SPEED_UNKNOWN;
return 0;
}
/**
* ixgbe_get_wwn_prefix_generic - Get alternative WWNN/WWPN prefix from
* the EEPROM
* @hw: pointer to hardware structure
* @wwnn_prefix: the alternative WWNN prefix
* @wwpn_prefix: the alternative WWPN prefix
*
* This function will read the EEPROM from the alternative SAN MAC address
* block to check the support for the alternative WWNN/WWPN prefix support.
**/
s32 ixgbe_get_wwn_prefix_generic(struct ixgbe_hw *hw, u16 *wwnn_prefix,
u16 *wwpn_prefix)
{
u16 offset, caps;
u16 alt_san_mac_blk_offset;
/* clear output first */
*wwnn_prefix = 0xFFFF;
*wwpn_prefix = 0xFFFF;
/* check if alternative SAN MAC is supported */
hw->eeprom.ops.read(hw, IXGBE_ALT_SAN_MAC_ADDR_BLK_PTR,
&alt_san_mac_blk_offset);
if ((alt_san_mac_blk_offset == 0) ||
(alt_san_mac_blk_offset == 0xFFFF))
goto wwn_prefix_out;
/* check capability in alternative san mac address block */
offset = alt_san_mac_blk_offset + IXGBE_ALT_SAN_MAC_ADDR_CAPS_OFFSET;
hw->eeprom.ops.read(hw, offset, &caps);
if (!(caps & IXGBE_ALT_SAN_MAC_ADDR_CAPS_ALTWWN))
goto wwn_prefix_out;
/* get the corresponding prefix for WWNN/WWPN */
offset = alt_san_mac_blk_offset + IXGBE_ALT_SAN_MAC_ADDR_WWNN_OFFSET;
hw->eeprom.ops.read(hw, offset, wwnn_prefix);
offset = alt_san_mac_blk_offset + IXGBE_ALT_SAN_MAC_ADDR_WWPN_OFFSET;
hw->eeprom.ops.read(hw, offset, wwpn_prefix);
wwn_prefix_out:
return 0;
}
/**
* ixgbe_get_fcoe_boot_status_generic - Get FCOE boot status from EEPROM
* @hw: pointer to hardware structure
* @bs: the fcoe boot status
*
* This function will read the FCOE boot status from the iSCSI FCOE block
**/
s32 ixgbe_get_fcoe_boot_status_generic(struct ixgbe_hw *hw, u16 *bs)
{
u16 offset, caps, flags;
s32 status;
/* clear output first */
*bs = ixgbe_fcoe_bootstatus_unavailable;
/* check if FCOE IBA block is present */
offset = IXGBE_FCOE_IBA_CAPS_BLK_PTR;
status = hw->eeprom.ops.read(hw, offset, &caps);
if (status != 0)
goto out;
if (!(caps & IXGBE_FCOE_IBA_CAPS_FCOE))
goto out;
/* check if iSCSI FCOE block is populated */
status = hw->eeprom.ops.read(hw, IXGBE_ISCSI_FCOE_BLK_PTR, &offset);
if (status != 0)
goto out;
if ((offset == 0) || (offset == 0xFFFF))
goto out;
/* read fcoe flags in iSCSI FCOE block */
offset = offset + IXGBE_ISCSI_FCOE_FLAGS_OFFSET;
status = hw->eeprom.ops.read(hw, offset, &flags);
if (status != 0)
goto out;
if (flags & IXGBE_ISCSI_FCOE_FLAGS_ENABLE)
*bs = ixgbe_fcoe_bootstatus_enabled;
else
*bs = ixgbe_fcoe_bootstatus_disabled;
out:
return status;
}
/**
* ixgbe_set_mac_anti_spoofing - Enable/Disable MAC anti-spoofing
* @hw: pointer to hardware structure
* @enable: enable or disable switch for anti-spoofing
* @pf: Physical Function pool - do not enable anti-spoofing for the PF
*
**/
void ixgbe_set_mac_anti_spoofing(struct ixgbe_hw *hw, bool enable, int pf)
{
int j;
int pf_target_reg = pf >> 3;
int pf_target_shift = pf % 8;
u32 pfvfspoof = 0;
if (hw->mac.type == ixgbe_mac_82598EB)
return;
if (enable)
pfvfspoof = IXGBE_SPOOF_MACAS_MASK;
/*
* PFVFSPOOF register array is size 8 with 8 bits assigned to
* MAC anti-spoof enables in each register array element.
*/
for (j = 0; j < IXGBE_PFVFSPOOF_REG_COUNT; j++)
IXGBE_WRITE_REG(hw, IXGBE_PFVFSPOOF(j), pfvfspoof);
/* If not enabling anti-spoofing then done */
if (!enable)
return;
/*
* The PF should be allowed to spoof so that it can support
* emulation mode NICs. Reset the bit assigned to the PF
*/
pfvfspoof = IXGBE_READ_REG(hw, IXGBE_PFVFSPOOF(pf_target_reg));
pfvfspoof ^= (1 << pf_target_shift);
IXGBE_WRITE_REG(hw, IXGBE_PFVFSPOOF(pf_target_reg), pfvfspoof);
}
/**
* ixgbe_set_vlan_anti_spoofing - Enable/Disable VLAN anti-spoofing
* @hw: pointer to hardware structure
* @enable: enable or disable switch for VLAN anti-spoofing
* @pf: Virtual Function pool - VF Pool to set for VLAN anti-spoofing
*
**/
void ixgbe_set_vlan_anti_spoofing(struct ixgbe_hw *hw, bool enable, int vf)
{
int vf_target_reg = vf >> 3;
int vf_target_shift = vf % 8 + IXGBE_SPOOF_VLANAS_SHIFT;
u32 pfvfspoof;
if (hw->mac.type == ixgbe_mac_82598EB)
return;
pfvfspoof = IXGBE_READ_REG(hw, IXGBE_PFVFSPOOF(vf_target_reg));
if (enable)
pfvfspoof |= (1 << vf_target_shift);
else
pfvfspoof &= ~(1 << vf_target_shift);
IXGBE_WRITE_REG(hw, IXGBE_PFVFSPOOF(vf_target_reg), pfvfspoof);
}
/**
* ixgbe_get_device_caps_generic - Get additional device capabilities
* @hw: pointer to hardware structure
* @device_caps: the EEPROM word with the extra device capabilities
*
* This function will read the EEPROM location for the device capabilities,
* and return the word through device_caps.
**/
s32 ixgbe_get_device_caps_generic(struct ixgbe_hw *hw, u16 *device_caps)
{
hw->eeprom.ops.read(hw, IXGBE_DEVICE_CAPS, device_caps);
return 0;
}
/**
* ixgbe_calculate_checksum - Calculate checksum for buffer
* @buffer: pointer to EEPROM
* @length: size of EEPROM to calculate a checksum for
* Calculates the checksum for some buffer on a specified length. The
* checksum calculated is returned.
**/
static u8 ixgbe_calculate_checksum(u8 *buffer, u32 length)
{
u32 i;
u8 sum = 0;
if (!buffer)
return 0;
for (i = 0; i < length; i++)
sum += buffer[i];
return (u8) (0 - sum);
}
/**
* ixgbe_host_interface_command - Issue command to manageability block
* @hw: pointer to the HW structure
* @buffer: contains the command to write and where the return status will
* be placed
* @length: length of buffer, must be multiple of 4 bytes
*
* Communicates with the manageability block. On success return 0
* else return IXGBE_ERR_HOST_INTERFACE_COMMAND.
**/
static s32 ixgbe_host_interface_command(struct ixgbe_hw *hw, u32 *buffer,
u32 length)
{
u32 hicr, i, bi;
u32 hdr_size = sizeof(struct ixgbe_hic_hdr);
u8 buf_len, dword_len;
s32 ret_val = 0;
if (length == 0 || length & 0x3 ||
length > IXGBE_HI_MAX_BLOCK_BYTE_LENGTH) {
hw_dbg(hw, "Buffer length failure.\n");
ret_val = IXGBE_ERR_HOST_INTERFACE_COMMAND;
goto out;
}
/* Check that the host interface is enabled. */
hicr = IXGBE_READ_REG(hw, IXGBE_HICR);
if ((hicr & IXGBE_HICR_EN) == 0) {
hw_dbg(hw, "IXGBE_HOST_EN bit disabled.\n");
ret_val = IXGBE_ERR_HOST_INTERFACE_COMMAND;
goto out;
}
/* Calculate length in DWORDs */
dword_len = length >> 2;
/*
* The device driver writes the relevant command block
* into the ram area.
*/
for (i = 0; i < dword_len; i++)
IXGBE_WRITE_REG_ARRAY(hw, IXGBE_FLEX_MNG,
i, IXGBE_CPU_TO_LE32(buffer[i]));
/* Setting this bit tells the ARC that a new command is pending. */
IXGBE_WRITE_REG(hw, IXGBE_HICR, hicr | IXGBE_HICR_C);
for (i = 0; i < IXGBE_HI_COMMAND_TIMEOUT; i++) {
hicr = IXGBE_READ_REG(hw, IXGBE_HICR);
if (!(hicr & IXGBE_HICR_C))
break;
msleep(1);
}
/* Check command successful completion. */
if (i == IXGBE_HI_COMMAND_TIMEOUT ||
(!(IXGBE_READ_REG(hw, IXGBE_HICR) & IXGBE_HICR_SV))) {
hw_dbg(hw, "Command has failed with no status valid.\n");
ret_val = IXGBE_ERR_HOST_INTERFACE_COMMAND;
goto out;
}
/* Calculate length in DWORDs */
dword_len = hdr_size >> 2;
/* first pull in the header so we know the buffer length */
for (bi = 0; bi < dword_len; bi++) {
buffer[bi] = IXGBE_READ_REG_ARRAY(hw, IXGBE_FLEX_MNG, bi);
IXGBE_LE32_TO_CPUS(&buffer[bi]);
}
/* If there is any thing in data position pull it in */
buf_len = ((struct ixgbe_hic_hdr *)buffer)->buf_len;
if (buf_len == 0)
goto out;
if (length < (buf_len + hdr_size)) {
hw_dbg(hw, "Buffer not large enough for reply message.\n");
ret_val = IXGBE_ERR_HOST_INTERFACE_COMMAND;
goto out;
}
/* Calculate length in DWORDs, add 3 for odd lengths */
dword_len = (buf_len + 3) >> 2;
/* Pull in the rest of the buffer (bi is where we left off)*/
for (; bi <= dword_len; bi++) {
buffer[bi] = IXGBE_READ_REG_ARRAY(hw, IXGBE_FLEX_MNG, bi);
IXGBE_LE32_TO_CPUS(&buffer[bi]);
}
out:
return ret_val;
}
/**
* ixgbe_set_fw_drv_ver_generic - Sends driver version to firmware
* @hw: pointer to the HW structure
* @maj: driver version major number
* @min: driver version minor number
* @build: driver version build number
* @sub: driver version sub build number
*
* Sends driver version number to firmware through the manageability
* block. On success return 0
* else returns IXGBE_ERR_SWFW_SYNC when encountering an error acquiring
* semaphore or IXGBE_ERR_HOST_INTERFACE_COMMAND when command fails.
**/
s32 ixgbe_set_fw_drv_ver_generic(struct ixgbe_hw *hw, u8 maj, u8 min,
u8 build, u8 sub)
{
struct ixgbe_hic_drv_info fw_cmd;
int i;
s32 ret_val = 0;
if (hw->mac.ops.acquire_swfw_sync(hw, IXGBE_GSSR_SW_MNG_SM)
!= 0) {
ret_val = IXGBE_ERR_SWFW_SYNC;
goto out;
}
fw_cmd.hdr.cmd = FW_CEM_CMD_DRIVER_INFO;
fw_cmd.hdr.buf_len = FW_CEM_CMD_DRIVER_INFO_LEN;
fw_cmd.hdr.cmd_or_resp.cmd_resv = FW_CEM_CMD_RESERVED;
fw_cmd.port_num = (u8)hw->bus.func;
fw_cmd.ver_maj = maj;
fw_cmd.ver_min = min;
fw_cmd.ver_build = build;
fw_cmd.ver_sub = sub;
fw_cmd.hdr.checksum = 0;
fw_cmd.hdr.checksum = ixgbe_calculate_checksum((u8 *)&fw_cmd,
(FW_CEM_HDR_LEN + fw_cmd.hdr.buf_len));
fw_cmd.pad = 0;
fw_cmd.pad2 = 0;
for (i = 0; i <= FW_CEM_MAX_RETRIES; i++) {
ret_val = ixgbe_host_interface_command(hw, (u32 *)&fw_cmd,
sizeof(fw_cmd));
if (ret_val != 0)
continue;
if (fw_cmd.hdr.cmd_or_resp.ret_status ==
FW_CEM_RESP_STATUS_SUCCESS)
ret_val = 0;
else
ret_val = IXGBE_ERR_HOST_INTERFACE_COMMAND;
break;
}
hw->mac.ops.release_swfw_sync(hw, IXGBE_GSSR_SW_MNG_SM);
out:
return ret_val;
}
/**
* ixgbe_set_rxpba_generic - Initialize Rx packet buffer
* @hw: pointer to hardware structure
* @num_pb: number of packet buffers to allocate
* @headroom: reserve n KB of headroom
* @strategy: packet buffer allocation strategy
**/
void ixgbe_set_rxpba_generic(struct ixgbe_hw *hw, int num_pb, u32 headroom,
int strategy)
{
u32 pbsize = hw->mac.rx_pb_size;
int i = 0;
u32 rxpktsize, txpktsize, txpbthresh;
/* Reserve headroom */
pbsize -= headroom;
if (!num_pb)
num_pb = 1;
/* Divide remaining packet buffer space amongst the number of packet
* buffers requested using supplied strategy.
*/
switch (strategy) {
case PBA_STRATEGY_WEIGHTED:
/* ixgbe_dcb_pba_80_48 strategy weight first half of packet
* buffer with 5/8 of the packet buffer space.
*/
rxpktsize = (pbsize * 5) / (num_pb * 4);
pbsize -= rxpktsize * (num_pb / 2);
rxpktsize <<= IXGBE_RXPBSIZE_SHIFT;
for (; i < (num_pb / 2); i++)
IXGBE_WRITE_REG(hw, IXGBE_RXPBSIZE(i), rxpktsize);
/* Fall through to configure remaining packet buffers */
case PBA_STRATEGY_EQUAL:
rxpktsize = (pbsize / (num_pb - i)) << IXGBE_RXPBSIZE_SHIFT;
for (; i < num_pb; i++)
IXGBE_WRITE_REG(hw, IXGBE_RXPBSIZE(i), rxpktsize);
break;
default:
break;
}
/* Only support an equally distributed Tx packet buffer strategy. */
txpktsize = IXGBE_TXPBSIZE_MAX / num_pb;
txpbthresh = (txpktsize / 1024) - IXGBE_TXPKT_SIZE_MAX;
for (i = 0; i < num_pb; i++) {
IXGBE_WRITE_REG(hw, IXGBE_TXPBSIZE(i), txpktsize);
IXGBE_WRITE_REG(hw, IXGBE_TXPBTHRESH(i), txpbthresh);
}
/* Clear unused TCs, if any, to zero buffer size*/
for (; i < IXGBE_MAX_PB; i++) {
IXGBE_WRITE_REG(hw, IXGBE_RXPBSIZE(i), 0);
IXGBE_WRITE_REG(hw, IXGBE_TXPBSIZE(i), 0);
IXGBE_WRITE_REG(hw, IXGBE_TXPBTHRESH(i), 0);
}
}
/**
* ixgbe_clear_tx_pending - Clear pending TX work from the PCIe fifo
* @hw: pointer to the hardware structure
*
* The 82599 and x540 MACs can experience issues if TX work is still pending
* when a reset occurs. This function prevents this by flushing the PCIe
* buffers on the system.
**/
void ixgbe_clear_tx_pending(struct ixgbe_hw *hw)
{
u32 gcr_ext, hlreg0;
/*
* If double reset is not requested then all transactions should
* already be clear and as such there is no work to do
*/
if (!(hw->mac.flags & IXGBE_FLAGS_DOUBLE_RESET_REQUIRED))
return;
/*
* Set loopback enable to prevent any transmits from being sent
* should the link come up. This assumes that the RXCTRL.RXEN bit
* has already been cleared.
*/
hlreg0 = IXGBE_READ_REG(hw, IXGBE_HLREG0);
IXGBE_WRITE_REG(hw, IXGBE_HLREG0, hlreg0 | IXGBE_HLREG0_LPBK);
/* initiate cleaning flow for buffers in the PCIe transaction layer */
gcr_ext = IXGBE_READ_REG(hw, IXGBE_GCR_EXT);
IXGBE_WRITE_REG(hw, IXGBE_GCR_EXT,
gcr_ext | IXGBE_GCR_EXT_BUFFERS_CLEAR);
/* Flush all writes and allow 20usec for all transactions to clear */
IXGBE_WRITE_FLUSH(hw);
udelay(20);
/* restore previous register values */
IXGBE_WRITE_REG(hw, IXGBE_GCR_EXT, gcr_ext);
IXGBE_WRITE_REG(hw, IXGBE_HLREG0, hlreg0);
}
static const u8 ixgbe_emc_temp_data[4] = {
IXGBE_EMC_INTERNAL_DATA,
IXGBE_EMC_DIODE1_DATA,
IXGBE_EMC_DIODE2_DATA,
IXGBE_EMC_DIODE3_DATA
};
static const u8 ixgbe_emc_therm_limit[4] = {
IXGBE_EMC_INTERNAL_THERM_LIMIT,
IXGBE_EMC_DIODE1_THERM_LIMIT,
IXGBE_EMC_DIODE2_THERM_LIMIT,
IXGBE_EMC_DIODE3_THERM_LIMIT
};
/**
* ixgbe_get_thermal_sensor_data - Gathers thermal sensor data
* @hw: pointer to hardware structure
* @data: pointer to the thermal sensor data structure
*
* Returns the thermal sensor data structure
**/
s32 ixgbe_get_thermal_sensor_data_generic(struct ixgbe_hw *hw)
{
s32 status = 0;
u16 ets_offset;
u16 ets_cfg;
u16 ets_sensor;
u8 num_sensors;
u8 sensor_index;
u8 sensor_location;
u8 i;
struct ixgbe_thermal_sensor_data *data = &hw->mac.thermal_sensor_data;
/* Only support thermal sensors attached to 82599 physical port 0 */
if ((hw->mac.type != ixgbe_mac_82599EB) ||
(IXGBE_READ_REG(hw, IXGBE_STATUS) & IXGBE_STATUS_LAN_ID_1)) {
status = IXGBE_NOT_IMPLEMENTED;
goto out;
}
status = hw->eeprom.ops.read(hw, IXGBE_ETS_CFG, &ets_offset);
if (status)
goto out;
if ((ets_offset == 0x0000) || (ets_offset == 0xFFFF)) {
status = IXGBE_NOT_IMPLEMENTED;
goto out;
}
status = hw->eeprom.ops.read(hw, ets_offset, &ets_cfg);
if (status)
goto out;
if (((ets_cfg & IXGBE_ETS_TYPE_MASK) >> IXGBE_ETS_TYPE_SHIFT)
!= IXGBE_ETS_TYPE_EMC) {
status = IXGBE_NOT_IMPLEMENTED;
goto out;
}
num_sensors = (ets_cfg & IXGBE_ETS_NUM_SENSORS_MASK);
if (num_sensors > IXGBE_MAX_SENSORS)
num_sensors = IXGBE_MAX_SENSORS;
for (i = 0; i < num_sensors; i++) {
status = hw->eeprom.ops.read(hw, (ets_offset + 1 + i),
&ets_sensor);
if (status)
goto out;
sensor_index = ((ets_sensor & IXGBE_ETS_DATA_INDEX_MASK) >>
IXGBE_ETS_DATA_INDEX_SHIFT);
sensor_location = ((ets_sensor & IXGBE_ETS_DATA_LOC_MASK) >>
IXGBE_ETS_DATA_LOC_SHIFT);
if (sensor_location != 0) {
status = hw->phy.ops.read_i2c_byte(hw,
ixgbe_emc_temp_data[sensor_index],
IXGBE_I2C_THERMAL_SENSOR_ADDR,
&data->sensor[i].temp);
if (status)
goto out;
}
}
out:
return status;
}
/**
* ixgbe_init_thermal_sensor_thresh_generic - Inits thermal sensor thresholds
* @hw: pointer to hardware structure
*
* Inits the thermal sensor thresholds according to the NVM map
* and save off the threshold and location values into mac.thermal_sensor_data
**/
s32 ixgbe_init_thermal_sensor_thresh_generic(struct ixgbe_hw *hw)
{
s32 status = 0;
u16 ets_offset;
u16 ets_cfg;
u16 ets_sensor;
u8 low_thresh_delta;
u8 num_sensors;
u8 sensor_index;
u8 sensor_location;
u8 therm_limit;
u8 i;
struct ixgbe_thermal_sensor_data *data = &hw->mac.thermal_sensor_data;
memset(data, 0, sizeof(struct ixgbe_thermal_sensor_data));
/* Only support thermal sensors attached to 82599 physical port 0 */
if ((hw->mac.type != ixgbe_mac_82599EB) ||
(IXGBE_READ_REG(hw, IXGBE_STATUS) & IXGBE_STATUS_LAN_ID_1))
return IXGBE_NOT_IMPLEMENTED;
hw->eeprom.ops.read(hw, IXGBE_ETS_CFG, &ets_offset);
if ((ets_offset == 0x0000) || (ets_offset == 0xFFFF))
return IXGBE_NOT_IMPLEMENTED;
hw->eeprom.ops.read(hw, ets_offset, &ets_cfg);
if (((ets_cfg & IXGBE_ETS_TYPE_MASK) >> IXGBE_ETS_TYPE_SHIFT)
!= IXGBE_ETS_TYPE_EMC)
return IXGBE_NOT_IMPLEMENTED;
low_thresh_delta = ((ets_cfg & IXGBE_ETS_LTHRES_DELTA_MASK) >>
IXGBE_ETS_LTHRES_DELTA_SHIFT);
num_sensors = (ets_cfg & IXGBE_ETS_NUM_SENSORS_MASK);
for (i = 0; i < num_sensors; i++) {
hw->eeprom.ops.read(hw, (ets_offset + 1 + i), &ets_sensor);
sensor_index = ((ets_sensor & IXGBE_ETS_DATA_INDEX_MASK) >>
IXGBE_ETS_DATA_INDEX_SHIFT);
sensor_location = ((ets_sensor & IXGBE_ETS_DATA_LOC_MASK) >>
IXGBE_ETS_DATA_LOC_SHIFT);
therm_limit = ets_sensor & IXGBE_ETS_DATA_HTHRESH_MASK;
hw->phy.ops.write_i2c_byte(hw,
ixgbe_emc_therm_limit[sensor_index],
IXGBE_I2C_THERMAL_SENSOR_ADDR, therm_limit);
if ((i < IXGBE_MAX_SENSORS) && (sensor_location != 0)) {
data->sensor[i].location = sensor_location;
data->sensor[i].caution_thresh = therm_limit;
data->sensor[i].max_op_thresh = therm_limit -
low_thresh_delta;
}
}
return status;
}